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Abstract— Contrast enhanced ultrasound is a radiation-
free imaging modality which uses encapsulated gas
microbubbles for improved visualization of the vascular
bed deep within the tissue. It has recently been used to
enable imaging with unprecedented subwavelength spatial
resolution by relying on super-resolution techniques. A typ-
ical preprocessing step in super-resolution ultrasound is to
separate the microbubble signal from the cluttering tissue
signal. This step has a crucial impact on the final image
quality. Here, we propose a new approach to clutter removal
based on robust principle component analysis (PCA) and
deep learning. We begin by modeling the acquired contrast
enhanced ultrasound signal as a combination of low rank
and sparse components. This model is used in robust PCA
and was previously suggested in the context of ultrasound
Doppler processingand dynamic magnetic resonance imag-
ing. We then illustrate that an iterative algorithm based on
this model exhibits improved separation of microbubble
signal from the tissue signal over commonly practiced
methods. Next, we apply the concept of deep unfolding to
suggest a deep network architecture tailored to our clut-
ter filtering problem which exhibits improved convergence
speed and accuracy with respect to its iterative counter-
part. We compare the performance of the suggested deep
network on both simulations and in-vivo rat brain scans,
with a commonly practiced deep-network architecture and
with the fast iterative shrinkage algorithm. We show that our
architecture exhibits better image quality and contrast.
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I. INTRODUCTION

MEDICAL ultrasound (US) is a radiation-free imaging
modality used extensively for diagnosis in a wide range

of clinical segments such as radiology, cardiology, vascular,
obstetrics and emergency medicine. Ultrasound-based imag-
ing modalities include brightness, motion, Doppler, harmonic
modes, elastography and more [1].

One important imaging modality is contrast-enhanced
ultrasound (CEUS) [2] which allows the detection and
visualization of blood vessels whose physical parameters
such as relative blood volume (rBV), velocity, shape and
density are associated with different clinical conditions [3].
CEUS uses encapsulated gas microbubbles as ultrasound
contrast agents (UCAs) which are administrated intravenously
and are similar in size to red blood cells, allowing them to
flow throughout the vascular system [4]. Among its many
applications, CEUS is used for imaging of perfusion at the
capillary level [5], [6], for estimating blood velocity in small
vessels by applying Doppler processing [7], [8] and for
sub-wavelength vascular imaging [9]–[14].

A major challenge in ultrasonic vascular imaging such as
CEUS is to suppress clutter signals stemming from stationary
and slowly moving tissue as they introduce significant
artifacts in blood flow imaging [15]. Over the past few
decades several approaches have been suggested for clutter
removal. The simplest method of tissue signal removal is to
filter the ultrasonic signal along the temporal dimension using
high-pass finite impulse response (FIR) or infinite impulse
response (IIR) filters [16]. However, FIR filters need to have
a high order whereas IIR filters exhibit a long settling time.
This leads to a low number of temporal samples in each
spatial location [17] when using focused transmission. The
above methods rely on the assumption that tissue motion,
if exists, is slow whereas blood flow is fast. Hence, this
high-pass filtering approach is prone to failure in the presence
of fast tissue motion, as in cardiology, or when imaging
microvasculature in which blood velocities are low.

An alternative method for tissue suppression is second
harmonic imaging [18], which separates the blood and tissue
signals by exploiting the non-linear response of the UCAs to
low acoustic pressures, compared with the mostly linear tissue
response. This technique, however, limits the frame-rate of the
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US scanner, and does not remove the tissue signal completely,
as tissue can also exhibit a nonlinear response.

The above techniques are based only on temporal infor-
mation and neglect the high spatial coherence of the tissue,
compared to the blood. To exploit these spatial characteristics
of tissue, a method of clutter removal was presented in [19],
based on the singular value decomposition (SVD) of the
correlation matrix of successive temporal samples. SVD filter-
ing operates by stacking the (typically beamformed) acquired
frames as vectors in a matrix whose column index indicates
frame number. Then, an SVD of the matrix is performed and
the largest singular values, which correspond to the highly
correlated tissue, are zeroed out. Finally, a new matrix is
composed based on the remaining singular values and reshaped
to produce the blood/UCA movie.

Several SVD-based techniques have been proposed [15],
[20]–[23] , such as down-mixing [15] for tissue motion esti-
mation, adaptive clutter rejection for color flow proposed by
Lovstakken et al. [24] and the principal component analy-
sis (PCA) for blood velocity estimation presented in [25].
However, these methods are based on focused transmission
schemes which limit the frame rate and the field of view.
This in turn leads to a small number of temporal and
spatial samples, reducing the effectiveness of SVD-based
filtering. To overcome this limitation, SVD clutter removal
was extended to ultrafast plane-wave imaging [13], [26]–[28],
demonstrating substantially improved clutter rejection and
microvascular extraction. This strategy has gained a lot of
interest in recent years and nowadays it is used in numer-
ous ultrafast US imaging applications such as functional
ultrasound [29], [30], super-resolution ultrasound localization
microscopy [13], [14] and high-sensitivity microvessel perfu-
sion imaging [26], [27].

A major limitation of SVD-based filtering is the requirement
to determine a threshold which discriminates between tissue
related and blood related singular values. The appropriate
setting of this threshold is based on empirical observations,
rather than on minimizing an optimality criteria [31], and thus
it is often unclear, especially when the eigenvalue spectra of
the tissue and blood signals overlap. This threshold uncertainty
motivates the use of a different model for the acquired data,
one that can differentiate between tissue and contrast signals
based on the spatio-temporal information, as well as additional
information unique to the contrast signal: its sparse distribution
in the imaging plane.

