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R
adar is an acronym for “radio detection and ranging.” 
However, the functions of today’s radar systems, both in 
civilian and military applications, go beyond simple target 
detection and localization; they extend to tracking, imag-

ing, classification, and more and involve different types of radar 
systems, such as through-the-wall [1], ground-penetration [2], 
automotive [3], and weather [4]. Although radar technology has 
been well established for decades, a new line of compressed 
radars has recently emerged. These aim at reducing the com-
plexity of classic radar systems by exploiting inherent prior 
information on the structure of the received signal from the tar-

gets. The goal of this article is to review these novel sub-Nyquist 
radars and their potential applications.

Conventional radar systems transmit electromagnetic waves 
of near-constant power in very short pulses toward the targets 
of interest. Between outgoing pulses, the radar measures the 
signal reflected from the targets to determine their presence, 
range, velocity, and other characteristics. Different systems use 
different radar waveforms and varying transmit strategies. One 
of the most popular methods is pulse-Doppler radar, which 
periodically transmits identical pulses. In contrast, stepped-
frequency radars (SFRs) [5] vary the carrier frequency of each 
pulse. Some systems rely on simple traditional waveforms 
such as Gaussian pulses while others adopt more complex sig-
nals, such as chirps [6], [7]. Each configuration corresponds 
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to a certain choice in the complexity-performance tradeoff, 
between complex waveform and system designs and target 
detection and estimation.

State-of-the-art radar systems operate with large bandwidths, 
large coherent processing intervals (CPIs), and high number of 
antennas in multiple-input, multiple-output 
(MIMO) settings [8], [9], to achieve high-
range velocity and azimuth resolution, respec-
tively. This, in turn, generates large data sets 
to be sampled, stored, and processed, creating 
a bottleneck in terms of both analog system 
complexity, including high-rate analog-to-dig-
ital converters (ADCs), and subsequent digital 
processing [10].

In the past few years, novel approaches 
to radar signal processing have emerged that 
allow radar signal detection and parameter 
estimation using a much smaller number of 
measurements than that required by spatial 
and temporal Nyquist sampling. While temporal sampling 
refers to taking samples in time intervals determined by the 
sampling rate, spatial sampling extends this notion to placing 
transmit and receive antennas, whose locations are governed 
by the signal wavelength. These works capitalize on the fact 
that, in most radar applications, the reflectivity scene consists of 
a small number of strong targets. That is, the reflected signals 
by only a few targets have high enough power to be detected 
by the radar receiver. In pulse-Doppler radar, the target scene 
is often sparse in the joint time–frequency, or ambiguity, do
main [5]. In synthetic aperture radar (SAR) [11], the scene is 
often sparse in the Fourier or wavelet domain, or even in the 
image domain.

Over the past decade, many works have exploited the inher-
ent sparsity of the target scene to enhance radar-estimation 
capabilities. These rely on the compressed sensing (CS) [10], 
[12] framework, brought to the forefront by the works of Candes, 
Romberg, and Tao [13] and of Donoho [14]. Although the natu-
ral application of CS is typically the reduction of the required 
number of samples to perform a certain signal processing task, 
it was first used by the radar community to increase a target’s 
parameter resolution [15]–[20]. It was later applied to reduce 
the number of samples to be processed [21]–[25] and finally 
to reduce the sampling rate [26], [27] and number of anten-
nas [28] required in radar systems, performing time and spatial 
compression and alleviating the burden on both the analog and 
digital sides. In particular, the recently proposed Xampling, 
i.e., compressed sampling concept [10], [29], has been applied 
to radar [30]–[32] to break the link between bandwidth, CPI, 
and the number of antennas on the one hand, and range, Dop-
pler, and azimuth resolution, respectively, on the other hand.

The reviews of compressive radar [22], [33]–[35] mostly 
deal with radar imaging. The works in [33] and [34] focus on 
SAR imaging and consider sparsity-based radar imagery using 
both greedy algorithms, which iteratively recover the sparse tar-
get scene, and convex relaxations of sparsity-inducing regular-
ization. The special cases of interferometric, polarimetric, and 

circular SAR are presented in [33] for both two-dimensional 
(2-D) and three-dimensional (3-D) images. In [34], diverse SAR 
applications, such as wide-angle SAR imaging, joint imaging, 
and autofocusing from data with phase errors, moving targets, 
analysis, and design of SAR sensing missions, are reviewed. 

A survey of statistical sparsity-based tech-
niques for radar imagery applications is 
presented in [35], including superresolution 
imaging, enhanced-target imaging, auto-
focusing, and moving-target imaging. The 
review of [22] presents three applications of 
CS radars: pulse compression, radar imag-
ing, and airspace surveillance with array 
antennas. At the time it was written, there 
was a small number of publications address-
ing the application of CS to radar, as stated 
by the authors.

In this article, we focus on nonradar-
imaging applications and survey many 

recent works that exploit CS in different radar systems to 
achieve various goals. We consider different transmit wave-
forms and processing approaches, while focusing on pulse-
Doppler radar—one of the most popular systems—and its 
extension to MIMO configurations. Our goal is to review 
the main impacts of compressed radar on parameter reso-
lution as well as digital and analog complexity. The survey 
includes fast time compression schemes, which reduce the 
number of acquired samples per pulse; slow time compres-
sion techniques, which decrease the number of pulses; and 
spatial compression approaches, in which the number of 
transmit and receive antenna elements is reduced. We show 
that, beyond a substantial rate reduction, compression may 
also enable communication and radar spectrum sharing [36]–
[38], as elaborated on in [39]. Throughout this article, we 
consider both theoretical and practical aspects of compressed 
radar and present hardware prototype implementations [40]–
[43] of the theoretical concepts, demonstrating the real-time 
target parameters’ recovery from low-rate samples in pulse-
Doppler and MIMO radars.

Radar systems
Radar systems aim to estimate targets’ parameters to determine 
their location and motion. In its simplest form, the radar trans-
mits a single pulse toward targets in one direction and recovers 
their range, i.e., distance to the radar, which is proportional to 
the received pulse delay. More elaborate systems are able to 
provide additional information on the targets. Pulse-Doppler 
radars transmit several pulses, enabling them to resolve both 
the targets’ ranges and radial velocities, which are proportional 
to the Doppler frequency. Stepped-frequency-based approaches 
achieve highly effective bandwidths that increase range resolu-
tion, while allowing for narrow instantaneous bandwidth. 
MIMO radars use several elements both at the transmitter and 
at the receiver to illuminate the entire target scene and recover 
targets’ azimuths in addition to their ranges and velocities. 
In this article, we consider the application of compression in 

Although the natural 
application of CS is 
typically the reduction 
of the required number 
of samples to perform a 
certain signal processing 
task, it was first used 
by the radar community 
to increase a target’s 
parameter resolution.
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terms of the number of required samples, 
pulses, and antennas, as well as its im
pact on different aspects of the radar 
system, including parameter resolution 
and system complexity, for several types 
of radars.

