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ABSTRACT
Non-contact vital signs monitoring (NCVSM) of multiple peo-

ple is becoming a necessity in healthcare due to increasing morbidity
and manpower shortage. In meeting these requirements, frequency
modulated continuous wave (FMCW) radars have shown great po-
tential. However, current techniques present difficulties in locating
and monitoring humans in noisy environments containing multiple
objects. In this work, we first develop a model for NCVSM of multi-
ple people via FMCW radar, based on a single-input-multiple-output
setup. By considering the sparse nature of the modeled signals along
with human-typical cardiopulmonary characteristics, we provide a
joint-sparse recovery mechanism to accurately localize targets in a
clutter-rich scenario where existing techniques struggle. Then, we
present a robust method for NCVSM of the found individuals, with
improved performance results when compared to current NCVSM
techniques using several statistical metrics. Our approach offers ex-
cellent performance in a medical application where high accuracy is
required.

Index Terms— Frequency modulated continuous wave radar,
joint-sparse recovery, multiple people localization, non-contact vital
signs monitoring.

1. INTRODUCTION
Non-contact vital signs monitoring (NCVSM) has become increas-
ingly important in healthcare, owing to factors such as the rise in
chronic health conditions, the risk of disease transmission, and the
heavy burden on medical staff [1–3]. Radar technology can be ideal
in these situations since it does not require users to wear, carry, or
interact with any additional electronic device [4]. Initially, the fam-
ily of continuous wave (CW) radars was proposed to estimate hu-
man vital signs, such as heart rate (HR) and respiration rate (RR),
by detecting tiny chest wall displacements [5–7]. However, they do
not provide the spatial information needed in busy multi-object en-
vironments, such as clinics and hospitals [8, 9], where multi-person
monitoring is required while ignoring the other objects in space. To
overcome this, high-resolution single-input multiple-output (SIMO)
frequency-modulated continuous-wave (FMCW) radars can be used
to spatially separate humans while simultaneously monitoring their
vital signs, even if they are located at the same radial distance from
the radar. Nevertheless, in noisy, cluttered environments, prevalent
methods for both multiple people localization and NCVSM strug-
gle to provide accurate estimates for future replacement of existing
monitoring devices.

The task of continuous NCVSM of multiple people via radar
can be divided into two signal processing components: 1. Detect
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the humans and estimate their spatial location 2. Monitor their vi-
tal signs (here, RR and HR). In relation to the localization part, the
authors in [10] utilized the fast Fourier transform (FFT) to local-
ize the humans by converting the radar data into the range-azimuth
plane using a range-FFT followed by an angle-FFT. However, re-
lying solely on spectral magnitudes can lead to erroneous decisions
due to strong signal reflections from static objects in the radar’s field
of view (FOV) and poor angle resolution. Some researchers em-
ployed the multiple signal classification (MUSIC) algorithm for di-
rection of arrival (DOA) estimation of humans in an indoor environ-
ment [11,12]. Although the method can increase angular resolution,
it is sensitive to other vibrating objects in the FOV, such as fans. As
a result, a robust method with high resolution and low error rates for
localizing humans in noisy environments is required.

Once the humans are correctly located, their vital signs can be
extracted and monitored. The most commonly used methods to es-
timate the vital signs given extracted human thoracic vibration, are
based on the discrete Fourier transform (DFT) spectrum, assuming
that stationary resting humans have separate heartbeat and breath-
ing frequency bands [13–18]. Despite all the well-known benefits of
DFT-spectrum analysis, in NCVSM, the heartbeat signal can be eas-
ily masked by the harmonics of the respiratory signal, which reduces
estimation accuracy.

In this paper, we develop an extended mathematical signal
model for the problem of NCVSM of multiple people in a cluttered
scenario, using SIMO FMCW radar. Based on the sparse represen-
tation of people via this model, we propose a human spatial localiza-
tion using a joint-sparse recovery (JSR) mechanism [20–22]. This
approach estimates both radial distance and azimuth angle and al-
lows for computationally efficient extraction of Doppler information
throughout the complete monitoring process. Then, we demonstrate
high-resolution NCVSM of multiple people using the Vital Signs
based Dictionary Recovery (VSDR) technique, detailed in [23],
which employs a dictionary-based approach to effectively search for
the vital signs over high-resolution frequency grids, corresponding
to resting cardiopulmonary activity.

