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Abstract—Reconfigurable Intelligent Surface (RIS) can en-
hance spectral efficiency in Multiple-Input Multiple-Output (MI-
MO) communication systems. A specific challenge in this context
involves codesigning the nonconvex phase shifts for RIS and a
precoding matrix with a complex sphere constraint, where these
coupled variables are used to formulate the nonconvex objective
of maximizing spectral efficiency. Most existing methods do not
directly address the maximization of spectral efficiency problem
but instead relax it into a sum-path-gain-maximization (SPGM)
problem before solving it, which may degrade spectral efficiency
due to large relaxation gap. We propose an efficient Unified
Manifold Optimization (UMO) framework to directly solve the
problem. This is achieved through utilizing the inherent constant
modulus characteristic of the RIS and the complex sphere
characteristic of the precoding matrix constraint. Specifically, we
construct a unified manifold space (UMS) that can simultaneously
satisfy the RIS and the precoding matrix constraints, enabling
the problem to be rephrased as an unconstrained Riemannian
problem over the UMS. Based on the UMS, we derive a parallel
conjugate gradient algorithm for simultaneous optimization of
a precoding matrix and RIS phase shifts. Simulation outcomes
indicate that the proposed method excels when compared to
current approaches in achieving spectral efficiency enhancement.
Furthermore, our algorithm has lower computational cost than
several existing techniques.

Index Terms—Reconfigurable intelligent surfaces (RIS), MI-
MO, Spectral efficiency, Beamforming design, Unified Manifold
Optimization, Parallel conjugate gradient algorithm
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I. INTRODUCTION

Conventional large-scale Multiple-Input Multiple-Output
(MIMO) transmit beamforming is extensively employed in
wireless communications for enhancing spectral efficiency
[1]–[3]. However, its large-scale implementation requires spe-
cific radio frequency chains, resulting in significant hardware
cost. Additionally, the increasing number of antennas con-
tributes to higher power consumption [4].

In response to the aforementioned issues, Reconfigurable
Intelligent Surfaces (RIS)-aided MIMO beamforming design
has been proposed, utilizing cost-effective passive reflecting
elements [5]–[8]. The primary purpose of RIS is to enhance
wireless communication systems by offering additional control
over signal propagation [9]–[13]. By adjusting signal reflec-
tion and phase, RIS can shape and steer wireless waves in
desired directions [14]–[16]. RIS-aided beamforming helps
mitigate path loss, multipath fading, and interference, leading
to improved spectral efficiency. Therefore, RIS-aided MIMO
beamforming design for spectral efficiency maximization has
garnered widespread attention [17]–[20].

The problem is typically expressed as maximizing spectral
efficiency while maintaining constant modulus constraints
on RIS phase shifts and a complex sphere constraint on a
precoding matrix [17]. The coupled effect of phase shifts and
precoding matrix makes the problem challenging to solve.
Furthermore, the nonconvex characteristic of the constant
modulus constraints further exacerbates the complexity.

Most existing methods do not directly address the maxi-
mization of spectral efficiency problem but instead relax it
into a sum-path-gain-maximization (SPGM) problem before
solving it, and solve the SPGM problem with two-stage algo-
rithms [17]–[20]. Specifically, in the first stage, optimize the
RIS phase shifts for SPGM problem. Subsequently, the precod-
ing matrix is acquired through singular value decomposition
(SVD) with the specified RIS phase shifts. Typically, authors
in [17] have derived an Alternating Direction Method of
Multipliers (ADMM) framework to relax the SPGM problem
by introducing several auxiliary variables. The Majorization
Minimization (MM) approch was also used [18], [19]. To
solve SPGM directly, in [20], the authors suggested a Gradient
Ascent (GA) algorithm by deriving the phase-based gradient
with a constant step size. The Dimension-wise Sinusoidal
Maximization (DSM) method based on block coordinate de-
scent was proposed in [20], [21], by exploiting the fact that
the objective of RIS is sinusoidal for each RIS phase-shift.
DSM method may be computationally prohibitive as the size
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of the RIS phase shifts large. To reduce the computational cost,
the Riemannian conjugate gradient (RCG) algorithm based
on complex circle manifold (CCM) can be used to solve the
problem, using the characteristic of CCM naturally satisfies
the constant modulus constraint [22]. Nevertheless, in the
context of MIMO communication, optimizing SPGM by the
above algorithms only provides a lower bound for spectral
efficiency. An upper limit of spectral efficiency is determined
by the product of SPGM upper bound and the number of
data streams [17]. Comparing direct optimization of spectral
efficiency maximization with SPGM, the relaxation gap of
SPGM lies between zero and the product of the maximum
SPGM bound and the number of data streams minus one. As
the number of data streams increases, the error bound becomes
larger, indicating that SPGM may not effectively capture the
characteristics of spectral efficiency maximization.

Here, we directly solve the spectral efficiency maximiza-
tion problem by a parallel optimization framework. In our
approach, both the phase shifts and precoding matrix are
simultaneously optimized. Parallel implementation leads to
faster convergence for problems with a large number of
variables or complex structures, as it tackles multiple parts of
the problem concurrently. Within our framework, we rely on
the gradient projection (GP) algorithm [23], [24]. GP operates
in Euclidean space, where it computes a Euclidean gradient
of the nonconvex objective function, performs descent steps,
and then projects the result onto the nonconvex feasible set.
The direct projection from Euclidean space to a non-convex
complex space may lead to potential performance degradation.
To enhance the performance, we propose a Unified Manifold
Optimization (UMO) method. Specifically, we construct a
unified manifold space (UMS) designed to satisfy the RIS con-
straint and precoding matrix constraint, enabling the problem
to be reformulated as an unconstrained Riemannian problem
over the UMS. We then leverage the fact that the UMS can
be locally linearized as a tangent space around every point.
Based on this tangent space, we derive a parallel conjugate
gradient algorithm to simultaneously update the RIS phase
shifts and precoding matrix. By aligning its update steps with
the structure of the UMS, UMO adapts to local features of the
optimization landscape. This adaptability to local features may
allow UMO to escape from poor local optima and converge
more effectively towards global or better solutions.