Pulse-Doppler radar 
A standard pulse-Doppler radar trans-
ceiver detects targets by transmitting a 
periodic stream of pulses and processing 
its reflections. The transmitted signal 

( )x tT  consists of P  equally spaced puls-
es ( )th  such that
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The pulse-to-pulse delay x  is the pulse-repetition interval 
(PRI), and its reciprocal /1 x  is the pulse-repetition frequency 
(PRF). The entire span of the signal in (1), i.e., ,Px  is the CPI. 
The pulse time support is denoted by ,Tp  with .T0 p1 1 x  
The pulse ( )h t  is typically a known time-limited baseband 
function with continuous-time Fourier transform (CTFT) 

( ) ( )h t e dtH f j ft28= 3
3 r
-

-  that has negligible energy at fre-
quencies beyond / ,B 2h  where Bh  is referred to as the band-
width of ( ) .h t  An example of a transmitted pulse train is 
illustrated in Figure 1.

It is typically assumed that the target scene is composed 
of L  nonfluctuating point-targets, according to the Swerling-0 
model [5]. This is one of the popular models in the radar signal 
processing literature since, by describing an idealized target, 
it allows simplifying the radar equations while constituting a 
fairly good approximation in many applications [6], [7]. Other 
models, such as Swerling-1, which applies to targets composed 
of many independent scatters, or fluctuating target models, are 
beyond the scope of this article. The pulses reflect off the L  
targets and propagate back to the transceiver. Each target l  is 
defined by three parameters:
1)	 a time delay / ,cr2l lx =  proportional to the target’s dis-

tance to the radar or range ,rl  where c  is the speed of light
2)	 a Doppler-radial frequency / ,fr c2 cl lo = o  proportional to 

the target’s radial velocity to the radar, i.e., the target’s 
velocity radial component ,rlo  and the radar’s carrier fre-
quency fc

3)	 a complex amplitude ,la  proportional to the target’s radar 
cross section (RCS), dispersion attenuation, and other 
propagation factors.
The targets are defined in the radar radial coordinate sys-

tem and are typically assumed to lie in the radar unambigu-
ous time–frequency region: delays up to the PRI and Doppler 
frequencies up to the PRF. When this assumption does not 
hold, several processing techniques have been proposed that 
require the transmission of multiple pulse trains with differ-
ent parameters, e.g., different PRFs. We review this setting in 
the “Range-Velocity Ambiguity Resolution” section.

Based on the three assumptions A1–A3 presented in 
“Targets’ Assumptions,” the received signal can be writ-
ten as
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It will be convenient to express ( )x tR  as a sum of single frames
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An illustration of a received pulse train is shown in Figure 1 
with L 4=  targets. In pulse-Doppler radar, the goal is to recover 
the three L  parameters { , , }l l lx o a  for Ll0 1# # -  from the 
received signal ( ) .x tR  In particular, estimating the time delays lx  
and Doppler frequencies lo  enables an approximation of the targets’ 
distances and radial velocities.

Stepped-radar waveforms
In classic pulse-Doppler radar, high-range resolution re
quires a large signal bandwidth. This technology bottleneck 
is partially overcome by stepped-frequency-based wave-
forms, in which the large bandwidth is obtained sequentially 
by stepping the frequency of each pulse, keeping the instan-
taneous bandwidth low. Two popular examples of such 
waveforms are SFRs and stepped chirps. An SFR [5] system 
transmits P-narrowband pulses, in which each pulse p  has 
carrier frequency

	 ,f f pp f0 D= + � (5)

for ,p P0 1# # -  with f0  the initial frequency and fD  the 
frequency increment. The pth-transmitted pulse is a rectangu-
lar pulse modulated by its carrier .fp  The corresponding 
received signal is then of the form

Tx

Rx

αl αl e
–jvlτ αl e

–j 2vlτ

tτl

τ

FIGURE 1. The pulse-Doppler radar transmitted and received pulse trains with P 3=  pulses and 
L 4=  targets Tx: transmitted; Rx: received.
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To process the received signal, the delay is neglected in the 
signal envelope because of the narrowband assumption. An 
SFR traditionally obtains one sample from each received pulse 
and computes the phase detector output sequence as
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The phase detector signal yp  can be modeled as the product of 
the received signal (6) and the reference signal, followed by a 
low-pass filter (LPF). Conventional processing applies an 
inverse discrete Fourier transform (DFT) on the output to esti-
mate the targets’ time delays lx  and Doppler frequencies .lo   
The range resolution achieved by SFR is / ,c P2 fD  where P fD  
is the total effective bandwidth of the signal over P  pulses.

Another popular stepped waveform is the stepped chirp or 
multifrequency chirp signal. The corresponding transmitted 
signal is given by
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where c  is the common chirp rate and fp  and pz  are the fre-
quency and complex phase of the pth subcarrier. The returned 
signal corresponding to the pth pulse, given by
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is dechirped with a reference linear-frequency waveform of 
fixed frequency equal to the first carrier :f0
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The receive window is ( ) / ,cr r2 max minrx = +  and the refer-
ence delay is ( ) /t r r cmax minr = + , with rmax  and rmin  as the 
maximal and minimal ranges, respectively. The resulting 
dechirped received signal can be written as
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Classic processing of the received signal includes a DFT oper-
ation to recover the targets’ delays .lx

MIMO pulse-Doppler radar
MIMO radar presents significant potential for advancing state-
of-the-art modern radar in terms of flexibility and perfor-
mance. This configuration [8] combines several antenna elements 
both at the transmitter and receiver. Unlike phased-array sys-
tems, each transmitter radiates a different waveform, which 
offers more degrees of freedom (DoF) [9]. There are two main 
configurations of MIMO radar, depending on the location of 
the transmitting and receiving elements; collocated MIMO 

To simplify the received signal model, the following 
assumptions of the targets’ locations and motions are typi-
cally made [5]:
•	 A1: Far targets: The target-radar distance is large com-

pared with the distance change during the coherent 
processing intervals (CPIs), which allows for constant 

la  within the CPI:
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•	 A2: Slow targets: The constant-Doppler phase during 
pulse time,

	 ,T 1l p %o � (S2)

and low target velocity allows for constant lx  during the 
CPI. This condition holds when the baseband Doppler 
frequency is smaller than the frequency resolution:
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•	 A3: Small acceleration: The target velocity remains 
approximately constant during the CPI allowing for 

constant .lo  This condition is satisfied when the velocity 
change induced by acceleration is smaller than the 
velocity resolution:

	
( )

.r P
f P
c r

f P
c

2 2
l

c
l

c
2&% %x

x x
p p � (S4)

Although these assumptions may seem hard to comply 
with, they all rely on slow enough relative motion between 
the radar and its targets. Radar systems tracking people, 
ground vehicles, and sea vessels usually comply quite 
easily [6].