The performance of the proposed methodology is verified
through simulations that incorporate the developed model with in
vivo data of 3 monitored individuals from [24]. This study demon-
strates accurate human localization in a multiple-object scenario
as well as precise NCVSM of multiple people, when compared to
state-of-the-art techniques based on [13–18], using several statistical
metrics.

The rest of the paper is organized as follows. In Section 2, we
propose a model for NCVSM of multiple people via SIMO FMCW
radar. Based on this model, we present sparsity-based multiple peo-
ple localization and NCVSM in Section 3. In Section 4, we assess
the quality of the suggested algorithms and compare them with ex-
isting techniques. Section 5 concludes this work.IC
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2. SIMO FMCW MODEL FOR NCVSM OF MULTIPLE
PEOPLE

A typical linear FMCW radar transmits a saw-tooth waveform at
each given time frame, called chirp [19], whose frequency linearly
increases over time. The reflected echo signals are mixed with ver-
sions of the transmitted ones to obtain analog base-band signals,
called beat signals [16, 18]. For each frame, the beat signals are
sequentially sampled by the ADC, resulting in discrete signals of
lengthN . We consider a SIMO Uniform Linear Array (ULA) with a
single transmitter and K receivers spaced by rk ≜ (k − 1)λ/2,
k = 1, ...,K where λ denotes the chirp’s maximal wavelength.
To that end, we extend the single-input-single-output (SISO) signal
model suggested by Eder et al. [23] for L given frames of N beat
samples using K > 1 receivers, to the following 3-D discrete beat
signal based on PM objects in the radar’s FOV

y [n, k, l] =
P∑
p=1

M∑
m=1

xm,pe
j(2πfmnTf+ψm,p[l]+ϕp[k]) + w [n, k, l]

(1)
where n = 1, ..., N , k = 1, ...,K, l = 1, ..., L and {w[n, k, l]}
is a 3-D sequence of zero mean i.i.d. complex Gaussian noise with
variance σ2. Here, Tf denotes the ADC sampling interval and xm,p
denotes the received amplitude of the {m, p}’th object based on its
radar cross section (RCS).

Each frequency fm is distinct and proportional to a different ra-
dial distance from the radar dm:

fm ≜
2S

c
dm, m = 1, . . . ,M ≤ N, (2)

where c denotes the speed of light and S ≜ B/Tc corresponds to
the rate of the frequency sweep of each chirp, with B and Tc respec-
tively being the chirp’s total bandwidth and duration. The slow-time
varying phase ψm,p [l] of each component is given by

ψm,p [l] ≜
4π

λ
(dm + vm,p [l]) , l = 1, . . . , L (3)

where the function vm,p [l] refers to small vibrations caused by hu-
man thoracic displacements or other vibrating objects, such as fans,
and is therefore generally modeled as follows

vm,p [l] ≜
Q∑
q=1

am,p,q cos (2πgm,p,qlTs), l = 1, . . . , L, (4)

with the pairs {am,p,q, gm,p,q}Qq=1 denoting the corresponding am-
plitudes and frequencies and Ts ≜ 1/fs is the frame duration, also
known as the slow-time sampling interval. The generic vibration
model in (4) allows for adequate representation of both static and
vibrating objects, using appropriate values for {am,p,q}Qq=1 and
{gm,p,q}Qq=1. Particularly, for the case of Z people located in the
radar’s FOV, we assume that the frequency set {gm,p,q}Qq=1 in-
cludes their HR and RR, denoted by f (z)

h and f (z)
r , respectively, for

z = 1, ..., Z. Finally, we consider in this work a total of P possible
azimuth angles {θp}Pp=1, reflected in the following phase shifts

ϕp [k] =
2π

λ
rk sin θp, k = 1, . . . ,K ≤ P. (5)

Define the slow-time varying complex amplitude

x̃m,p [l] ≜ xm,pe
jψm,p[l], l = 1, . . . , L. (6)