Our main contribution is threefold. First, in contrast to
relaxing the spectral efficiency maximization into an SPGM
problem with a large relaxation gap [17]–[20], we directly
solve the spectral efficiency maximization problem using the
proposed parallel optimization framework. Second, different
from GP, which performs a direct projection from Euclidean
space to a complex non-convex space without adapting to
the local features of the complex non-convex optimization
landscape [23], [24], the UMO method is proposed to adapt
to local features. This adaptability aligns its update steps with
the structure of the UMS and allows UMO to converge more
effectively towards better solutions. Third, in simulations, our
algorithm exhibits the following advantages when compared
to existing methods: 1) the proposed method achieves a 10.12
bits/Hz/s higher gain than ADMM [17], a 3.94 bits/Hz/s higher

gain than the methods in [18]–[20], and a 1.65 bits/Hz/s higher
gain than GP [23], [24]; 2) the execution time is about 2 orders
of magnitude lower than GA [20], about 1 order of magnitude
lower than DSM [20], and about 0.5 order of magnitude lower
than GP [23].

The subsequent sections are organized as follows. The prob-
lem description is outlined in Section II. Our proposed UMO
method, aimed at efficient problem resolution, is detailed in
Section III. We present the simulation results in Section IV.
In Section V, we give a conclusion.

Notation: Operators (·)H , (·)∗, and (·)T indicate the con-
jugate transpose, the conjugate and the transpose operations,
respectively. Vector variable is denoted by lower-case bold
letter, and matrix variable is denoted by upper-case bold
letter. | · | is the modulus of a variable, and ‖ · ‖F is the
Frobenius norm. We use diag (·) and vec (·) as the diagonal
operator and vectorization operator, respectively. Operators ⊗
and � indicate Kronecker product and Hadamard product,
respectively.

II. PROBLEM DESCRIPTION

The RIS-aided point-to-point MIMO communication system
model is illustrated in Figure 1. The base station (BS) of Nt
antennas sends Ns parallel data streams to the user with Nb
antennas, where Ns ≥ Nb and Ns ≤ Nt in general. The com-
munication system utilizes an RIS with Nr elements to assist
in the transmission process. The BS processes the transmitted
signal through a precoding matrix, denoted W ∈ CNt×Ns ,
and simultaneously transmits it to both the RIS and the user.
The incident signal is passively reflected by the RIS through
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Fig. 1: RIS-aided point-to-point MIMO System Model.

the adjustment of phases θi ∈ [−π, π) , i = 1, 2, . . . , Nr. The
matrix of RIS phase shifts is [9], [12], [25], [26]

X = diag(x) = diag(ejθ1 , ejθ2 , . . . , ejθNr ) ∈ CNr×Nr . (1)

Let Gr ∈ CNb×Nr , M ∈ CNr×Nt and Gd ∈ CNb×Nt

respectively be the channels from the RIS to the user, the BS
to the RIS, and the BS to the user. The received signal of the
user is

y =
√
P/Ns (GrXMWs+ GdWs) + n, (2)



IEEE TVT, 2024 3

where W is the beamforming matrix that satisfies a power
constraint ‖W‖2F = Ns at the source, and P represents
transmitted power. The transmitted data streams are denoted
as s ∈ CNs , with the condition E

[
ssH

]
= INs

. Addition-
ally, n ∼ CN (0, σ2

nINb
) is the zero-mean additive complex

Gaussian noise.
We assume that the channel state information (CSI) is

known [17], [20], [27], [28]. The problem is typically for-
mulated as the maximization of spectral efficiency with a
constant modulus constraint on the RIS phase shifts and a
power constraint on a precoding matrix [17]. It is formulated
as

max
W̄,x

C(W̄,x) = log2det

(
INs

+
P

σ2
nNs

GeffW̄W̄HGH
eff

)
s.t. |xnr | = 1, nr = 1, . . . , Nr,∥∥W̄∥∥2

F
= Ns,

(3)
where x =

[
ejθ1 , ejθ2 , . . . , ejθNr

]T ∈ CNr represents the
RIS phase shifts. Geff = Gd + GrXM denotes the effective
channel. Equations (4b) and (4c) are the constant modulus
constraints and the power constraint, respectively.

Problem (3) can be equivalently reformulated as

min
W,x

−C(W,x) = −log2det

(
INs

+
P

σ2
n

GeffWWHGH
eff

)
(4a)

s.t. |xnr | = 1, nr = 1, . . . , Nr, (4b)

‖W‖2F = 1, (4c)

where ‖W‖2F = 1 is the complex sphere constraint.
Due to the coupling effect between the precoding matrix W

and the RIS phase shifts x, solving (4) is challenging. The
nonconvex charateristic of the constant modulus constraints
on RIS phase shifts further increases the difficulty [29]–[34].
Typical methods used to address (4) are two-stage algorithms
that rely on relaxing the spectral efficiency maximization
into an SPGM problem [17]–[20]. However, these techniques
may result in performance loss due to the objective function
relaxation process. Furthermore, the existing methods that
utilize manifold optimization primarily focus on single man-
ifold constraints. These methods are effective for problems
where the optimization variables lie on a single manifold,
such as the complex circle manifold [22], [35]. However, they
cannot directly handle problems involving multiple manifold
variables.