In multiple-input, multiple-output settings, two additional 
assumptions are adopted on the array structure and trans-
mitted waveforms:
•	 A4: Collocated array: The target radar cross sections 

la  and li  are constant over the array [44].
•	 A5: Narrowband waveform: A small aperture allows 

lx  to be constant over the channels:

	 .
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Targets’ Assumptions
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[46], in which the elements are close to each other relative to 
the signal wavelength, and multistatic MIMO [47], where they 
are widely separated. In this article, we focus on collocated 
pulse-Doppler MIMO systems.

Collocated MIMO radar systems exploit waveform diver-
sity, based on mutual orthogonality of the transmitted signals 
[9]. Consequently, the performance of MIMO systems can be 
characterized by a virtual array constructed by the convolution 
of the locations of the transmit and receive antenna locations. 
In principle, with the same number of antenna elements, this 
virtual array may be much larger than the array of an equiva-
lent traditional system [48].

The standard approach to collocated MIMO adopts a 
virtual uniform linear array (ULA) structure [49], where R  
receivers, spaced by / 2m  and T  transmitters and spaced by 

/R 2m^ h (or vice versa), form two ULAs. Here, m  is the signal 
wavelength. Coherent processing of the resulting TR  chan-
nels generates a virtual array equivalent to a phased array 
with /TR 2 m -^ h spaced receivers and normalized aperture 

/ .TRZ 2=  Denote by { }m m
T

0
1p =
-  and { } ,q q

R
0
1g =
-  the normal-

ized transmitters’ and receivers’ locations, respectively. For 
the traditional virtual ULA structure, denote /q 2qg =  and 

./Rm 2mp =  This standard-array structure and the corre-
sponding virtual array are illustrated in Figure 2 for R 3=  
and .T 5=  The circles represent the receivers, and the squares 
are the transmitters.

Each transmit antenna sends P  pulses, such that the mth-
transmitted signal is given by
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where ,( )h m Tt 0 1m # # -  are orthogonal pulses with band-
width Bh  and modulated with carrier frequency .fc  For con-
venience, it is typically assumed that fcx  is an integer, so that 
the initial phase for every pulse e j f p2 cr x-  is canceled in the 
modulation for p P0 1# # -  [6].

MIMO radar architectures impose several requirements on 
the transmitted waveform family. Besides traditional demands 
from radar waveforms such as low sidelobes, MIMO transmit 
antennas rely on orthogonal waveforms. In addition, to avoid 
cross talk between the T  signals and form TR  channels, the 
orthogonality condition should be invariant to time shifts, that 
is s t s t dt i j*

i j 08 x d- = -3
3
- ^ ^ ^h h h for , ,i j T0 1! -6 @ and 

for all .0x  The main waveform families typically considered 
are  time-division multiple access (TDMA), frequency-division 
multiple access (FDMA), and code-division multiple access 
(CDMA), respectively. Time-invariant orthogonality is achieved 
by FDMA and TDMA and approximately achieved by CDMA, 
as the latter involves overlapping frequency bands [50].

Besides the traditional assumptions on the targets, MIMO 
systems present additional requirements on the radar array and 
waveforms with respect to the targets, as described in “Tar-
gets’ Assumptions.” In the MIMO configuration, the goal is 
to recover the targets’ azimuth angles li  in addition to their 
delays lx  and Doppler shifts lo  from the received signals.

Current challenges
Standard radar processing samples and processes the received 
signal at its Nyquist rate .Bh  For example, the pulse-Doppler 
classic radar processing, described in “Classic Pulse-Doppler 
and Multiple-Input, Multiple-Output Processing,” first filters 
the sampled signal by a matched filter (MF). In modern sys-
tems, the MF operation is performed digitally and therefore 
requires an ADC capable of sampling at rate .Bh  Other radar 
systems similarly require sampling the received signal at its 
Nyquist rate. The radar bandwidth Bh  is inversely proportion-
al to the system fast time, or range resolution, and can thus be 
hundreds of megahertz or even up to several gigahertz, requir-
ing a high sampling rate and resulting in a large number of 
samples per pulse N Bhx=  to process.

The slow time (Doppler) resolution is inversely proportion-
al to the CPI P .x  The Doppler processing stage can be viewed 
as an MF in the pulse dimension, i.e., slow time domain, to a 
constant radial velocity target. As such, it increases the signal-
to-noise ratio (SNR) by P  compared to the SNR of a single 
pulse [7]. Since an MF is the linear time-invariant system that 
maximizes SNR, it follows that a factor P  increase is optimal 
for P  pulses. A large number of pulses increases resolution and 
SNR but leads to large time on target and a large total number 
of samples to process, given by .PN

The required computational power corresponds to P  con-
volutions of a signal of length N Bhx=  and N-fast Fourier 
transforms (FFTs) of length P  (see “Classic Pulse-Doppler and 
Multiple-Input, Multiple-Output Processing”). The growing 
demands for improved estimation accuracy and target separa-
tion dictate an ever-growing increase in the signal’s bandwidth 
and CPI. This creates bottlenecks in sampling and processing 
rates in the fast time (intrapulse) domain and in time on target 
in the slow time (interpulse) dimension.

In MIMO radar, the additional spatial dimension increas-
es the system’s complexity, as may be seen in “Classic Pulse-
Doppler and Multiple-Input, Multiple-Output Processing.” 
In such systems, the array aperture determines the azimuth 
resolution. In a traditional virtual array configuration, the 
product between the number of transmit and receive antennas 
scales linearly with the aperture. Consequently, high resolution 
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λ
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λ
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FIGURE 2. An illustration of MIMO arrays: (a) a standard array and (b) a 
corresponding receiver virtual array [32].
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requires a large number of antennas, thus increasing the sys-
tem’s complexity in terms of hardware and processing.

In the following sections, we review fast time-compressed 
radar systems that allow for low-rate sampling and processing 
of radar signals, regardless of their bandwidth, while retaining 
the same SNR scaling. We then demonstrate how compres-
sion can be extended to the slow time, thereby reducing time 
on target, and to the spatial dimension allowing one to achieve 
resolution similar to a filled array but with significantly fewer 
elements. In reality, the received signal ( )x tR  is further contam-
inated by additive noise and clutter. We will also demonstrate 
the impact of SNR and clutter on compressed radar system pro-
totypes [30], [40], [54]. Finally, we show how compression and 
sub-Nyquist sampling may be used to address other challenges, 
such as communication and radar spectrum sharing.

Increased parameter resolution
In many radar applications, the reflectivity scene consists of a 
small number L  of strong targets. Therefore, CS techniques 
(see “Compressed Sensing Recovery”) are a natural process-
ing tool for radar systems. Shortly after the idea of CS was 
brought forward by the works of Candes, Romberg, and Tao 
[13] and of Donoho [14] a decade ago, it was introduced to 
pulse-Doppler radar [15], [16 ], [55] and SFR [17].