For each frame l we can assemble the samples of y [n, k, l] (1) into
the matrix Yl ∈ CN×K , which satisfies

Yl = AXTl BT +Wl, l = 1, . . . , L (7)

where A ∈ CN×M , M ≤ N , Xl ∈ CP×M , B ∈ CK×P ,
K ≤ P and Wl ∈ CN×K , whose entries are respectively given
by A (n,m) ≜ ej2πfmnTf , Xl (p,m) ≜ x̃m,p [l] (6), B (k, p) ≜
ejϕp[k] and Wl (n, k) ≜ w [n, k, l]. One can verify that for K = 1,
the model in (7) coincides with the SISO model in [23, Eq. (14)].

To facilitate the analysis, in the following we convert the model
in (7) to a single matrix representation for L given frames. To that
end, we first assume that the fast-time frequencies {fm}Mm=1 (2) lie
on the Nyquist grid, i.e.,

fm =
fADC

N
im, im = 0, . . . ,M − 1, (8)

where fADC ≜ 1/Tf is determined by the ADC component.
Then, by the structure of A in (7) given (8), we can construct
⌢

Yl = BXl +
⌢

Wl, l = 1, ..., L where
⌢

Yl ≜ 1
N

(
AHYl

)T ∈ CK×M

and
⌢

Wl ≜ 1
N

(
AHWl

)T ∈ CK×M . Here, we used the fact that
AHA = NIM , where IM denotes a size-M identity matrix, since
by (8), A (n,m) = ej2π

im
N
n. We note that since Wl consists of

i.i.d. Gaussian random variables, the statistical properties of the
model in (7) are preserved. Next, we concatenate all M columns of
⌢

Yl, to obtain a vectorized representation ⌢
yl ∈ CKM×1

⌢
yl = Cx̃l +

⌢
wl, l = 1, . . . , L, (9)

where C ∈ CKM×PM denotes a block matrix containing M blocks
of B on its main-diagonal, ⌢

wl ∈ CKM×1 is the transformed noise
vector and based on (6) the entries of x̃l ∈ CPM×1 are given by

x̃l (im,p) = xim,pe
jψim,p [l], l = 1, . . . , L, (10)

with the row index im,p = (m− 1)P + p.
In order to perform continuous NCVSM, the radar should oper-

ate and generate data frames throughout the entire monitoring dura-
tion. To this end, at each predefined time interval Tint, we form the
sequence {⌢

yl}Ll=1 (9) by collecting the last L frames up to that time.
The number of frames to be processed, L, is determined by a prede-
fined time window Twin according to L = Twinfs, where the units of
Twin and fs are [s] and [1/s], respectively. Finally, we reformulate
the observations in (9) for L given frames, as follows

Y = CX̃+W, (11)

where Y ≜
[
⌢
y1, ...,

⌢
yL

]
∈ CKM×L, X̃ ≜ [x̃1, ..., x̃L] ∈ CPM×L

and W ≜ [w1, ...,wL] ∈ CKM×L is the noise matrix. We assume
here that only Z ≪ PM stationary humans are being monitored.
Using the above settings, this assumption induces a row-wise spar-
sity in X̃, meaning that the vectors {x̃l}Ll=1 share a joint support.

Based on the model in (11), the first goal is to recover the row-
coordinates of X̃ associated with humans in the radar’s FOV, de-
noted by the support S, by which the spatial location of each human
can be estimated. The second goal, using the recovered S, is to con-
tinuously evaluate the RR and HR of each detected human through-
out the complete monitoring duration. Mathematically, every Tint we
seek to estimate the corresponding {f (z)

r , f
(z)
h }Zz=1 (4).