Instead, we construct a Unified Manifold Space (UMS)
that can simultaneously satisfy the constant modulus (CM)
constraints of the RIS and the complex sphere constraint
of the precoding matrix in (4). We then propose a Unified
Manifold Optimization (UMO) framework, which is adaptable
to the local features of the complex non-convex optimization
landscape and does not rely on objective function relaxation,
to address (4).

III. THE PROPOSED UMO METHOD

To address (4), we propose the UMO framework. Specifical-
ly, we construct an UMS designed to satisfy the RIS constraint

and precoding matrix constraint, enabling the problem to be
reformulated as an unconstrained Riemannian problem over
the UMS. We then leverage the characteristic that the UMS
can be locally linearized as a tangent space around every point.
Based on this tangent space, we derive a parallel conjugate
gradient algorithm to simultaneously update the RIS phase
shifts and precoding matrix.

A. Space Construction

1) Construction of UMS: In general, a constrained opti-
mization problem can be transformed into an unconstrained
optimization problem by designing a manifold space that
incorporates all the required constraints. For (4), the solution
space subject to CM constraint (4b) and complex sphere
constraint (4c) can be represented as the UMS. This space
is constructed by the product of the complex circle manifold
(CM constraint) and the complex sphere manifold (complex
sphere constraint).

The complex circle manifold for (4b) is

Mx =
{
x ∈ CNr , s.t. |xnr | = 1, nr = 1, . . . , Nr.

}
. (5)

Similar to (4), the complex sphere manifold for (4c) is

MW =
{

W ∈ CNt×Ns , s.t. ‖W‖2 = 1
}
. (6)

The UMS M incorporating all the required constraints of (3)
is denoted as the product of Mx and MW,

M =Mx ×MW

= {(x,W) , s.t. x ∈Mx,W ∈MW}
=
{
(x,W) , s.t. |xnr | = 1, ‖W‖2 = 1

}
,

(7)

where the dimension of M is (Nr +Nt ×Ns).
Based on (7), problem (4) can be reformulated as an

unconstrained coupled optimization problem over the UMS:

min −C(W,x) = −log2det

(
INs

+
P

σ2
n

GeffWWHGH
eff

)
s.t. (x,W) ∈M

.

(8)
2) Construction of unified tangent space: Given that the

UMS space is curved, operations such as gradient calculations
cannot be directly applied to (8). In order to enable these
operations, we approximate the curved space with the unified
tangent space (UTS) T(x,W)M at the current point. UTS can
be obtained by taking the product of the tangent space ofMx

(5) and the tangent space of MW (6).
Let xnr be an arbitrary element of x. The tangent space

of x at the point xnr
∈ x is defined as Txnr

Mx ={
ξxnr

∈ C : <
{
ξxnr

x∗nr

}
= 0
}

[36], [37]. The tangent space
of Mx (5) is the product of Nr tangent spaces of those for
the manifold, which is

TxMx = Tx1
Mx × Tx2

Mx × · · · × TxNr
Mx

=
{
ξx ∈ CNr : <{ξx � x∗} = 0Nr

}
,

(9)

where ξx is the tangent vector at point x. <{ξx � x∗} = 0Nr

means that the elements at the corresponding positions of ξx
and x∗ are orthogonal to each other. The tangent space of
MW (6) is given by

TWMW =
{
ξW ∈ CL : <

{
Tr(ξTWW∗)

}
= 0
}
, (10)
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where L = Nt ×Ns, and ξW is the tangent matrix at
point W. <

{
Tr(ξTWW∗)

}
= 0 represents that ξW and W∗

are orthogonal to each other. Using (9) and (10), the UTS
T(x,W)M is obtained by

T(x,W)M
= TxMx × TWMW

=

{
(ξx, ξW) : ξx ∈ CNr ,<{ξx � x∗} = 0Nr

,
ξW ∈ CNt×Ns ,<

{
Tr(ξTWW∗)

}
= 0

}
.

(11)

Based on UMS (7) and UTS (11), the gradient projection
(GP) algorithm in [23], [24] can be employed to solve (8) using
parallel gradient descent while projecting onto the constraint
set. However, GP typically relies on Euclidean geometry,
which may not be as adaptable to the curved space of the
problem. Additionally, GP’s projection step may prioritize
constraint satisfaction, potentially restricting exploration and
making it more vulnerable to local optima in complex non-
convex landscapes. To address these issues, we develop a
parallel conjugate gradient algorithm for efficiently exploring
the entire solution space, as presented in the next subsection.

B. The proposed PCG algorithm

The PCG algorithm is proposed to solve (8) in this subsec-
tion, where the precoding matrix W and RIS phase shifts x
are simultaneously optimized. The proposed PCG algorithm
primarily consists of four steps: 1) Calculation of the parallel
Euclidean Gradient; 2) Calculation of the parallel Riemannian
Gradient; 3) Update of the feasible solution; 4) Adaptive
update of the step size using Armijo linear search.

1) Derive the parallel Euclidean gradient: The parallel
Euclidean gradient of C(x,W) (8) is the combination of the
Euclidean gradients w.r.t. x∗ and W∗.