While CS is typically applied to signal processing tasks to 
reduce the associated sampling rate [10], earlier papers that 
applied CS recovery to pulse-Doppler radar and SFR were 
aimed at increasing delay-Doppler resolution [15]–[17], [20] 
using Nyquist samples. More recent approaches use CS recov-
ery techniques on low-rate, or sub-Nyquist samples, which 
enable sampling and processing rate reduction while achiev-
ing the same resolution as traditional Nyquist radars. Later in 
this section, we review radar recovery methods that increase 
delay-Doppler resolution using CS techniques on Nyquist 
samples. In the next sections, we consider the application of 
CS to reduce the fast time-sampling rate and the number of 
pulses and antennas, while preserving the resolution achieved 
by Nyquist systems.

In the works of [15]–[17] and [20], the signal is still sampled 
at its Nyquist rate ,Bh  but the delay and Doppler resolutions are 
determined by the CS grid containing N B> hx  grid points, 
rather than the signal’s bandwidth and CPI, respectively. The 
key idea in [15], which adopts a pulse-Doppler radar model, 
is that the received signal ( )x tR  defined in (2) is generally a 
sparse superposition of time- and frequency-shifted replicas of 
the transmitted waveforms. The time–frequency plane is dis-
cretized into an N N#  grid in which each point represents a 
unique time–frequency shift ,Hi  expressed as the product of 

The classic methods for radar processing typically consist 
of the following stages [5], [45]:
1)	 Sampling: Sample each incoming frame ( )x tp  at its Ny-

quist rate ,Bh  equal to the double-sided bandwidth 
of ( ),th  creating the samples [ ], ,x n n N0 1p # # -  
where .N Bhx=  We assume, for simplicity, that N  is 
an integer.

2)	 Matched filter (MF): Apply a standard MF on each frame 
[ ] .x np  This results in the outputs [ ] [ ] [ ],y n x n h np p )= -  

where [ ]h n  is the sampled version of the transmit-
ted pulse ( )h t  at its Nyquist rate and ) is the convolu-
tion operation. The time resolution attained in this step 
is / .B1 h

3)	 Doppler processing: For each discrete time ,n  perform 
a P-point discrete Fourier transform along the pulse dimen-
sion, i.e., [ ]z k y nDFTn P p= =6 @ " , [ ]y n e /

p
P

p
j pk P

0
1 2R r
=
- -  for 

.k P0 # #  The Doppler resolution is 1/P .x
4)	 Delay-Doppler map: Stacking the vectors zn  and tak-

ing absolute value, we obtain a delay-Doppler map 
, , .absZ z z RN

P N
0 1f != #

-6 @
5)	 Peak detection: A heuristic detection process, in which 

knowledge of the number of targets, targets’ powers, 
clutter location, and so on, may help in discovering 
targets’ positions. For example, if we know there are L  
targets, then we can choose the L -strongest points in 
the map. Alternatively, constant false alarm (FA) rate de-
tectors determine the power threshold, above which a 

peak is considered to originate from a target so that a 
required probability of FA is achieved.

Classic collocated multiple-input, multiple-output radar pro-
cessing traditionally includes the following stages:
1)	 Sampling: At each receiver ,q R0 1# # -  where R  

denotes the number of receivers, the signal ( )txq  is sam-
pled at its Nyquist rate Btot. In code-division multiple 
access and time-division multiple access, B Bhtot =  as all 
waveforms overlap in frequency, whereas in frequency-
division multiple access, ,B TBhtot =  where Bh  denotes 
the bandwidth of a single waveform in both cases, and 
T  is the number of transmitters.

2)	 MF: The sampled signal is convolved with a sampled 
version of ( ),h tm  for .m T0 1# # -  The time resolution 
attained in this step is / .B1 tot

3)	 Beamforming: The correlations between the observa-
tion vectors from the previous step and the steering vec-
tors corresponding to each azimuth on the grid defined 
by the array aperture are computed. The spatial resolu-
tion attained in this step is .TR2

4)	 Doppler detection: The correlations between the result-
ing vectors and Doppler vectors, with Doppler frequen-
cies lying on the grid defined by the number of pulses, 
are computed. The Doppler resolution is 1/P .x

5)	 Peak detection: This is similar to classic radar, but de-
tection is performed on the three-dimensional range-
azimuth-Doppler map.

Classic Pulse-Doppler and Multiple-Input, Multiple-Output Processing

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on March 06,2022 at 09:52:31 UTC from IEEE Xplore.  Restrictions apply. 



41IEEE Signal Processing Magazine   |   November 2018   |

time-shift and frequency-modulation matrices, denoted by T(.)  
and ,M(.)  respectively. In particular,

	 ,H M T /mod
i

i N i N= 6 @ � (13)
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Here, ·6 @ and mod denote the floor and modulation functions, 
respectively.

The vector y  that concatenates the Nyquist samples of a 
single pulse ( )x tp  can then be expressed as

	 ,y sU= 	 (15)

where s  is the L -sparse vector of size N 2  whose nonzero 
entries are the targets’ RCS la  with locations determined by 
the corresponding time–frequency shift. The ith column, i.e., 
atom of the N N 2#  matrix ,U  is given by

	 ,H fi iU = � (16)

where the vector f  contains the Nyquist rate samples [ ]h n  
of the transmitted signal ( ) .h t  The latter is chosen so that 
the samples correspond to the Alltop sequence [ ]h n =

N e1 /jn N2 3r` j  [56], for some prime .N 5$  This yields a 
low-coherence matrix ,U  i.e., a matrix whose columns have 
small correlation.

The vector s  is reconstructed from y  using CS techni
ques, as described in “Compressed Sensing Recovery.” The 
time–frequency shifts, determined by the targets’ delays and 
Doppler frequencies, are thus recovered with a resolution 
of / .N1

The CS recovery in [15] is performed without an MF, which 
reduces performance in low-SNR regimes. Additionally, [15] 
considers only delay recovery. Alternatively, CS techniques 
can be performed after applying an analog MF [16] on the 
pulse-Doppler-received signal (2). The MF output of the pth 
pulse, sampled at the Nyquist rate / ,B1 h  is given by

	 [ ] [ / ],w k e e C kp l
j j p

h l
l

L

0

1
l l la x x= -o x o x

=

-

/ 	 (17)

where [ ]C kh  is the discrete autocorrelation function of the 
transmitted waveform. For each sampling time ,k  the Nyquist 
samples have a sparse representation in the frequency 
(Doppler) domain using a Fourier matrix as a dictionary. A 

Compressed sensing (CS) [10], [12] is a framework for 
simultaneous sensing and compression of finite-dimen-
sional vectors, which relies on linear dimensionality 
reduction. In particular, the field of CS focuses on the 
recovery problem

	 ,z Ax= � (S6) 

where x  is an N 1#  sparse vector, i.e., with few nonzero 
entries, and z  is a vector of measurements of size 

.M N1  CS provides recovery conditions and algorithms 
to reconstruct x  from the low-dimensional vector .z

Two popular CS greedy recovery algorithms, orthogonal 
matching pursuit (OMP) and iterative hard thresholding 
(IHT), attempt to solve the optimization problem

	 argmin s.t. ,x x z Ax0x
= =t � (S7) 

where · 0  denotes the -0, norm. OMP [51], [52] iterative-
ly proceeds by finding the column of A most correlated to 
the signal residual ,r

	 argmax | |,A ri H= � (S8)

where the absolute value is computed element-wise and 
(·)H  is the Hermitian operator. The residual is obtained by 

subtracting the contribution of a partial estimate x,t  of the 
signal at the ,th iteration, from ,z  as follows:

	 .r z Ax= - ,t � (S9)

It is initialized by .r z=  Once the support set is updated 
by adding the index ,i  the coefficients of x,t  over the sup-
port set are updated, so as to minimize the residual error.