3. SPARSITY-BASED MULTIPLE PEOPLE
LOCALIZATION AND NCVSM

Our sparsity-based solution is divided into two main stages after a
preliminary processing. In the first, the support S is recovered, by
which the spatial location of each human is estimated. In the second,
we show simultaneous NCVSM of the detected humans using S and
the VSDR method [23], for the discussed scenario.
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3.1. Preliminary Processing

At each Tint, we assemble the matrix Y (11) from the given radar
data samples in (1) by following relations (7)-(11). To do this, we
should fisrt set the dictionary matrices A and B (7). For the matrix
A, the frequencies {fm}Mm=1 satisfy (8). As for B, the phase shift
ϕp [k] (5) is set according to the ULA defined by {rk}Kk=1 (Sec. 2)
and angle grid covering FOV of 180 degrees

θp = −90 + ip∆θ, ip = 0, . . . , P − 1 , P =
180

∆θ
, (12)

where ∆θ denotes the spacing of the angle grid. Thus, by (5) and
(12), B (k, p) = ejπ(k−1) sin(−90+ip∆θ).

3.2. Multiple People Spatial localization

In the first monitoring iteration, we use the assembled matrix Y (11)
to estimate the spatial locations of all stationary humans by recov-
ering X̃ and its support S. This allows us to efficiently extract the
relevant Doppler samples, from which we monitor each individual’s
vital signs, for the remainder of the monitoring process.

To aid in the separation of humans from static or vibrating clut-
ter, before recovering X̃, we perform spectral filtering of Y in the
slow-time axis based on prior knowledge of human-typical pulse and
breathing rates. To that end, we denote by B(R) and B(H) the fre-
quency bands of normal respiration and heartbeat, respectively. The
filtered signal is then given by

Ȳ =
1

L

(
FHL

(
Π⊙ FLY

T
))T

, (13)

where FL is a full L-size DFT matrix, Π denotes an ideal window
corresponding to the vital frequencies inB(H)∪B(R) and ⊙ denotes
the element-wise product.

Since we assume that X̃ is a row-sparse matrix, we now recover
it from Ȳ using C and a JSR technique [20–22], formulated by the
following optimization problem

min
X̃∈CPM×L

∥∥∥Ȳ −CX̃
∥∥∥2

F
+ γ

∥∥∥X̃∥∥∥
2,1
. (14)

Here, to promote the row sparsity of X̃, inspired by [20], we use
the regularization parameter γ ≥ 0 and the mixed l2,1 norm de-
fined by ∥X∥2,1 ≜

∑
i ∥x

i∥2, with xi denoting the i’th row of a
matrix X. Similarly to [20], we solve (14) using the fast iterative
soft-thresholding algorithm (FISTA) [25, 26].

Now, the support S can be obtained by selecting the most dom-
inant rows of the recovered X̃ according to the average power [16]
of each row. Note by (10) and since X̃ ≜ [x̃1, ..., x̃L] that each row
index of X̃ satisfies im,p = (m− 1)P + p. Hence, by using the
modulo operation on the indexes im,p ∈ S, we can estimate both
the distance dm and angle θp of each monitored individual w.r.t. the
radar, through (2) and the grids in (8) and (12). We note that since
the humans are stationary, the coordinates of S are fixed throughout
the monitoring, implying that we can recover S only once, and use
it for all subsequent iterations.

3.3. Sparsity Based NCVSM of Multiple People

Since X̃ is a row-sparse matrix based on S, the model in (11) can be
written as

Y = CSX̃S +W, (15)

with CS ∈ CKM×Z and X̃S ∈ CZ×L respectively being the atoms
of C and the rows of X̃ corresponding to S, where Z = |S|. By

holding the support, for each Tint we can directly estimate X̃S from
Y, using the Least-Squares (LS) solution [27] given by

X̂S =
(
CH

S CS

)−1

CH
S Y, (16)

considering that Z ≪ KM .
Using (10) and the definition of X̃ below (11), we have that

X̃S (im,p, l) = xim,pe
jψim,p [l], im,p ∈ S. That is, X̂S estimates

the slow-time varying phasor terms associated with humans in the
radar’s FOV that contain their vital information in the phase terms
ψim,p [l], im,p ∈ S (3). Hence, similarly to [23], we use the four
quadrant arctangent function on each element of X̂S followed by
unwrapping based on [16], to yield the vibration matrix V ∈ RL×Z .
The matrix V can be viewed as a chain of vectors corresponding
to the thoracic vibration pattern of each detected human, i.e., V =
[v1, . . . ,vZ ] where each vz ∈ RL contains a scaled approximation
of the samples {vim,p [l]}Ll=1 (4) for im,p ∈ S.