The gradient of C(x,W) at x∗ is

∇x∗C(x,W)
= vecd

(
GH
r K(x,W)GeffWWHMH

)
= diag

(
GH
r K(x,W)GeffWWHMH

) , (12)

where
K(x,W) = (I + GeffWWHGH

eff)
−1. (13)

Similar to (12), the gradient of C(x,W) at W∗ is

∇W∗C(x,W) = GH
effK(x,W)GeffW. (14)

Combining (12) and (14), the parallel Euclidean gradient at
k-th iteration is

∇C(xk,Wk)
=
[
∇x∗

k
C(xk,Wk),∇W∗

k
C(xk,Wk)

]
=

[
diag

(
GH
r K(xk,Wk)GeffWkW

H
k MH

k

)
;

GH
effK(xk,Wk)GeffWk

] . (15)

Proof : Please refer to the Appendix A.
2) Derive the Parallel Riemannian Gradient: The parallel

Riemannian gradient of C(xk,Wk) (7) is the combination
of the Riemannian gradients w.r.t. x∗k and W∗

k. Riemannian
gradient is defined by orthogonally projecting Euclidean gradi-
ent onto the tangent space. According to this, the Riemannian

gradient of C(xk,Wk) (8) w.r.t. x∗k is given by

gradxk
C(xk,Wk)

= Projxk
(∇xk

C(xk,Wk))

=

(
∇xk

C(xk,Wk)−
<{∇xk

C(xk,Wk)� x∗k} � xk

)
,

(16)

where Projx(·) is the orthogonal projection. Similar to (16),
the Riemannian gradient of C(xk,Wk) (8) w.r.t. W∗

k is

gradWk
C(xk,Wk)

= ProjWk
(∇Wk

C(xk,Wk))

=

(
∇Wk

C(xk,Wk)−
Wk<

{
Tr(WH

k ∇Wk
C(xk,Wk))

} ) . (17)

Combining (16) and (17), the parallel Riemannian gradient of
C(xk,Wk) on the UTS is

grad C(xk,Wk)
= [gradxk

C(xk,Wk); gradWk
C(xk,Wk)]

=


(
∇xk

C(xk,Wk)−
<{∇xk

C(xk,W)� x∗k} � xk

)
;(

∇Wk
C(xk,Wk)−

Wk<
{
Tr(WH

k ∇Wk
C(xk,Wk))

} )
 . (18)

3) Update the feasible solution: In general, the steepest
gradient descent method is applicable for addressing un-
constrained optimization problems across M. However, its
practical convergence is impeded by its relatively slow rate
and susceptibility to getting trapped in local minima.

The optimization procedure for nonconvex problems resem-
bles the movement of a particle on a multi-dimensional plane.
This suggests that the effective descent direction d(xk,Wk) =
[dxk

;dWk
] is a linear combination of the directions of initial

momentum and steepest gradient descent, where dxk
and dWk

are the descent directions of xk and Wk, respectively. The
descent direction of xk is

dxk
= gradxk

C(xk,Wk) + βkTransxk←xk−1

(
dxk−1

)
=

(
gradxk

C(xk,Wk)+

βk

[
dxk−1

−<
{

d∗xk−1
� xk

}
� xk

] )
,

(19)
where Transxk←xk−1

(
dxk−1

)
is the transportation operation

to address the calculation linkage between tangent vectors
situated in distinct tangent spaces. This operation relocates
the tangent vector dxk−1

from the point xk−1 ∈ M to an
alternate point xk ∈M. βk is the conjugate parameter, which
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is defined as

βk

=

<


gradHxk

(
gradxk

− Transxk←xk−1
gradxk−1

)
+

Tr

[
gradHWk

(
gradWk

−
TransWk←Wk−1

gradWk−1

)] 

<



[ (
gradxk

− Transxk←xk−1
gradxk−1

)H
Transxk←xk−1

dxk−1

]
+

Tr

[ (
gradWk

− TransWk←Wk−1
gradWk−1

)H
TransWk←Wk−1

dWk−1

]


=

<



gradHxk

 gradxk
−[

gradxk−1
−

<
{
gradxk−1

� x∗k
}
� xk

] +

Tr

gradHWk

 gradWk
−[

gradWk−1
−Wk

<
{
Tr(gradTWk−1

W∗
k)
} ]






<



 [
gradxk

−
(

gradxk−1
−

<
{
gradxk−1

� x∗k
}
� xk

)]H
[
dxk−1

−<
{
dxk−1

� x∗k
}
� xk

]
+

Tr


[
gradWk

−

(
gradWk−1

−Wk

<
{
Tr(gradTWk−1

W∗
k)
} )]H[

dWk−1
−Wk<

{
Tr(dTWk−1

W∗
k)
}]





,

(20)
where gradxk

= gradxk
C (xk,Wk), gradWk

=
gradWk

C (xk,Wk).
Proof : Please refer to the Appendix B.
Similar to (19), the descent direction of Wk is

dWk

= gradWC(xk,Wk) + βkTransWk←Wk−1

(
dWk−1

)
=

(
gradWC(xk,Wk)+

βk

[
dWk−1

−Wk<
{
Tr(dTWk−1

W∗
k)
}] )

.