Other greedy techniques include thresholding algo-
rithms. We focus here on the IHT method proposed in 
[53]. Starting from an initial estimate ,0x0 =t  the algo-
rithm iterates a gradient-descent step with step size n fol-
lowed by hard thresholding, i.e.,

	 ,( ( ), )x x A z Ax kT 1 1
Hn= + -, , ,- -t t t � (S10)

until a convergence criterion is met. Here, ( , )kxT  denotes 
a thresholding operator on x  that sets all but the k  entries 
of x  with the largest magnitudes to zero, and k  is the 
sparsity level of x  (assumed to be known).

Alternative approaches to greedy recovery are convex-
relaxation-based methods using 1,  regularization such as 
basis pursuit and least absolute shrinkage and selection 
operator, better known as LASSO. Further details on CS 
recovery conditions and techniques can be found in [10] 
and [12].

Compressed Sensing Recovery
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two-step approach is therefore proposed to apply CS recovery 
for each .k  However, the sidelobes of [ ]C kh  lead to ambigui-
ty. To avoid this, pairs of Golay complementary sequences x1  
and x2  of length ,N  whose correlation functions satisfy 

	 [ ] [ ] [ ],C k C k N k2x x1 2 d+ = 	 (18)

are transmitted alternatively by phased coding of the baseband 
waveform. This allows for unambiguous delay-Doppler recov-
ery, provided that all of the Doppler coordinates are within the 
interval / , / .2 2r r-6 @

CS has also been applied to SFR to increase the range reso-
lution [17]. As in pulse-Doppler radar, the target scene is dis-
cretized over an N N#  delay-Doppler map [17]. The outputs 
of the phase detector (7) are then expressed, as in (15), where 
y  is the vector of size P  with the pth entry given by ,yp  and U  
is a DFT-based dictionary such that

	 .e e( ,( ) )p i N k
j f j p

1
2 p i kU = r x o x

- + 	 (19)

The vector s  is then recovered from y  using CS techniques.
The approaches mentioned in this section may increase reso-

lution by taking a large grid size .N  However, bounds on N  are 
not discussed, and it is not clear how large it can be. Denser grids 
reduce the sensitivity of the reconstruction to off-grid targets but 
increase the computational complexity by a square factor since 
the dictionaries contain N 2  atoms. More importantly, higher 
grid dimensions cause a significant increase to the coherence of 
the CS dictionary, which may degrade recovery performance.

The parameter space discretization, typically used in CS 
recovery techniques, assumes the targets’ delays and Dop-
plers lie on the predefined grid. Several approaches have been 
proposed to solve off-grid issues, including grid refinement, 
which adjusts the detected delay-Doppler peak [32], parameter, 
perturbation-based, adaptive-sparse reconstruction techniques 
[21], and sensing matrix perturbation [57]. More references 
may be found in [58].

Fast time compression
In the works reviewed thus far, sampling and digital process-
ing are still performed at the Nyquist rate. We next consider 
compressed radar that reduces sampling and processing rates.

Random sampling
Random sampling has been considered in SFR systems by 
selecting random measurements out of the Nyquist samples 
[21], [22]. The SFR approach of (1) is adopted in [22], with a 
random selection of M  out of P  pulses with different carriers. 
The sparse representation of the received signal used is a 
delay-Doppler shifted dictionary [21] similar to [15]. Consider 
the matrix U  whose ith column is given by

	 ( ) ,h eti i
j2 ti%xU = - ro � (20)

where t  is the N 1#  vector containing the sampling instants 
at the Nyquist rate, i.e., / ,t i Bi h=  and c is the Hadamard 

product operator. As in [15], the dictionary U  contains N 2  
atoms. The Nyquist samples can then be expressed in the 
form (15), and the compressed samples z  are given by

	 ,z Ay= 	 (21)

where A  is an M N#  matrix, with M N1  constructed by 
randomly selecting M  rows of the NN #  identity matrix, 
which corresponds to the M-selected pulses.

In these approaches, processing is performed at a low rate; 
however, the random discarding of samples is difficult to imple-
ment in a sampling system for the purpose of effectively reduc-
ing the sampling rate. Furthermore, the large dictionary size 
discussed in the previous section remains an issue. Alternative 
practical radar systems using CS to reduce the sampling rate have 
been proposed and rely on two main techniques: uniform low-rate 
sampling using appropriate waveforms and analog preprocessing.

Uniform low-rate sampling
In [26], the authors consider SFR using multifrequency chirps, as 
described in (8). Low-rate samples are uniformly taken from the 
received signal (11) at rate ,2 rcx  with rx = ( ) / ,r r c2 max min-  
with c being the common chirp rate. This results in the aliasing 
of the multiple sinusoids to baseband with random complex coef-
ficients. Upon discretization of the target range, as denoted by ,s  
the low-rate samples may be modeled as

	 .y As= � (22)

Here, the kth column of the sensing matrix A  is the FFT of the 
samples of (11) for a singular target at range bin k  correspond-
ing to a delay of ( ) / ,cr k2 minlx D= -  where D is the range-
discretization step. The targets’ delays are therefore recovered 
from the low-rate uniform sampling of the chirp waveforms.

Random demodulation
Many analog-to-information-conversion systems have been 
proposed to sample wideband signals at sub-Nyquist rates. 
Among them, the random demodulator (RD) [59], random-
modulation preintegrator (RMPI) [60], and Xampling-based 
[29] systems have been used for radar applications. All three 
approaches consider pulse-Doppler radar.

The RD modulates the input signal using a high-rate sequence 
( )p t  created by a pseudorandom number generator, aliasing its 

frequency content. The random sequence used for demodulation 
is a square wave, which alternates between the levels 1!  with 
equal probability. The mixed output is filtered by a bandpass fil-
ter ( ),thbp  with center frequency fc  and bandwidth ,B BCS h%  
and sampled at a low rate, as shown in Figure 3(a).