Here, we propose two main contributions. The first is the
adaptation of a new model for the tissue/contrast separation
problem. We show that similar to other applications such
as magnetic resonance imaging (MRI) [32] and recent US
Doppler applications [33], we can decompose the acquired,
beamformed US movie as a sum of a low-rank matrix (tissue)
and a sparse outlier signal (UCAs). This decomposition is also
known as robust principle component analysis (RPCA) [34].
We then propose to solve a convex minimization problem to
retrieve the UCA signal, which leads to an iterative principal
component pursuit (PCP) [34]. Second, we utilize recent
ideas from the field of deep learning [35] to dramatically
improve the convergence rate and image reconstruction qual-

ity of the iterative algorithm. We do so by unfolding [36]
the algorithm into a fixed-length deep network which we
term Convolutional rObust pRincipal cOmpoNent Analysis
(CORONA). This approach harnesses the power of both deep
learning and model-based frameworks, and leads to improved
performance in various fields [37]–[41].

CORONA is trained on sets of separated tissue/UCA signals
from both in-vivo and simulated data. Similar to [38], we uti-
lize convolution layers instead of fully-connected (FC) layers,
to exploit the shared spatial information between neighboring
image pixels. Our training policy is a two stage process.
We start by training the network on simulated data, and then
train the resulting network on in-vivo data. This hybrid policy
allows us to improve the network’s performance and to achieve
a fully-automated network, in which all the regularization
parameters are also learned. We compare the performance
of CORONA with the commonly practiced SVD approach,
the iterative RPCA algorithm and an adaptation of the residual
network (ResNet), which is considered to be one of the
leading deep architectures for a wide variety of problems [42].
We show that CORONA outperforms all other approaches in
terms of image quality and contrast.

Unfolding, or unrolling an iterative algorithm, was first
suggested by Gregor and LeCun [36] to accelerate algorithm
convergence. In the context of deep learning, an important
question is what type of network architecture to use. Iterative
algorithms provide a natural recurrent architecture, designed
to solve a specific problem, such as sparse approximations,
channel estimation [43] and more. The authors of [36] showed
that by considering each iteration of an iterative algorithm
as a layer in a deep network and then concatenating few
such layers, it is possible to train such networks to achieve
a dramatic improvement in convergence, i.e., to reduce the
number of iterations significantly.

In the context of RPCA, a principled way to construct learn-
able pursuit architectures for structured sparse and robust low
rank models was introduced in [37]. The proposed networks,
derived from the iteration of proximal descent algorithms,
were shown to faithfully approximate the solution of RPCA
while demonstrating several orders of magnitude speed-up
compared to standard optimization algorithms. However, this
approach is based on a non-convex formulation in which
the rank of the low-rank part (or an upper bound on it) is
assumed to be known a-priori. This poses a network design
limitation, as the rank can vary between different applications
or even different realizations of the same application, as in
CEUS. Thus, for each choice of the rank upper bound, a new
network needs to be trained, which can limit its applicability.
In contrast, our approach does not require a-priori knowledge
of the rank. Moreover, the use of convolutional layers exploits
spatial invariance and facilitates our training process as it
reduces the number of learnable parameters dramatically.

The rest of the paper is organized as follows. In Section II,
we introduce the mathematical formulation of the low-rank and
sparse decomposition. Section III describes the protocol of the
experiments and technical details regarding the realizations of
CORONA and ResNet. Section IV presents in-silico as well
as in-vivo results of the iterative algorithm and the proposed
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deep networks. Finally, we discuss the results, limitations and
further research directions in Section V.

Throughput the paper, x represents a scalar, x a vector, X
a matrix, IN×N is the N × N identity matrix, ‖ · ‖p represents
the standard p-norm and ‖·‖F is the Frobenius norm. Subscript
xl denotes the lth element of x and xl is the lth column of X.
Superscript x(p) represents x at iteration p, (·)H denotes the
hermitian operator, and Ā is the complex conjugate of A.

II. DEEP LEARNING STRATEGY FOR RPCA IN US

A. Problem Formulation

We start by providing a low-rank plus sparse (L + S) model
for the acquired US signal. In US imaging, typically a series
of pulses are transmitted to the imaged medium. The resulting
echoes from the medium are received in each transducer
element and then combined in a process called beamforming to
produce a focused image. As presented in [44], after demod-
ulation the complex analytical (IQ) signal can be expressed
as

D(x, z, t) = I (x, z, t) + i Q(x, z, t),

where I (x, z, t) and Q(x, z, t) are the in-phase and quadrature
components of the demodulated signal, x, z are the vertical
and axial coordinates, and t indicates the frame number.
The signal D(x, z, t) is a sum of echoes returned from
the blood/CEUS signal S(x, z, t) as well as from the tissue
L(x, z, t), contaminated by additive noise N(x, z, t):

D(x, z, t) = L(x, z, t)+ S(x, z, t) + N(x, z, t).

Acquiring a series of movie frames t = 1, . . . , T , and
stacking them as vectors in a matrix D, leads to the following
model

D = L+ S+ N. (1)

Here, we assume that the tissue matrix L can be described
as a low-rank matrix, due to its high spatio-temporal coher-
ence. The CEUS echoes matrix S is assumed to be sparse,
as blood vessels typically sparsely populate the imaged
medium. Assuming that each movie frame is of size M × M
pixels, the matrices in (1) are of size M2 × T . Henceforth,
we consider a more general model, in which the acquired
matrix D is composed as

D = H1L+H2S+ N, (2)

where H1 and H2 are the measurement matrices of appropriate
dimensions, which relate the measurements to the unknown
quantities we wish to recover. These matrices typically repre-
sent the physical acquisition mechanism and are dictated by
the physics of the measurement device (in this work H1 =
H2 = I). The model (2) can have been applied to MRI, video
compression and additional US applications, as we discuss in
Section V. Our goal is to formulate a minimization problem
to extract both L and S from D under the corresponding
assumptions on the matrices.