(21)
Combining (19) and (21), the descent direction is

d(xk,Wk)

= [dxk
;dWk

]

=


(

gradxk
C(xk,Wk)+

βk

[
dxk−1

−<
{

d∗xk−1
� xk

}
� xk

] )
;(

gradWk
C(xk,Wk)+

βk

[
dWk−1

−Wk<
{
Tr(dTWk−1

W∗
k)
}] )

 ,
(22)

where d(xk,Wk) = (gradxk
C(xk,Wk), gradWk

C(xk,Wk))
if k is 1.

The update on the unified tangent space T(x,W)M is(
x̂k+1,Ŵk+1

)
= (xk,Wk) + αkd(xk,Wk)

= [xk + αkdxk
,Wk + αkdWk

]

=


xk + αk

 gradxk
C(xk,Wk)+

βk

[
dxk−1

−
<
{

d∗xk−1
� xk

}
� xk

]  ;

Wk + αk

 gradWk
C(xk,Wk)+

βk

[
dWk−1

−
Wk<

{
Tr(dTWk−1

W∗
k)
} ]




.

(23)
where αk is the step size adaptively updated by the Armijo
linear search algorithm, as given in the next step. Update on the
tangent space T(x,W)M may not guarantee that the resulting
point remains on the unified manifold space M. Retraction
is the process of mapping a point from T(x,W)M back onto
M to ensure feasibility. Hence, the next feasible solution is
obtained by

(xk+1,Wk+1)

= Ret(x,W)

(
x̂k+1,Ŵk+1

)
=
[
Retx (x̂k+1) ,RetW

(
Ŵk+1

)]
=

[
x̂k+1 � |x̂k+1| ,Ŵk+1/

∥∥∥Ŵk+1

∥∥∥2

F

]
,

(24)

where � denotes the element-wise deviation, and | · | is the
element-wise absolute value.

4) Adaptive Step Size Update: Utilizing the Armijo linear
search strategy, we dynamically adjust the step size during
updates [37], [38]. This adaptive approach aligns the search
step size with momentum variations, preserving the property
of non-increasing objective function values and enhancing
algorithmic convergence speed. The linear search strategy is

−C(xk+1,Wk+1) ≤ −C(xk,Wk) + τ1τ
n
2 αkd̂Ck

, (25)

where αk+1 = τn2 αk, αk is the initial step size for the next
iteration, τ2 is a coefficient greater than 0 and less than 1 (τ2 =
0.5 in our simulation), n is the number of linear searches, and
d̂Ck

is given by

d̂Ck
= gradH [−C(xk,Wk)]d(xk,Wk). (26)

To expedite convergence even further, the upcoming iter-
ation’s step size α can be appropriately adjusted based on
variations in n. If n = 1 satisfies (25), it means that only one
linear search has been performed, which results in satisfying
the objective function decrease. This suggests the current step
size is small, it should be increased to α = ξ1αk+1 in the next
iteration, where ξ1 > 1. If n = 2 satisfies (25), it indicates
a reasonably chosen initial step size, necessitating that the
subsequent iteration maintains the step size at α = αk+1. If
n ≥ 3 satisfies (25), it indicates that more than three linear
searches have been performed, resulting in a small step size
at the current point, it should be increased to α = ξ2αk+1 in
the next iteration, where ξ2 > 1. In summary, the step size α
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update rule for the next iteration is summarized as

α=

 ξ1αk+1, n = 1,
αk+1, n = 2,
ξ2αk+1, n ≥ 3.

(27)

Taking into account the preceding discussions, the Armijo
line-search algorithm is compactly presented in Algorithm 1.

Algorithm 1 : The Armijo line-search algorithm

Input: xk,Wk,d(xk,Wk), τ1 ∈ (0, 1), τ2 ∈ (0, 1), αk
1: Set n = 1;
2: while not satisfy (25) and n ≤ 10, do:
3: Uptade αk = τ2αk;
4: Update (xk+1,Wk+1) with (23) and (24);
5: n = n+ 1;
6: end while;
7: switch n
8: case 1: Let αk+1 = 2αk;
9: case 2: Let αk+1 = αk;

10: else : Let αk+1 = 2αk;
11: end switch;
Output: xk+1,Wk+1, αk+1

5) The overall UMO Method: The UMO method to tackle
(4) is compactly presented in Algorithm 2. The algorithm
mainly includes: 1) update the parallel Euclidean gradient; 2)
update the parallel manifold gradient; 3) update the feasible
solution; 4) adaptively update the step size with Armijo linear
search.

Algorithm 2 : The UMO Method to solve (4)

Input: x0,W0, ε
1: Initialize k = 1,xk = x0,Wk = W0, αk = 1, update

d(xk,Wk) with (22);
2: While ‖grad C(xk,Wk)‖ ≥ ε do:
3: Update K(xk,Wk) with (13);
4: Update Euclidean gradient ∇C(xk,Wk) with (15);
5: Update manifold gradient grad C(xk,Wk) with (18);
6: Update βk with (20) and set βk = max (0, βk);
7: Update descent direction d(xk,Wk) with (22);
8: Update (xk+1,Wk+1) with (23) and (24);
9: Update xk+1,Wk+1, αk+1 with Algorithm 1;

10: k = k + 1;
11: end While;
Output: xk+1,Wk+1

C. Convergence analysis

As shown in [39], [40], we assume a sufficient descent
direction is achieved by (25), given by Assumption 1 below.

Assumption 1 (Sufficient decrease): There exist c > 0, c′ >
0 such that, for all k > 0,

−C(Wk, xk)− [−C(Wk+1, xk+1)]
≥ min (c ‖gradC(Wk, xk)‖ , c′) ‖gradC(Wk, xk)‖ .