The RD is adopted in [27] as the analog-mixing front end 
of a proposed quadrature-compressive-sampling (referred to as 
QuadCS by Liu et al.) system. The mixed and filtered output 

( ),y t  shown in Figure 3, is given by

	 ( ) ( ) ( ) ( ) ,y t h p t x t dbp Rt t t t= - -
3

3

-
# � (23)
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where ( )txR  is defined as the real part of (7). The RD samples  
( )ty  at rate / / ,kf T f1s s c= =  with k  an integer satisfying 

./k f B2c CS# 6 @  The samples are fed to the quadrature-process-
ing system [61], which extracts the baseband in-phase and 
quadrature (I and Q) components, respectively, of the radar 
echoes. As shown in [27], the complex samples of the RD out-
put can be written as

	 .y Ax= 	 (24)

Here, x  is a sparse vector that contains the complex ampli-
tudes la  at the corresponding delays ,lx  and the ( , )m p  ele-
ment of the matrix A is given by

( ) ( ) ( ) .h e p mT h mT p dA ,m p bp
j f

s s
2 ct t x t t= - - -

3

3 r t

-

-#
� (25)

The samples of P  pulses are concatenated in a matrix Y such 
that each column corresponds to a pulse. The subsequent pro
cessing of the quadrature-compressive sampling, referred to as 
compressive-sampling pulse Doppler, is composed of a DFT 
step on the rows of Y that acts as an MF in slow time followed 
by a MF in each column, corresponding to the fast time.

The RMPI is a variant of the RD composed of a parallel 
set of RD channels driven by a common input, in which each 
RD uses a distinct pseudorandom binary sequence. A hard-
ware RMPI-based prototype has been implemented in [43] that 
recovers radar pulses and estimates their amplitude, phase, and 
carrier frequency. In the next section, we discuss an alternative 
prototype with a different analog front end, which also recov-
ers the targets’ parameters from low-rate samples.

Note that the considerations behind waveform design for 
CS recovery in the approaches [15]–[17] presented in the previ-
ous section are similar to traditional radar requirements. The 
well-known ambiguity function (AF) impacts CS radar in a 
way that is similar to traditional radar systems. Indeed, the 
mutual coherence of the dictionary is linearly related to the 
highest sidelobe value of the AF [58], [62]. In contrast, we will 
see in the next section that the CS dictionary of the Xampling 

method is independent of the waveform, and MF is performed 
directly on the low-rate samples before parameter recovery.

Fast time Xampling
An alternative sub-Nyquist radar method is the Xampling-
based system proposed in [30] and [40]. This approach, which 
may be used with any transmitted pulse shape, achieves the 
minimal sampling rate required for target detection, while pro-
viding optimal SNR.

The sub-Nyquist analog front end is composed of an ADC 
that filters the received pulse-Doppler signal (2) to predeter-
mined frequencies before taking pointwise samples. These 
compressed samples, or “Xamples,” contain the information 
needed to recover the desired signal parameters, i.e., the target’ 
delay-Doppler map. To see this, note that the Fourier-series 
coefficients of the aligned frames ( )t pxp x+  are given by

	 [ ] [ ] , ,c k H k e e k N1 0 1/
p l

j k j p

l

L
2

0

1
l l # #

x
a= -r x x o x

=

-
- -/ � (26)

where [ ]H k  are the Fourier coefficients of the known trans-
mitted pulse ( ),h t  and N Bhx=  is the number of Fourier sam-
ples. From (26), we see that the unknown parameters 
{ , , }l l l l

L
0
1a x o =
-  are contained in the Fourier coefficients [ ] .c kp  

We now show how the Fourier coefficients [ ]c kp  may be 
obtained from low-rate samples of ( )x tp  and how the targets’ 
parameters can then be recovered from [ ]c kp  [30].

The received signals ( )x tp  exist in the time domain; thus, 
there is no direct access to [ ] .c kp  To obtain any arbitrary set 
of Fourier-series coefficients, the direct multichannel sam-
pling scheme [63] illustrated in Figure 4 can be used. The ana-
log input ( )x tp  is split into k l=  channels, where, in each 
channel ki  with [ , ],i K0 1! -  it is mixed with the harmonic 
signal ,e /j k t2 ir x-  integrated over the PRI duration, and then sam-
pled.   Xampling thus allows one to obtain an arbitrary set l out of 
N Bhx=  frequency components from K  pointwise samples of the 
received signal after appropriate analog preprocessing. An alter-
native Xampling method uses the sum-of-sincs filter described in 
[64]. This class of filters, which consists of a sum-of-sinc function 

Sub-Nyquist Sampling Subsystem Quadrature Demodulation Subsystem

r (t )

p (t )

y (t )

h bp(t ) A /D
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t = k /fs

↓ 2

↓ 2

–2sin(kπ /2)

hlp(t )

Ics [m ]

Qcs [m ]

(–1)m
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FIGURE 3. A quadrature-compressive-sampling implementation with (a) RD sampling followed by (b) quadrature demodulation [27].
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in the frequency domain, is a general sampling scheme for arbi-
trary pulse shapes.

A less expensive and more practical approach for the Fou-
rier-series coefficients acquisition proposed in [40] is based 
on multiple bandpass filters and is adopted in the Xampling 
hardware radar prototype described in the next section. This 
system is composed of a few channels, with each sampling 
the content of a narrow frequency band of the received sig-
nal. Each channel thus yields a group of several consecutive 
Fourier coefficients. The multiple bandpass constellation has 
the advantage of acquiring the measurements over a wider fre-
quency aperture. At the same time, it still allows for practical 
hardware implementation, as detailed in the next section. By 
widening the frequency aperture, a finer resolution grid may 
be employed during the recovery process. Moreover, empiri-
cal results show that highly distributed frequency samples 
provide better noise robustness [40]. However, widening the 
frequency aperture eventually requires increasing the number 
of samples ;K  otherwise, recovery performance may degrade. 
This tradeoff is observed in the experiments presented in [40].

Once a set of Fourier coefficients [ ]c kp  has been acquired, 
the delays and Doppler frequencies can be recovered using dif-
ferent techniques. Doppler focusing [30], summarized in “Dop-
pler Focusing,” is one approach that has several advantages, as 
detailed next. This method uses target echoes from all of the pulses 
to generate a focused pulse at a specific Doppler frequency. It then 
jointly recovers the delay-Doppler map by reducing the detection 
problem to a one-dimensional, delay-only estimation. Performing 
the Doppler focusing operation in frequency results in computing 
the DFT of the coefficients [ ]c kp  in the slow time domain: 
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Note that [ ]kWo  is the Fourier series of ( , ),t oU  defined in 
(S11), with respect to .t  Following the same argument as in 
(S12), we have

	 [ ] [ ] .k P H k e /
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o
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-/ � (28)

The resulting equation (27) is a standard delay-estimation 
problem for each o  and may be solved using multiple tech-
niques [10]. However, improved performance can be obtained 
by jointly processing the sequences { [ ]}kUo  for different val-
ues of .o  Thus, instead of searching separately for each of the 
delays , ( ),ll !x oK  the L  delays are estimated by jointly pro-
cessing overall Doppler frequencies.