In the final stage of each iteration, both the RR and HR of each
individual, {f (z)

r , f
(z)
h }Zz=1, are estimated simultaneously given V,

B(R) andB(H), and recorded for continuous NCVSM. Here, we use
the VSDR method, elaborated in [23], which exploits appropriate
dictionaries to search for the desired rates over high-resolution grids
corresponding to human cardiopulmonary activity.

4. NUMERICAL RESULTS

In this section, the performance of the proposed approach is eval-
uated and compared to existing techniques, through a simulation
based on the model in (1) that involves real Electrocardiography
(ECG) and impedance data from [24], which is divided into two
parts. The first investigates spatial localization of multiple people
in a cluttered environment and the second examines NCVSM given
the extracted thoracic vibration of each detected human, versus SNR.

To that end, we generated 5 different objects (of which Z = 3
humans) in the radar’s FOV using the proposed data model in (1).
Each object is characterized by a different set of xm,p (1), dm (2),
θp (5) and {vm,p [l]}Ll=1 (4), as detailed in Table 1. Note that at a
distance of dm = 0.98 [m] from the radar there are 2 humans and a
vibrating fan (with afan = 10−2 and ffan = 20 [Hz]), whose position
differs only in their azimuth angle. To relate to real thoracic vibra-
tions, we used the 10-minute long 100 [Hz] impedance cardiography
signals of subjects 4− 6 from [24]’s resting scenario (in which par-
ticipants were told to breath calm and avoid large movements), for
Table 1’s vibrations {vm,p [l]}Ll=1, with proper adjustments.

Since a variety of respiratory parameters can be extracted from
the impedance signal, including RR, [28,29], the raw signal serves as
a reference for comparing the RR estimates. As to the HR reference,
we used the gold-standard 2000 [Hz] lead-2 ECG signal from [24],
and down-sampled it to 100 [Hz] to correspond to Ts = 10 [ms].
The rest of the parameters for assembling the model in (1) were
set as follows: λ = 3.9 [mm], Tc = 57 [µs], fADC = 4 [MHz],
S = 70 [MHz/µs], M = N/2 = 100 and K = 4. Furthermore, to
examine the impact of environmental noise, we used an SNR term
that controls the variance of {w[n, k, l]} (1) via SNR ≜ 1/σ2. Fi-
nally, the frequency bands of respiration and heartbeat were set to
B(R) = [0.1 0.4] [Hz] andB(H) = [0.78 1.67] [Hz], respectively,
corresponding to a normal resting state.

Using all the above specifications, we simulate a localization
and 10-minute NCVSM of 3 people simultaneously, with RR and
HR estimates computed every Tint = 0.05 [s], using L data frames
from the last Twin = 30 [s], starting at Twin.
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Object type xm,p dm [m] θp [◦] {vm,p [l]}Ll=1

Static clutter 1 0.5 0 0
Human #1 0.3 0.98 −30 Based on [24]
Vibrating fan 0.3 0.98 0 afan cos (2πffanlTs)
Human #2 0.3 0.98 +30 Based on [24]
Human #3 0.2 1.5 +15 Based on [24]

Table 1: Setup of multiple objects scenario.

4.1. Multiple People Localization

Here, we compared the proposed JSR localization method to those
based on the Angle-FFT [10] and MUSIC-DOA [11,12] approaches,
for localizing the considered humans.

The parameters of the proposed JSR were set as follows. The
frequencies of Π in (13) were drawn from the length-L Nyquist grid
determined by fs, the parameters for solving (14) using FISTA [25]
were set to γ = 5, the Lipschitz constant to 4.5e6 and 1000 iter-
ations were considered. Finally, the angle grid spacing was set to
∆θ = 1. For a fair comparison to the other techniques, all are based
on the same angular grid.