(28)

According to Assumption 1, we can conclude that
−C(Wk,xk) ≥ −C(Wk+1,xk+1), indicating that our al-
gorithm can reach convergence.

D. Complexity analysis

Based on Algorithm 2, the primary factor influencing the
computational complexity of each iteration arises from the
computation of Geff in (3), K(x,W) in (13), the gradient
(i.e., ∇xC(x,W) in (12) and ∇WC(x,W) in (14)). Here,
the complexity for calculating Geff is (NbNr + NbNrNt);
the complexity for calculating K(x,W) is (N3

b +NbNsNt+
N2
bNs); the complexity for calculating ∇xC(x,W) is

(NtN
2
r +Nr(N

2
b +NbNt+2NtNs)), and the complexity for

calculating ∇WC(x,W) is (NtN
2
b +NbN

2
t +NsN

2
t ). Since

Nr is usually much larger than Nt, Nb, and Ns, the complexity
order is approximated as O

(
NtN

2
r

)
per iteration.

The complexity order of ADMM [17] is approximated as
O
(
N3
r

)
per iteration. The complexity order of GP [23], [24]

is approximated as O
(
NtN

2
r

)
per iteration. The complexity

order of DSM and GA is approximated asO
(
N2
r

)
per iteration

[20]. The complexity order of MM [18], [19] is approximated
as O (Nr) per iteration.

A brief comparison of the complexity orders for all methods
is presented in Table I. As observed, the complexity order of
our method is equal to that of GP in [23], [24], DSM, and GA
in [20], lower than that of ADMM [17], and higher than MM
[18], [19].

TABLE I: A comparison of the complexity orders

Method Complexity order
Proposed method O

(
NtN2

r

)
ADMM in [17] O

(
N3

r

)
GP in [23], [24] O

(
NtN2

r

)
DSM and GA in [20] O

(
N2

r

)
MM in [18], [19] O (Nr)

IV. NUMERICAL RESULTS

In this section, we compare the proposed method with
ADMM [17], DSM [20], GA [20], GP [23], [24], and MM
[18], [19] algorithms. We consider both scenarios of perfect
channel and imperfect channel. To ensure fair comparisons, all
methods are initialized with the same values. The RIS phase
shifters and beamforming are initialized as random vectors
with unit-magnitude complex entries.

A. Spectral efficiency comparison with perfect channel

For the sake of convenient comparisons, the simulation
setup follows the same configuration as described in [17], [20]:
Gd, Gr, and M are represented as Rician fading channels,
encompassing both non-line-of-sight (NLoS) and line-of-sight
(LoS) components. They are given by

G =
√
L(d)

(√
κ

1 + κ
ar(φr)at(φt)

H
+

√
1

1 + κ
GNLoS

)
,

(29)
where L(d) = C0(d/D0)

−a is a path-loss factor. Here, a de-
notes the path loss exponent, D0 is the reference distance, and
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C0 is the path loss at D0. Additionally, κ denotes the Rician
factor, while φr and φt ∈ [0, 2π) respectively denote the az-
imuth angles of arrival and departure for the LoS component.
at(φt) and ar(φr) stand for the transmit antenna vector and
receive antenna vector, respectively. To maintain simplicity,
we consider a uniform linear array of N antennas, denoted
as a(φ) =

(
1
/√

N
) [

1, ejkda sinφ, . . . , ejkda(N−1) sinφ
]T

,
where k = 2π/λ, and λ represents the wavelength while da
stands for the antenna spacing. GNLoS is generated randomly,
with its elements satisfying a Gaussian distribution with a unit
variance and zero mean.

In the subsequent simulations, the number of users is Nb =
12, and the number of antennas is Nt = 16. The Rician factor
for channels is set to κ = 10 dB. Ns = 12, C0 = −30 dB,
d = 30 m, D0 = 1 m, da = λ/2, and a = 2. The experimental
results are averaged over 50 Monte Carlo simulations.

Figure 2 shows a comparison of spectral efficiency versus
power for the proposed method, ADMM [17], DSM [20], GA
[20], GP [23], [24], and MM [18], [19] methods. The supe-
riority of spectral efficiency gain with the proposed method
becomes more apparent as the power level increases for both
Nr = 16 and Nr = 32. Specifically, when Nr = 16 and power
is 20 dB, the proposed method achieves a 6.18 bits/Hz/s higher
gain than ADMM [17], 2.78 bits/Hz/s higher gain than the
methods in [18]–[20], and 0.76 bits/Hz/s higher gain than GP
[23], [24]. Similarly, when Nr = 32 and power is 20 dB, the
proposed method achieves a 10.12 bits/Hz/s higher gain than
ADMM [17], 3.94 bits/Hz/s higher gain than the methods in
[18]–[20], and 1.65 bits/Hz/s higher gain than GP [23], [24].