A particularly convenient method in this case is to employ a 
matching pursuit-type approach in which the strongest overall 
peak ,o  assuming a single delay, is first found:
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Once the optimal values lxt  and lot  are determined, their influ-
ence is subtracted from the focused sub-Nyquist samples as
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The same operations are performed iteratively to find all of the 
desired L  peaks. This approach does not require discretization 
of the targets’ parameters, and these are recovered over the 
continuous domain from a minimal number of samples.

In practice, the search for peaks can be limited to a grid, 
which enables all of the computations to be carried out using 
simple FFT operations. Suppose we limit ourselves to the 
Nyquist grid, i.e., the grid defined by the Nyquist resolu-
tion so that / / ,s Nl lx x =  where sl  is an integer satisfying 

.s N0 1l# # -  Then, (26) is approximately written in vector 
form as

	 ,PHF aNKW =o o 	 (32)

where [ ] [ ] ,k k kK i0 1f ! lW WW =o o o -6 @  for ,i K0 1# # -  
H  is a diagonal matrix that contains the Fourier coefficients 

[ ]kH  of the transmitted waveforms, and FN
K  is the partial-

Fourier matrix that contains the K  rows of the N N#  Fourier 
matrix indexed by .k  The entries of the L -sparse vector ao  
are the values la  at the indices sl  for the Doppler frequ
encies lo  in the “focus zone,” i.e., | | / .Pl 1o o r x-  The P  
equations (32) are simultaneously solved using CS-based algo-
rithms, which, during each iteration, the maximal projection 
of the observation vectors onto the measurement matrix is 
retained [30].

Some results comparing different configurations of low-rate 
sampling and processing are shown in Figure 5 [30]. The recov-
ery performance of the classic processing applied to Nyquist 
samples is presented as a baseline. Sub-Nyquist approaches, 
performed at 1/10 of the Nyquist rate, include the same classic 
processing applied to sub-Nyquist samples, a two-stage CS 
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FIGURE 4. A multichannel direct sampling of the Fourier coefficients [63].
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recovery method that performs delay and 
Doppler estimation in parallel, separate
ly [30], and Doppler focusing. It is clearly 
seen that Doppler focusing applied to ran-
dom Fourier coefficients, which are wide-
ly distributed with high probability leading 
to a wide aperture, outperforms other sub-
Nyquist approaches. The use of consec-
utive coefficients yields small aperture and 
poor resolution.

The Xampling approach has several ad
vantages. First, it recovers the targets’ parameters directly 
from the low-rate samples without requiring sampling at the 
Nyquist rate. Second, previous CS-based methods typically 
impose constraints on the radar transmitter, which are not 
needed here. Indeed, as may be seen in (20) and (25), the CS 

dictionary depends on samples of the wave-
form ( ),h t  such that the mutual coherence 
of the dictionary is linearly related to the 
highest sidelobe value of the AF [58]. In 
contrast, the CS dictionary of the Xampling 
method is independent of the waveform, 
as shown in (32). Third, in the presence 
of additive white noise, Doppler focusing 
achieves an increase in SNR by a factor 
of P  (a detailed analysis may be found in 
[30]). In addition, this approach can oper-

ate at the smallest possible sampling rate for recovering the 
targets’ parameters, as derived in [30]. The minimal number 
of samples required for the perfect recovery of { , , }l l la x o  
with L  targets in a noiseless environment is ,L4 2  with at least 
K L2$  samples per pulse and at least P L2$  pulses. The 

Doppler focusing is a processing technique, suggested in 
[30], which uses target echoes from different pulses to cre-
ate a superimposed pulse focused at a particular Doppler 
frequency. This method allows for joint delay-Doppler 
recovery of all targets present in the illuminated scene. It 
results in an optimal signal-to-noise ratio (SNR) boost and 
may be carried out in the frequency domain, thus enabl
ing sub-Nyquist sampling and processing with the same 
SNR increase as a matched filter.

The output of Doppler processing can be viewed as a 
discrete equivalent of the following time shift and modula-
tion operation on the received signal:
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Consider the sum ( ) .g e ( )
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,o  targets with Doppler frequencies lo  in a bandwidth of 
P2r x  around o will achieve a coherent integration and 

an SNR increase of approximatively .P  On the other hand, 
since the sum of P  equally spaced points covering the unit 
circle is generally close to zero, targets with lo  not “in 
focus” will roughly cancel out. In summary, we have that
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as shown in Figure S1. 
We may therefore estimate the sum of exponents in 

(S11) as

	 ( , ) ( ),t P h t
( )

l
l

l.o a xU -
! oK

/ 	 (S13)

where ( ) : | | ./l Pl 1o o o r xK = -" ,  In other words, the 
sum is only over the targets whose Doppler shifts are in 
the interval | | / .Pl 1o o r x-

For each Doppler frequency ,o  ( , )t oU  represents a stan-
dard pulse-stream model in which the problem is to esti-
mate the unknown delays. Thus, using Doppler focusing, 
the two-dimensional delay-Doppler recovery problem is 
reduced to delay-only estimation for a small range of 
Doppler frequencies, with increased SNR by a factor of P  
[10]. The Xampling radar of [30] performs Doppler focus-
ing directly on the low-rate samples in the frequency 
domain, allowing for joint Doppler-delay recovery from 
the “Xamples.”

Doppler Focusing

FIGURE S1. The sum of exponents | ( | ) |g lo o  for ,P 200=  ,1sx =  
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The minimal number of 
samples required for the 
perfect recovery of {al, 
xl, ol }  with L targets in 
a noiseless environment 
is 4L2, with at least K ≥ 2L 
samples per pulse and at 
least P ≥ 2L pulses.
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Doppler focusing approach achieves this minimal number of 
samples. Finally, Doppler focusing is able to deal with certain 
models of clutter and target dynamic range by adding a simple 
windowing operation in the sum (27) and by prewhitening in 
frequency [54].

The Xampling radar was implemented in hardware, as 
described in the next section, demonstrating real compressed 
radar capabilities. The hardware prototype is built from off-
the-shelf components, which are bandpass filters and low-rate 
samplers, leading to low hardware complexity.

Hardware prototype
Xampling is used in combination with Doppler focusing in 
the sub-Nyquist prototype of [30], [40], which demonstrates 
radar reception at sub-Nyquist rates. The input signal simu-
lates reflections from arbitrary targets and is corrupted by 
additive noise and clutter. The radar receiver implements 
the multichannel topology described in the previous section 
and samples a signal with Nyquist rate of 30 MHz with a com-
pression factor of 30. Hardware experiments demonstrate 
the feasibility of detecting targets from the low-rate sam-
ples of an analog radar signal using standard radio-frequen-
cy (RF) hardware [30], [40]. Typical experiment results 
are shown in Figure 6, which depicts the input signal, the 
low-rate samples, and the original and recovered delay-
Doppler maps, including close targets, both in terms of range 
and velocity.