B. RPCA Formulation

RPCA [32] aims at solving the following minimization
problem

min
L,S

1

2
‖D− (H1L+H2S)‖2F + λ1‖L‖∗ + λ2‖S‖1,2, (3)

where ‖ · ‖∗ stands for the nuclear norm, the sum of the
singular values of L, and ‖·‖1,2 is the mixed l1,2 norm, which
equals the sum of the l2 norms of each row of S. We use the
mixed l1,2 norm since the pattern of the sparse outlier (blood
or CEUS signal) is the same between different frames, and
ultimately corresponds to the locations of the blood vessels,
which are assumed to be fixed, or change very slowly during
the acquisition period. The nuclear norm is known to promote
low-rank solutions, and is the convex relaxation of the rank
minimization constraint [45].

By defining

X =
[

L
S

]
, P1 =

[
I
0

]
, P2 =

[
0
I

]
and A = [H1, H2], (3) can be rewritten as

min
L,S

1

2
‖D− AX‖2F + h(X), (4)

where h(X) = ∑2
i=1 λiρi (Pi X) with ρ1 = ‖ · ‖∗ and

ρ2 = ‖ · ‖1,2. The minimization problem (4) is a regular-
ized least-squares problem, for which numerous numerical
minimization algorithms exist. Specifically, the (fast) iterative
shrinkage/thresholding algorithm, (F)ISTA, [46], [47] involves
finding the Moreau’s proximal (prox) mapping [48], [49] of
h, defined as

proxh(X) = argmin
U

{
h(U)+ 1

2
‖U− X‖2F

}
. (5)

Plugging the definition of X into (5) yields

proxh(X) = argmin
U1,U2

{
λ1ρ1(U1)+ 1

2
‖U1 − L‖2F

+ λ2ρ2(U2)+ 1

2
‖U2 − S‖2F

}
.

Since proxh(X) is separable in L and S, it holds that

proxh(X) =
[

proxρ1
(L)

proxρ2
(S)

]
=

[
SVTλ1(L)
Tλ2(S)

]
, (6)

where the operators Tα(x) = max(0, 1 − α/‖x‖2)x and

SVTα(X) = Udiag(max(0, σi − α))VH , i = 1, . . . , r

are the soft-thresholding and singular value thresholding [50]
operators. Here X is assumed to have an SVD given by X =
U�VH with � = diag(σi , . . . , σr ), a diagonal matrix of the
eigenvalues of X. The proximal mapping (6) is applied in each
iteration to the gradient of the quadratic part of (4), given by

g(X) = d

dX
1

2
‖D− AX‖2F = AH (AX− D),

and more specifically,[
d

dL
d

dS

]
=

[
HH

1 (H1L+H2S− D)

HH
2 (H1L+H2S− D)

]
.
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Fig. 1. Architecture comparison between the iterative algorithm applied for K iterations (panel (a)) and its unfolded counterpart (panel (b)).
The learned network in panel (b) draws its architecture from the iterative algorithm, and is trained on examples from a given dataset. In both panels,
D is the input measurement matrix, and Sk and Lk are the estimated sparse and low-rank matrices in each iteration/layer, respectively.

The general iterative step of (L + S) ISTA applied to
minimizing (3) is thus given by

Xk+1 = proxh

(
Xk − 1

L f
g(Xk)

)
,

or

Lk+1 = SVTλ1/L f

{(
I − 1

L f
HH

1 H1

)
Lk −HH

1 H2Sk +HH
1 D

}

Sk+1 = Tλ2/L f

{(
I − 1

L f
HH

2 H2

)
Sk −HH

2 H1Lk +HH
2 D

}
,

(7)

where L f is the Lipschitz constant of the quadratic term of
(4), given by the spectral norm of AH A.

The L + S ISTA algorithm for minimizing (3) is
summarized in Algorithm 1. The diagram in Fig. 1(a) presents
the iterative algorithm, which relies on knowledge of H1, H2
and selection of λ1 and λ2.

Algorithm 1 L + S ISTA for Minimizing (3)
Require: D, λ1 > 0, λ2 > 0, maximum iterations Kmax

Initialize S = L = 0 and k = 1
while k ≤ Kmax or stopping criteria not fulfilled do

1: Gk
1 =

(
I− 1

L f
HH

1 H1

)
Lk −HH

1 H2Sk +HH
1 D

2: Gk
2 =

(
I− 1

L f
HH

2 H2

)
Sk −HH

2 H1Lk +HH
2 D

3: Lk+1 = SVTλ1/L f

{
Gk

1

}
4: Sk+1 = Tλ2/L f

{
Gk

2

}
5: k ← k + 1

end while
return SKmax, LKmax

The dynamic range between returned echoes from the tissue
and UCA/blood signal can range from 10dB to 60dB. As this
dynamic range expands, more iterations are required to achieve
good separation of the signals. This observation motivates the
pursuit of a fixed complexity algorithm. In the next section we
propose CORONA which is based on unfolding Algorithm 1.

Background on learning fast sparse approximations is given
in Section I of the supplementary materials.