Figure 3 shows a comparison of spectral efficiency versus
the number of RIS elements for the proposed method, ADMM
[17], DSM [20], GA [20], GP [23], [24], and MM [18], [19]
methods. Specifically, when Nr = 200, the proposed method
achieves a 25 bits/Hz/s higher gain than ADMM [17], approx-
imately 5.58 bits/Hz/s higher gain than the methods in [18]–
[20], and 4.88 bits/Hz/s higher gain than GP method in [23],
[24]. Furthermore, compared to the GP method, the proposed

0 5 10 15 20
Power [dB]

10

20

30

40

50

60

70

80

90

S
pe

ct
ra

l e
ffi

ci
en

cy
 (

bi
ts

/s
/H

z)

N
r
 = 16

N
r
 = 32

GP [23]
ADMM [17]
MM [18]
DSM [20]
GA [20]
Proposed

Fig. 2: Spectral efficiency comparison versus power.
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Fig. 3: Spectral efficiency comparison versus the number of
RIS elements with 10 dB power.

method demonstrates superior spectral efficiency gains as the
number of RIS elements increases. This is because, with larger
RIS sizes, the optimization problem involves more variables,
becoming more non-convex with numerous local minima.
The GP method performs a direct projection from Euclidean
space to a complex non-convex space without adapting to
the optimization landscape’s local features. In contrast, our
proposed UMO method adapts to these local features. This
adaptability aligns its update steps with the structure of the
unified manifold space (UMS), allowing UMO to converge
more effectively towards better solutions.

Figs. 2 and 3 demonstrate that the proposed method out-
performs existing methods. In contrast to relaxing the spec-
tral efficiency maximization into the SPGM problem with a
large relaxation gap [17]–[20], we directly solve the spectral
efficiency maximization problem. Different from GP, which
performs a direct projection from Euclidean space to a com-
plex non-convex space without adapting to the local features
of the complex non-convex optimization landscape [23], [24],
the proposed UMO method is adaptive to the local features of
the complex non-convex optimization landscape.

B. Spectral efficiency comparison with imperfect channel

The imperfect channel is the same as the one in [27]:
Referring to (31), the requirement is to estimate the small-scale
fading variables Gd, Gr, and M per frame. Let g represent
an element within these variables, with ĝ being the associated
estimated value. The estimation error (g − ĝ) is assumed to
satisfy complex Gaussian distribution with a zero-mean, and
all elements share a common normalized mean square error
(MSE)

ρ =
E
[
|g − ĝ|2

]
E
[
|ĝ|2
] . (30)

In the following simulations, the MSE factor is ρ = 0.5.
The numbers of antennas are set as Nt = 16 and Nb = 12.
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Fig. 4: Spectral efficiency comparison versus power in the case
of imperfect channel.

The Rician factors for channels are set as κ = 10 dB. Ns =
12, C0 = −30 dB, d = 30 m, D0 = 1 m, da = λ/2, and
a = 2. The experimental results take the average value over
50 times of Monte Carlo simulations.

Figure 4 shows the comparison of spectral efficiency versus
power in the case of imperfect channels for the proposed
method, ADMM [17], DSM [20], GA [20], GP [23], [24],
and MM [18], [19] methods. Notably, the superior spectral ef-
ficiency gain of the proposed method becomes more apparent
as the power level increases for both Nr = 16 and Nr = 32.
Specifically, at a power level of 20 dB with Nr = 16, the
proposed method achieves a 6.32 bits/Hz/s higher gain than
ADMM [17], about 2.77 bits/Hz/s higher than methods in
[18]–[20], and 0.93 bits/Hz/s higher gain than GP [23], [24].
Similarly, for Nr = 32 at a power level of 20 dB, the proposed
method outperforms ADMM [17] by 10.21 bits/Hz/s, other
methods in [18]–[20] by approximately 4 bits/Hz/s, and GP
method in [23], [24] by 1.87 bits/Hz/s.

Figure 5 presents a spectral efficiency comparison versus
reflecting elements Nr with imperfect channels for the pro-
posed method, ADMM [17], DSM [20], GA [20], GP [23],
[24], and MM [18], [19] methods. As Nr increases, the
effectiveness of the proposed method in enhancing spectral
efficiency becomes increasingly evident. Specifically, when
Nr = 200, the proposed method achieves a 24.39 bits/Hz/s
higher gain than ADMM [17], approximately 5.62 bits/Hz/s
higher than methods in [18]–[20], and 4.93 bits/Hz/s higher
gain than GP [23], [24].

Figs. 4 and 5 demonstrate that the proposed method can
achieve better spectral efficiency gains than existing methods
in the case of imperfect channels.

C. Comparison of computational time

Figure 6 shows the comparison of execution time versus
reflecting elements Nr with (a) perfect channels and (b)
imperfect channels. The experimental results represent the
average value over 50 Monte Carlo simulations. As illustrated,
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Fig. 5: Spectral efficiency comparison versus the number of
reflecting elements with imperfect channel.

the execution time required by our method is much less than
that of DSM [20], GA [20] and GP [23], [24] methods,
approximately equal to the ADMM method [17], and more
than the MM method [18], [19]. Typically, for the scenario of
perfect channels with Nr = 250, the proposed method exhibits
an execution time of 0.496 seconds. This is approximately 2
orders of magnitude faster than GA [20], 1 order of magnitude
faster than DSM [20], 0.5 order of magnitude faster than GP
[23], roughly equivalent to ADMM [17], and approximately 1
order of magnitude slower than MM [18], [19].

In summary, the results from Figures 2 to 6 indicate that
the proposed method outperforms existing methods [17], [20],
[23] in solving (4). This superiority is evident not only in
terms of improved spectral efficiency performance but also in
favorable computational costs. While the MM method [18],
[19] has lower complexity than the proposed method, the
proposed method achieves a more significant gain in spectral
efficiency compared to the MM method.

D. Convergence behavior

The simulation configurations for both the perfect channel
and imperfect channel are set to be the same as in subsections
A and B, respectively.