Fig. 1 shows the spatial estimates by the examined techniques
for SNR = 0 [dB]. One can observe that only the proposed JSR
method indicates the correct locations (both distance and angle) of
the humans compared to the intensity-based Angle-FFT method [10]
and the MUSIC-DOA approach [11, 12]. Notice that the Angle-FFT
method suffers from gross errors especially for dm = 0.98 [m]
where there are multiple equidistant objects, since the theoretical
angular resolution is ≈ 30◦ for K = 4 receivers. The MUSIC-DOA
approach seeks for highly oscillating objects and thus for dm = 0.98
it incorrectly selects the vibrating fan over the humans. In contrast
to the compared localization techniques, the proposed JSR exploits
both characteristics of human-typical vital frequencies and prior as-
sumption on the sparse structure of X̃.

-50 0 50

0

0.5

1

1.5

2

0

0
1
2

Fig. 1: Multiple people localization by the setup of Table 1, for
SNR = 0 [dB]. Only the proposed JSR method properly detects
the humans in the given scenario.

4.2. NCVSM vs. SNR

Given a successful human localization from the previous study, we
examined the performance of VSDR [23] for NCVSM, and com-
pared it to other state-of-the-art techniques based on [13–18].

To compare fairly (regardless of localization performance), we
examined only the last step of our algorithm, which estimates human
vital signs given the extracted matrix V. In addition, all methods
used the same frequency bands B(R) and B(H), and the same sta-
bility enhancement procedure by replacing the RR and HR estimates
with the average of the last 0.7 seconds’ estimates.

The VSDR approach [23] was first compared to the method de-
tailed in [13] for estimating RR and HR given the phase of an FMCW
signal, called here Phase-Reg. Moreover, VSDR was compared to a
FFT-based peak selection in each frequency band, with zero-padding

(FFT w/ ZP) [18] and without (FFT w/o ZP) [13–17]. The padding
of FFT w/ ZP was set to fit a 60-second time window corresponding
to frequency resolution of 1 [bpm]. The RR and HR of the refer-
ence data was estimated via the DFT spectrum, similarly to [13–16],
with padding to fit a 60-second time window for increased resolu-
tion, presuming they are noise-free.

Here, performance is evaluated using the following metrics: 1.
Success Rate (SR) - 2 bpm, defined here as the percentage of times
the estimate differed from the reference output by less than 2 [bpm].
2. Pearson Correlation Coefficient (PCC). 3. Mean-Absolute Error
(MAE), and 4. Root-Mean-Square Error (RMSE). Since we inves-
tigate NCVSM of Z = 3 people for different SNR cases, the per-
formance score produced for each metric and SNR is regarded as
the average across the participants’ scores. We note that the simula-
tion settings brings to 11400 non-contact HR/RR estimates for each
participant to compare to the contact HR/RR reference estimates.

The top 3 × 5 block of Fig. 2 shows NCVSM of the detected
humans compared to the references by VSDR and the other exam-
ined techniques, for SNR = 0 [dB]. It can be seen how both the HR
and RR estimates by the VSDR approach show great resemblance
to those of the reference, compared to the others in which the noisy
setup impairs their assessments. The bottom 2 × 4 block of Fig. 2
shows the SR - 2 bpm, PCC, MAE and RMSE for both HR and RR
estimation by all examined methods, as a function of the SNR. One
sees that VSDR outperforms the other compared methods in all 4
metrics, for every SNR value.
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Fig. 2: Top 3× 5 block: Comparison of NCVSM techniques given
V, w.r.t. ground truth. (Rows) NCVSM of Table 1’s humans #1-
#3, for SNR = 0 [dB]. (Columns) v1-v3 for some Tint, VSDR,
FFT w/ ZP, FFT w/o ZP, Phase-Reg. Bottom 2 × 4 block: mean
NCVSM performance vs. SNR. (Rows) HR, RR. (Columns) SR - 2
bpm, PCC, MAE, RMSE.

5. CONCLUSION
In this paper, we proposed a model for NCVSM of multiple people
based on SIMO FMCW radar. We presented a JSR approach using
this model that can accurately localize targets in a clutter-rich sce-
nario involving equidistant people, where known localization meth-
ods perform poorly. Furthermore, the VSDR method was used to es-
timate the RR and HR of the detected individuals, yielding improved
performance results when compared to contemporary NCVSM tech-
niques using 4 evaluation metrics.
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