C. Unfolding the Iterative Algorithm

An iterative algorithm can be considered as a recurrent
neural network, in which the kth iteration is regarded as
the kth layer in a feedforward network [37]. To form a
convolutional network, one may consider convolutional lay-
ers instead of matrix multiplications. With this philosophy,
we form a network from (7) by replacing each of the matrices
dependent on H1 and H2 with convolution layers (kernels)
Pk

1, . . . , Pk
6 of appropriate sizes. These will be learned from

training data. Contrary to previous works in unfolding RPCA
which considered training fully connected (FC) layers [37],
we employ convolution kernels in our implementation which
allows us to achieve spatial invariance while reducing the
number of learned parameters considerably. By doing so,
the following equations for the kth layer are obtained

Lk+1 = SVTλk
1

{
Pk

5 ∗ Lk + Pk
3 ∗ Sk + Pk

1 ∗D
}

,

Sk+1 = Tλk
2

{
Pk

6 ∗ Lk + Pk
4 ∗ Sk + Pk

2 ∗ D
}

,

in which ∗ denotes a convolution operator. The latter can be
considered as a single layer in a multi-layer feedforward net-
work, which we refer to as CORONA: Convolutional rObust
pRincipal cOmpoNent Analysis. A diagram of a single layer
from the unfolded architecture is given in Fig. 1(b), where
the supposedly known model matrices are replaced by the 2D
convolution kernels Pk

1, . . . , Pk
6, which are learned as part of

the training process of the overall network.
In many applications, the recovered matrices S and L

represent a 3D volume, or a movie, of dynamic objects
imposed on a (quasi) static background. Each column in S and
L is a vectorized frame from the recovered sparse and low-
rank movies. In practice, we treat our data as a 3D volume
and apply 2D convolutions. The SVT operation (which has
similar complexity as the SVD operation) at the kth layer
is performed after reshaping the input 3D volume into a 2D
matrix, by vectorizing and column-wise stacking each frame.
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The thresholding coefficients are learned independently for
each layer. Given the kth layer, the actual thresholding values
for both the SVT and soft-thresholding operations are given by
thrk

L = σ(λk
L) · aL ·max(Lk) and thrk

S = σ(λk
S) · aS ·mean(Sk)

respectively, where σ(x) = 1/(1 + exp(−x)) is a sigmoid
function, aL and aS are fixed scalars (in our application we
chose aL = 0.4 and aS = 1.8) and λk

L and λk
S are learned in

each layer by the network.

D. Training CORONA

CORONA is trained using back-propagation in a supervised
manner. Generally speaking, we obtain training examples Di

and corresponding sparse Ŝi and low-rank L̂i decompositions.
In practice, Ŝi and L̂i can either be obtained from simulations
or by decomposing Di using iterative algorithms such as
FISTA [51]. The loss function is chosen as the sum of the
mean squared errors (MSE) between the predicted S and L
values of the network and Ŝi , L̂i , respectively,

L(θ) = 1

2N

N∑
i=1

‖ fS(Di , θ)− Ŝi‖2F

+ 1

2N

N∑
i=1

‖ fL (Di , θ)− L̂i‖2F . (8)

In the latter, fS/ fL is the sparse/low-rank output of CORONA
with learnable parameters θ = {Pk

1, . . . , Pk
6, λ

k
1, λ

k
2}Kk=1, where

K is the number of chosen layers.
Training a deep network typically requires a large amount

of training examples. In practice, US scans of specific organs
are not available in abundance. To be able to train CORONA,
we thus rely on two strategies: simulations and patch-based
analysis. We created a simulator, described in Section II of
the supplementary materials, to generate numerous examples
of UCA and tissue signals, including ground truth, for training
CORONA. Furthermore, instead of training the network over
entire scans, we perform data augmentation by dividing each
US movie used for training into 3D patches (axial coordinate,
lateral coordinate and frame number). For in-vivo data, we then
apply Algorithm 1 on each of these 3D patches. The SVD
operations in Algorithm 1 become computationally tractable
since we work on relatively small patches. The resulting
separated UCA movie is then considered as the desirable
outcome of the network and the network is trained over these
pairs of extracted 3D patches from the acquired movie, and the
resulting reconstructed UCA movies. In practice, the CEUS
movie used for training is divided into 3D patches of size
32×32×20 (32×32 pixels over 20 consecutive frames) with
50% overlap between neighboring patches. The regularization
parameters of Algorithm 1, λ1 and λ2, are chosen manually
by assessing the visual quality of the resulting recovery, but
are chosen once for all the extracted patches.

III. EXPERIMENTS

The brains of three rats were scanned using a Vantage
256 system (Verasonics Inc., Kirkland, WA, USA). An L20-
10 probe was utilized, with a central frequency of 15 MHz.
The rats underwent craniotomy after anesthesia to obtain

an imaging window of 12.7 × 12.93 mm2 (pixel size of
49.8 × 77 μm2). A bolus of 100 μL SonoVueTM (Bracco,
Milan, Italy) contrast agent, diluted with normal saline with
a ratio of 1:4, was administered intravenously to the rat’s tail
vein. Plane-wave compounding of five steering angles (from
−12◦ to 12◦, with a step of 6◦) was adopted for ultrasound
imaging. For each rat, over 6000 consecutive frames were
acquired with a frame rate of 100 Hz. 300 frames with
relatively high B-mode intensity were selected visually for
data processing in this work. All procedures were approved
by the ethics committee of Peking University (Beijing, China);
approval number for the animal study is COE-DaiZF-1.

In Section II of the supplementary materials, we provide
a detailed description of how the simulations of the UCA
and tissue movies are generated. In particular, we detail how
individual UCAs are modeled and propagated in the imaging
plane, and describe the cluttering tissue signal model as well
as tissue motion. We demonstrate the importance of training
on both simulations and in-vivo data in Section III-A of the
supplementary materials.

In recent years, several deep learning based architectures
have been proposed and applied successfully to classifica-
tion problems. One such approach is the residual network,
or ResNet [42]. ResNet utilizes convolution layers, along with
batch normalization and skip connections, which allow the
network to avoid vanishing gradients and reduce the overall
number of network parameters.