Figure 7 shows the cost value versus the number of it-
erations for (a) Nr = 16 and (b) Nr = 32. It is evident
that the proposed method exhibits rapid convergence for both
perfect and imperfect channels. Specifically, with Nr = 16, the
proposed method achieves convergence within 100 iterations
for the perfect channel and within 200 iterations for the
imperfect channel. Additionally, when MSE ρ = 0.1, the spec-
tral efficiency difference between the perfect and imperfect
channels diminishes as the number of RIS elements increases.

V. CONCLUSION

Reconfigurable intelligent surfaces (RIS) aided MIMO
beamforming design for spectral efficiency maximization is
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Fig. 6: Execution time comparison versus the number of
reflecting elements (a) Perfect channel; (b) Imperfect channel.

studied in this work. A specific challenge in this context
involves codesigning the nonconvex phase shifts for RIS and
a precoding matrix with a complex sphere constraint, where
these coupled variables are used to formulate the nonconvex
objective of maximizing spectral efficiency. Most current
approaches addressed the problem with relaxing the spec-
tral efficiency maximization into sum-path-gain-maximization
(SPGM) problem with large relaxation gap. We proposed an
efficient Unified Manifold Optimization (UMO) framework to
directly solve the problem. This is achieved through utilizing
the inherent constant modulus characteristic of the RIS and
the complex sphere characteristic of the precoding matrix
constraint. Specifically, we constructed a unified manifold
space (UMS) that can simultaneously satisfy the RIS and the
precoding matrix constraints, enabling the problem to rephrase
as an unconstrained Riemannian problem over the UMS.
Based on the UMS, we derived a parallel conjugate gradient
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Fig. 7: The achievable rate versus iterations with (a)Nr = 16,
(b)Nr = 32.

algorithm to simultaneously optimize the precoding matrix and
phase shifts of RIS. Simulation outcomes indicate that the
proposed method excels when compared to current approaches
in achieving spectral efficiency enhancement. Furthermore, our
algorithm has lower computational cost than several existing
techniques.

APPENDIX

A. Appendix A: proof of (15)

To derive the gradient of C(x,W) (8) w.r.t. x∗ and W∗,
we need to derive the total differential dC(x,W) at x, which
is given by

dC(x,W)
= Tr

{
K(x,W)d

(
GeffWWHGH

eff

)}
= Tr

{
K(x,W)

(
d(Geff)WWHGH

eff

+GeffWWHd(GH
eff)

)} , (31)
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where K(x,W) = (I + GeffWWHGH
eff)
−1. Using the

property Tr
(
ATB

)
= vecT (A) vec (B), (31) is simplified

as

dC(x,W)
= vecT

(
(MWWHGH

effK(x,W)Gr)
T
)
vecd(dx)

+ vecT
(
(M∗W∗WTGT

effK(x,W)G∗r)
T
)
vecd(dx

∗).
(32)

Let Ld be the matrix used to place the diagonal elements of
the square matrix A on vec (A), i.e., vecd (A) = Ld vec (A).
Then we can rewrite dC(x,W) as

dC(x,W)
= vecT

(
(MWWHGH

effK(x,W)Gr)
T
)
Ld vec(dx)

+ vecT
(
(M∗W∗WTGT

effK(x,W)G∗r)
T
)
Ld vec(dx

∗).
(33)

Based on (33), the gradient of C(x,W) at x∗ is

∇x∗C(x,W)
= vecd

(
GH
r K(x,W)GeffWWHMH

)
= diag

(
GH
r K(x,W)GeffWWHMH

) . (34)

Similar to (31), the complex differential of C(x,W) w.r.t. W
and W∗ is given by

dC(x,W)
= Tr

{
K(x,W)d

(
GeffWWHGH

eff

)}
= Tr

{
K(x,W)

(
Geffd(W)WHGH

eff+
GeffWd(WH)GH

eff

)}
=

(
vecT

(
(WHGH

effK(x,W)Geff)
T
)
vec(dW)

+vecT
(
(WTGT

effK(x,W)G∗eff)
)
vec(dW∗)

)
.

(35)
According to (35), the gradient of C(x,W) at W∗ is

∇W∗C(x,W) = GH
effK(x,W)GeffW. (36)

Combining (34) and (36), we can obtain the parallel Euclidean
gradient ∇C(x,W) in (14).

B. Appendix B: proof of (20)

For complex vector xk, the Hestenes and Stiefel (H-S)
conjugate parameter is defined as [38], [41]

βxk

=
<
{
gradHxk

(
gradxk

− Transxk←xk−1
gradxk−1

)}
<
{[ (

gradxk
− Transxk←xk−1

gradxk−1

)H
Transxk←xk−1

dxk−1

]} .

(37)
For complex matrix Wk, H-S conjugate parameter is

βWk

=

<

Tr
gradH

Wk

 gradWk
−

TransWk←Wk−1
gradWk−1


<

Tr
 (gradWk

− TransWk←Wk−1
gradWk−1

)H
TransWk←Wk−1

dWk−1


.

(38)

Combining (37) and (38), H-S conjugate parameter for
(xk,Wk) can be obtained by

βk

=

<


gradHxk

(
gradxk

− Transxk←xk−1
gradxk−1

)
+

Tr

[
gradHWk

(
gradWk

−
TransWk←Wk−1

gradWk−1

)] 

<



[ (
gradxk

− Transxk←xk−1
gradxk−1

)H
Transxk←xk−1

dxk−1

]
+

Tr

[ (
gradWk

− TransWk←Wk−1
gradWk−1

)H
TransWk←Wk−1

dWk−1

]


.

(39)
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