To compare with CORONA, we implemented ResNet using
complex convolutions for the tissue clutter suppression task.
The network does not recover the tissue signal, as CORONA,
but only the UCA signal. In Section IV and in the supple-
mentary materials, we compare both architectures and assess
the advantages and disadvantages of each network, and show
that CORONA outperforms ResNet in terms of image qual-
ity (contrast) of the CEUS signal.

Both ResNet and CORONA are implemented in Python
3.5.2, using the PyTorch 0.4.1 package. CORONA consists
of 10 layers. The first three layers use convolution kernels of
size 5× 5 × 1 with strides (1, 1, 1), paddings (2, 2, 0) and a
bias, whereas the last seven layers use filters of size 3× 3× 1
with strides (1, 1, 1), paddings (1, 1, 0) and a bias. Training
was performed using the ADAM optimizer with a learning
rate of 0.002. For the in-vivo experiments in Section IV,
we trained the network over 2400 simulated training pairs
and additional 2400 in-vivo pairs taken only from the first
rat. Training pairs were generated from the acquired US clips,
after dividing each clip to 32 × 32 × 20 patches. We then
applied Algorithm 1 for each patch with H1 = H2 = I, λ1 =
10−6σmax and λ2 = 5 · 10−8σmax where σmax is the maximum
singular value of the data, and Dmax = 2000 iterations to
obtain the separated UCA signal for the training process.
Algorithm 1 was implemented in MATLAB (Mathworks Inc.)
and was applied to the complex-valued IQ signal. PyTorch
performs automatic differentiation and back-propagation using
the Autograd functionality, and version 0.4.1 also supports
back-propagation through SVD, but it is limited for real-
valued numbers. Therefore, we implemented custom complex-
valued convolution layers and SVD operations. All of these
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Fig. 2. Simulation results of CORONA. (a) MIP image of the input movie, composed from 50 frames of simulated UCAs cluttered by tissue.
(b) Ground-truth UCA MIP image. (c) Recovered UCA MIP image via CORONA. (d) Ground-truth tissue MIP image. (e) Recovered tissue MIP image
via CORONA. Color bar is in dB.

Fig. 3. CR and CNR comparison for the different recoveries of Fig. 2, and Fig. 7 in the supplementary materials. Red horizontal lines indicate the
median, blue shapes indicate first (Q1) to third (Q3) quartiles and the black lines indicate the entire range of data samples, per category. Red markers
indicate outliers per category, which were excluded from the statistical calculations. Purple stars represent averages over the entire ensemble for
each method, with values written vertically. ‘COR’ stands for CORONA and ‘RES’ for ResNet. All values are in dB.

parameters are the same for both the simulation and in-vivo
analysis, unless explicitly stated otherwise. In-vivo SVD recov-
eries were performed by associating the first 15 eigenvectors
of the input movie to the tissue signal and the rest to the UCA
signal.

IV. RESULTS

A. Simulation Results

In this section we provide reconstruction results for
CORONA applied to a simulated dataset, and trained on
simulations. Fig. 2 presents reconstruction results of the UCA
signal S and the low-rank tissue L against the ground truth
images. Panel (a) shows a representative image in the form
of maximum intensity projection (MIP)1 of the input cluttered
movie (50 frames). It is evident that the UCA signal, depicted
as randomly twisting lines, is masked considerably by the
simulated tissue signal. Panel (b) illustrates the ground truth
MIP image of the UCA signal, whereas panel (c) presents

1In order to present a single representative image, we take the pixel-wise
maximum from each movie. This process is also referred to as maximum
intensity projection, and is a common method to visualize CEUS images.

the MIP image of the recovered UCA signal via CORONA.
Panels (d) and (e) show MIP images of the ground truth and
CORONA recovery, respectively.

Observing all panels, it is clear that CORONA is able to
recover reliably both the UCA signal and the tissue signal.
Additionally, since in the simulation we have the ground
truth data, we can objectively compare the performance of
CORONA, ResNet and the different SVD reconstructions.
Fig. 3 presents a box-plot comparison of measured contrast
ratio (CR) and contrast to noise ratio (CNR) values for each
of the different reconstructions as well as for the ground
truth (GT). CNR is calculated between a selected patch which
represents the signal (UCAs) and a reference patch which
represents the background, taken from the same image. We
denote by μs the mean of the selected signal patch with
variance σ 2

s and by μb the mean of the background patch
with variance σ 2

b . The CNR and CR are defined as

CNR = |μs − μb|√
σ 2

s + σ 2
b

, CR = μs

μb
.

For each method (and ground truth), CR and CNR values
were calculated by considering the 12 × 12 pixels yellow
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Fig. 4. Panels on the left column show velocity orientation histogram for each method (orange) against the ground truth velocity orientation histogram
(blue). Panels on the right column present velocity magnitude histogram for each method (blue) compared with the ground truth velocity magnitude
histogram (orange). SVD1, 5, 10 implies that the tissue/UCAs cutoff eigenvalue was chosen as 1, 5, and 10, respectively.

patch depicted in panel (b) of Fig. 2 as the background
patch (for each reconstruction method, the patch was taken
from the reconstruction itself). Then, we divided each MIP
image (ground truth, CORONA, ResNet and the three SVD
recoveries) into 144 12 × 12 non-overlapping patches and
computed the corresponding CR and CNR values per each
technique and ground truth with its corresponding background
patch, as presented in Fig. 3. Corresponding SVD recoveries
are presented in Fig. 7 in the supplementary materials, showing
SVD recoveries of different tissue/UCA threshold values.

Examining Fig. 3, clearly the CR values of CORONA are
the closest to the ground truth values by a large margin,
indicating higher contrast than those of the SVD recoveries
and ResNet (which in turn exhibits higher CR values than
the SVD recoveries). The CNR values and distribution of
CORONA are very similar to those of the ground truth,
as well as those of ResNet, unlike the CNR values of the
SVD recoveries, which also show lower median values. The
average CNR value of CORONA is higher than the value of
ResNet by a factor of almost two, and is the closest to the
ground truth CNR. This indicates that CORONA recovery is
more similar to the ground truth UCA MIP image than all
of the SVD reconstructions. Although the CNR distribution
of ResNet (corresponding MIP image is given in Fig. 9 of
the supplementary materials, panel (c)) is relatively similar
to that of CORONA and the ground truth, the distribution of
CORONA still exhibits closer similarity to the ground truth
than ResNet.

Fig. 5. MSE plot for the FISTA algorithm and CORONA as a function of
the number of iterations/layers.

Clutter suppression in US is often used as a pre-processing
step for further analysis, such as the extraction of blood
flow parameters (e.g. velocities and relative blood volume
[3]) as well as advanced processing such as super-resolution
[12]. If the tissue signal is suppressed adequately, quantitative
parameters such as blood velocity distribution can be estimated
more precisely. On the other hand, if substantial tissue signal is
still present in the extracted UCA signal, then it is very likely
that extraction of quantitative parameters will be erroneous.
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Fig. 6. Recovery of in-vivo CEUS signal depicting rat brain vasculature. (a) ResNet image. (b) L + S FISTA separation. (c) CORONA. (d) Wall
filtering with cutoff frequency of 0.2π. (e) Wall filtering with cutoff frequency of 0.9π. (f) SVD based separation. Color bars are in dB, upper bar refers
to panels (a), (b) and (c), whereas lower bar refers to panels (d), (e) and (f).

Thus, a good measure of the performance of any clutter
suppression algorithm is how well quantitative parameters can
be extracted from the recovered UCA signal.

To this end, in Fig. 4 we show a comparison of estimated
blood flow velocities (magnitude and orientation histograms)
for the different methods on the simulated dataset, compared
with the ground truth velocity histograms. Flow velocities
were estimated per each image in the recovered UCA sequence
based on optical flow estimation using the Lukas and Kanade
method (with threshold parameter 0.5) [52], as in [12], [53].

Considering the upper row of Fig. 4, it is evident that
the velocity histograms calculated from the CORONA recon-
struction show very good correspondence to the ground truth
histogram, in both orientation and magnitude. On the other
hand, all of the SVD and ResNet reconstructions show poor
compatibility to the ground truth histograms, both in magni-
tude and orientation. This histogram mismatch implies poor
velocity estimation from these reconstructions, as the result of
residual tissue signal present in the UCA signal or removal of

some of the UCA signal (as happened in some of the SVD
reconstructions). Only CORONA obtained histograms which
closely resemble those of the ground truth.

Finally, since CORONA draws its architecture from the
iterative ISTA algorithm, our second aim in this section is
to assess the performance of both CORONA and the FISTA
algorithm by calculating the MSE of each method as a function
of iteration/layer number. Each layer in CORONA can be
thought of as an iteration in the iterative algorithm. To that
end, in Fig. 5 we quantify the MSE over the simulated vali-
dation batch (sequence of 100 frames) as a function of layer
number (CORONA) and iteration number (FISTA). For both
methods, the MSEs for the recovered sparse part (UCA signal)
S and the low-rank part (tissue signal) L were calculated as
a function of iteration/layer number, as well as the average
MSE of both parts, according to (8) with α = 0.5. For each
layer number, we constructed an unfolded network with that
number of layers, and trained it for 50 epochs on simulated
data only.
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Fig. 7. Recovery of in-vivo CEUS signal depicting rat brain vasculature. (a) ResNet image. (b) L + S FISTA separation. (c) CORONA. (d) Wall
filtering with cutoff frequency of 0.2π. (e) Wall filtering with cutoff frequency of 0.9π (f) SVD based separation. Color bars are in dB, upper bar refers
to panels (a), (b) and (c), whereas lower bar refers to panels (d), (e) and (f).

Observing Fig. 5, it is clear that even when considering
CORONA with only 1 layer, its performance in terms of
MSE is an order of magnitude better than FISTA applied
with 50 iterations. Adding more layers improves the CORONA
MSE, though after 5 layers, the performance remains roughly
the same. Fig. 5 also shows that a clear decreasing trend is
present for the FISTA MSE, however a dramatic increase in
the number of iterations is required by FISTA to achieve the
same MSE values.

Additional simulation-based quantification and quantitative
comparisons are given in Section II-B of the supplemen-
tary materials. Section II-C of the supplementary materials
provides additional simulation results, showing the recovered
UCA signal by ResNet. Although qualitatively ResNet recov-
ers the UCA signal well, its contrast is lower than the contrast
of the CORONA recovery, which presents a clearer depiction
of the random vascular structure of the simulation. Moreover,
ResNet does not recover the tissue signal, whereas CORONA
does.

Overall, in simulations CORONA depicts more accurate
separation of UCAs from the tissue signal. This is quantified
by better CR and CNR values, as well as more accurate
UCA velocity estimation. In particular, CORONA can recover
slow moving UCAs, with velocities in the order of the tissue
motion, whereas in this case, SVD fails.

B. In-Vivo Experiments

We now proceed to demonstrate the performance of
CORONA on in-vivo scans of the second rat from 200
consecutive frames (reconstruction results for the third rat
are given in Section III-D of the supplementary materials).
As was described in Section III, CORONA was trained on both
simulated and experimental data. In Fig. 6, panel (a) depicts
the trained ResNet recovery, panel (b) shows the FISTA based
separation and panel (c) shows the result of CORONA. The
lower panels of Fig. 6 also compare the SVD based separation
of the CEUS signal (panel (f)) on the in-vivo data as well
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Fig. 8. Recovery of in-vivo tissue signal of rat brain scans. (a) SVD based separation. (b) L + S FISTA separation. (c) CORONA. Color bar is in dB.

as provide additional comparison to the commonly used wall
filtering. Specifically, we use a 6th order Butterworth filter
with two cutoff frequencies of 0.2π (panel (d)) and 0.9π
(panel (e)) radians/samples. Two frequencies were chosen
which represent two scenarios. The cutoff frequency of the
recovery in panel (d) was chosen to suppress as much tissue
signal as possible, without rejecting slow moving UCAs.
In panel (e), a higher frequency was chosen, to suppress the
slow moving tissue signal even further, but as can be seen,
at a cost of removing also some of the slower bubbles. The
result is a less consistent vascular image. Due to dynamic
range differences between the methods, and in order to fully
present the reconstructed vasculature of each image in the best
way possible, the FISTA, CORONA and ResNet images are
displayed with a dynamic range of 40 dB, whereas the SVD
and wall-filter images are displayed with a dynamic range
of 25 dB.

Visually judging the panels of Fig. 6, it is evident that
CORONA achieves a clearer depiction of the vasculature than
ResNet. The CORONA image seems less noisy and presents
a sharper depiction of the vessels’ contours, as opposed to the
blurier ResNet image. Although the FISTA image recovers
the blood vessels, some of the vessels seem to be absent,
especially in the upper portion of the image. This result is
most likely due to the difficulty in tuning the regularization
parameters by hand.

The lower panels show recoveries which qualitatively seem
noisier than the CORONA image. Moreover, considering the
wall-filter recovery in panel (e), it seems that the chosen cutoff
frequency was set too high, removing slow flowing UCAs.
The SVD and wall-filter image of panel (d) present a smooth
depiction of the blood vessels, like CORONA.

In each panel, the green and red boxes indicate selected
areas, whose enlarged views are presented in the correspond-
ing green and red boxes below each panel. In this example,
the red box below the CORONA image depicts a clearer
separation of the blood vessels than the red box below the
SVD and wall-filter images. The green box below the FISTA
image shows an incomplete image compared with the other
recoveries. It also seems that both deep networks exhibit
higher contrast than the other approaches.

Fig. 7 corresponds to vascular reconstruction from addi-
tional 100 frames acquired for the second rat. (similar dynamic
range, and panels arrangement as in Fig. 6).

At first glance, similar conclusions can be drawn by exam-
ining the panels of Fig. 7. The CORONA image seems to
exhibit the highest contrast, depicting sharper contours of the
blood vessels than ResNet, whereas the FISTA image seems
to miss a portion of the blood vessels (most likely the result
of the difficult manual tuning of the algorithm’s regularization
parameters). Choosing a high cutoff frequency for the wall-
filter (panel (e)) seems to remove many UCAs, resulting in
a very discontinuous image. On the other hand the wall-filter
image of panel (d) and the SVD recovery clearly depict the
vessels, albeit with lower contrast than the CORONA image.

However, closely examining the enlarged regions in the
green and red boxes reveals that a clear preference between the
methods is not always possible. For example, the “spider” like
shape in the green box is broken in the FISTA and wall-filter
images, whereas it seems sharp and clear in the SVD image
and in the wall-filter image of panel (d). In comparison to the
latter, the same area seems less clear in the CORONA image,
and it is very blurred in the ResNet recovery. In contrast,
the red panel below the CORONA image clearly depicts a
bifurcation of two vessels. This can also be observed in
the SVD and wall-filter (panel (d)) images, but it seems
blurrier with a less distinct depiction between the contour
of the vessels. The FISTA recovery also seems sharp and
clear, whereas the ResNet image seems blurred. The wall-filter
image of panel (e) presents a broken and unclear image of the
vessels.

Finally, Fig. 8 shows the tissue reconstruction results (over
all of the 300 frames) obtained by SVD (panel (a)), FISTA
(panel (b)) and CORONA (panel (c)). The FISTA recovery
seems to contain some of the UCA signal, as a result of the
difficulty to manually fine-tune its regularization parameters.
Fig. 8 exemplifies the ability of CORONA to not only produce
reliable UCA reconstructions, but also tissue imaging, which
can be used as additional input to modern applications, such
as tissue-based motion compensation.

V. DISCUSSION AND CONCLUSIONS

In this work, we proposed a low-rank plus sparse model
for tissue/UCA signal separation, which exploits both spatio-
temporal relations in the data, as well as the sparse nature of
the UCA signal. This model leads to a solution in the form
of an iterative algorithm, which outperforms the commonly
practiced SVD approach. We further suggested to improve
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both execution time and reconstructed image quality by
unfolding the iterative algorithm into a deep network, referred
to as CORONA. The proposed architecture utilizes convolution
layers instead of FC layers and a hybrid simulation-in-vivo
training policy. Combined, these techniques allow CORONA
to achieve improved performance over its iterative counterpart,
as well as over other popular deep learning architectures, such
as ResNet. We demonstrated the performance of all methods
on both simulated and in-vivo datasets, showing improved
vascular depiction in a rat’s brain.

We conclude by discussing several points, regarding the
performance and design of deep-learning based networks.
We attribute the improved performance over the commonly
practiced SVD filtering, wall filtering and FISTA to two
main reasons. The first, is the fact that for application on
in-vivo data, the networks are trained based on both in-
vivo data and simulated data. The simulated data provides
the networks with an opportunity to learn from “perfect”
examples, without noise and with absolute separation of UCAs
and their surroundings. In Section III-A of the supplementary
materials we show the effect on recovery when the network
is trained with and without experimental data. The iterative
algorithm, on the other hand, cannot learn or improve its
performance on the in-vivo data from the simulated data. The
second, is the fact that both networks rely on 2D complex
convolutions. Contrary to FC layers, convolution layers reduce
the number of learnable parameters considerably, thus help
avoid over-fitting and achieve good performance even when
the training sets are relatively small. Moreover, convolutions
offer spatial invariance, which allows the network to capture
spatially translated UCAs.

That said, it is important to note that a clear distinction
between the performance of the different methods is subjective
when considering in-vivo data. This is due to the lack of
ground-truth information. As discussed in the previous section,
CORONA does exhibit higher contrast than the other methods
and a smooth depiction of the vessels in most cases. However,
we also presented an example in which a better depiction of
vessels was attained by the SVD technique. We attribute this
to the fact that although CORONA is parameter-free, it is still
trained in part by patches obtained via FISTA. The parameters
of FISTA are currently hand-tuned, which does not guarantee
the best possible recovery (as clearly demonstrated in the in-
vivo examples). A better selection of the FISTA regularization
parameters (e.g. by using Stein’s unbiased risk estimator [54],
[55]) might improve the performance of CORONA. Further-
more, SVD filtering requires tuning the parameters for each
specific image in an online fashion, whereas the tuning for
CORONA’s training set is done offline and for various images
and datasets. The in-depth simulation analysis presented in
the paper validates the improvement in contrast obtained by
CORONA, as well as its benefit in separating between the
tissue and slow moving UCAs. In this case, SVD might fail
as the velocity spectrum of the UCAs and tissue might overlap.
In contrast, CORONA also exploits the sparse nature of the
UCAs, thus achieves separation even for slow moving UCAs.

Focusing on patch-based training (Section II-D) over entire
image training has several benefits. UCAs are used to image

blood vessels, and as such entire images will include implicitly
blood vessel structure. Thus, training over entire images may
result in the network being biased towards the vessel trees
presented in the (relatively small) training cohort. On the
other hand, small patches are less likely to include meaningful
structure, hence training on small patches is less likely to
bias the network towards specific blood vessel structures
and enables the network to generalize better. Furthermore,
as FISTA and CORONA employ SVD operations, processing
the data in small batches improves execution time [27], [56].

As was mentioned in the introduction, in the context of
RPCA, a principled way to construct learnable pursuit archi-
tectures for structured sparse and robust low rank models
was introduced in [37]. The proposed network was shown to
faithfully approximate the RPCA solution with several orders
of magnitude speed-up compared to its standard optimization
algorithm counterpart. However, this approach is based on a
non-convex formulation of the nuclear norm in which the rank
(or an upper bound of it) is assumed to be known a priori.

The main idea in [37] is to majorize the non-differentiable
nuclear norm with a differentiable term, such that the low-
rank matrix is factorized as a product of two matrices,
L = AB, where A ∈ R

n×q and B ∈ R
q×m . Using this kind of

factorization alleviates the need to compute the SVD product,
but introduces another unknown parameter q which needs to
be set (typically by hand), and corresponds to the rank of the
low-rank matrix. This poses a network design limitation, as the
rank can vary between different applications or even different
realizations of the same application, requiring the network to
be retrained per each new choice of q .

In fact, this is the same rank-thresholding parameter as in
the standard SVD filtering technique, which we want to avoid
hand-tuning. Moreover, this kind of factorization leads to a
non-convex minimization problem, whose globally optimal
stationary points depend on the choice of the regularization
parameter λ1. Since typically these parameters are chosen
empirically, a wrong choice of λ1 may lead to suboptimal
reconstruction results of the RPCA problem, which are then
used as training data for the fixed complexity learned algo-
rithm. Since we operate on the original convex problem,
we train against optimal reconstruction results of the RPCA
algorithm, without the need to a-priori estimate the low-rank
degree, q .

Currently CORONA and ResNet offer a trade-off between
them. By relying on convolutions, CORONA is trained with
a considerable lower number of parameters (314 for 1 layer,
1796 for 10 layers) than ResNet (25378). CORONA outper-
forms ResNet in both visual quality and quantifiable metrics,
as presented in Section IV. However, its training and execution
times are slower (see Section III-E of the supplementary
materials). This performance-runtime trade-off is attributed
to the fact that CORONA relies on SVD decomposition in
each layer, which is a relatively computationally demanding
operation. However, it allows the network to learn the rank of
the low-rank matrix, without the need to upper bound it and
restrict the architecture of the network. Incorporation of fast
approximations for SVD computations, such as truncated or
random SVD [56]–[59], can potentially expedite the network’s
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performance and achieve faster execution than ResNet. It
is also important to keep in mind that ResNet does not
recover the tissue signal, but only the UCA signal. In some
applications, such as super-resolution CEUS imaging over long
time durations, the tissue signal is used to correct for motion
artifacts.

On a final note, the proposed iterative and deep methods
were demonstrated on the extraction of CEUS signal from
an acquired IQ movie, but in principle can also be applied
to dynamic MRI sequences, as well as to the separation of
blood from tissue, e.g. for Doppler processing. In the latter
case, the dynamic range between the tissue signal and the
blood signal will be greater than that of the tissue and UCA
signal. In terms of the iterative algorithm, this would lead to
more iterations for the separation process, but once the iterative
algorithm has finished, its learned version could be trained on
its output to achieve faster execution.
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