At the heart of the receiver lies the Xampling-based ADC, 
which performs analog prefiltering of the signal before tak-
ing pointwise samples. A multiple bandpass-sampling approach 

FIGURE 6. The Xampling radar LabView experimental interface. From left to right: at top is the received signal from targets only, then, the received signal 
from clutter, noise, and overall received signal ( ).x tp  At the bottom are the sub-Nyquist samples of the four channels at 1/30 of the Nyquist rate, then, the 
true and recovered delay-Doppler maps. All of the targets (including close targets both in range and in velocity) are correctly detected.

FIGURE 5. The hit rate of classic processing, two-stage CS recovery, 
and Doppler focusing for a fixed false alarm rate. A hit is defined as 
a delay-Doppler estimate circumscribed by an ellipse around the true 
target position in the time–frequency plane, with the axes equivalent 
to 3!  times the time and frequency Nyquist bins. The two-stage CS 
recovery separates the delay and Doppler estimation, performing 
them in parallel [30]. The sub-Nyquist sampling rate was 1/10 of the 
Nyquist rate [30]. 
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with four channels is adopted. Each channel is composed of 
a crystal filter with a bandwidth of 80 KHz and extremely 
narrow transition bands and then sampled at a rate of 250 kHz. 
The front-end samples four distinct bands 
of radar–signal spectral content, yield-
ing 320 Fourier coefficients after digital 
processing with a total sampling rate of  
1 MHz. The samples are fed into the chas-
sis controller, and a MATLAB function is 
launched that computes the 320 Fourier 
coefficients via FFT, composed of four 
groups of 80 consecutive Fourier coef-
ficients. These are then used for digital recovery of the 
delay-Doppler map using the Doppler focusing recon-
struction algorithm.

The experimental setup is based on National Instrument 
(NI) PXI-series equipment that is used to synthesize a radar 
environment and ensure system synchronization. The entire 
component ensemble wrapped in the NI chassis as well as 
the analog receiver board are depicted in Figure 7. Additional 
information regarding the system’s configuration and synchro-
nization can be found in [40].

To demonstrate target detection from low-rate samples, the 
Applied Wave Research (AWR) software is used to simulate 
the radar scenario, including pulse transmission and accurate 
power loss due to wave propagation in a realistic medium. 
AWR software provides a computer-based environment for 
designing hardware for use with wireless and high-speed digi-
tal products. It is used for RF, microwave, and high-frequency 
analog circuits and system design. A large variety of scenarios, 
consisting of different targets’ parameters, i.e., delays, Doppler 
frequencies, and amplitudes, are examined in [30] and [40]. 
An arbitrary waveform generator module produces an analog 
signal that is amplified and routed to the radar receiver board. 
The received radar waveform is contaminated with noise and 
clutter, showing the capabilities of the Xampling receiver to 
deal with these [30], [40], [54]. The Nyquist rate of the signal is 
30 MHz, so that sampling at 1 MHz corresponds to a fast time 
compression factor of 30.

Slow time compression
Most works on CS radar focus on compression in the fast 
time domain, reducing the number of samples per pulse 

below the Nyquist rate. As we have seen, 
using appropriate CS techniques allows 
for preserving the range resolution while 
operating in low-rate regimes by break-
ing the link between bandwidth and sam-
pling rate. This is illustrated in Figure 5, 
in which Doppler focusing is shown to 
achieve the same hit rate as classic pro-
cessing above a certain SNR, and in Fig

ure 6, where close targets are seen to be correctly recovered 
despite sampling at 3.3% of the Nyquist rate. We will now 
see that compression may be similarly performed in the 
slow time domain, as demonstrated in [65], where the num-
ber of transmitted pulses is reduced without decreasing 
Doppler resolution.

Nonuniform pulse Doppler
The resolution in Doppler frequency in standard processing 
is governed by the number of transmitted pulses .P  More 
precisely, it is equal to / .P2r x  However, a large P  leads to 
large CPI and long time on target. Slow time compression 
breaks the relation between CPI and time on target. To that 
end, M P<  pulses are sent nonuniformly over the entire 
CPI ,Px  implementing nonuniform time steps between the 
pulses [65]. This way, the same CPI is kept, but a smaller 
number of pulses is transmitted, thereby reducing power 
consumption. In addition, the periods of time in which no 
pulse is transmitted in a certain direction can be exploited to 
send pulses in other directions. This allows the radar to scan 
several directions at the same time and obtain the corre-
sponding delay-Doppler maps in a single CPI. However, at 
the same time, this reduces SNR because fewer pulses are 
transmitted in every direction.

Consider a nonuniform pulse-Doppler radar such that the 
pth pulse is sent at time ,mpx  where { }mp p

M
0
1

=
-  is an ordered set 

of integers satisfying .m pp $  In this case, (1) becomes

User-Control Interface

Radar Display

Analog Preprocessor

Auditory Waveform Generator Digital Receiver

FIGURE 7. The Xampling radar prototype including an arbitrary waveform generator, receiver board, NI chassis, and display [40]. 

At the heart of the receiver 
lies the Xampling-based 
ADC, which performs 
analog prefiltering of 
the signal before taking 
pointwise samples.
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and the received frames (4) are written as
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The same Xampling-based method in [30] is used to obtain 
the Fourier coefficients c kp 6 @ of the received pulses. Suppose 
we limit ourselves to the Nyquist grid, as previously men-
tioned, so that ,/ /s Nl lx x =  where sl  is an integer satisfying 

,s N0 1l# # -  and ,/r M2l lo x r=  where rl  is an integer in 
the range .r M0 1l# # -  Similar to the derivations in the pre-
vious section, we can write the Fourier coefficients c kp 6 @in 
matrix form [65] as

	 ,X HF A FN
K

P
M T

= ^ h � (35)

where H  is a diagonal matrix that contains the Fourier coef-
ficients .kH6 @  The partial-Fourier matrix FM

P  contains M  
rows from the P P#  Fourier matrix, indexed by the values 
of the transmitted pulses , ;m p M1p # #  when sampling at 
the Nyquist rate, K N=  and FN

K  become the standard 
N N# Fourier matrix. Similarly, when considering uniform-
ly spaced pulses, M P=  and FP

M  are the standard P P#  
matrix. The goal is to recover the sparse matrix A that con-
tains the values la  at the L  indices { , }s rl l  from the Fourier 
coefficients matrix .X

CS matrix-recovery algorithms are directly applicable to 
(35) by extending CS techniques presented in vector form, such 
as orthogonal matching pursuit or the fast iterative-shrinkage-
thresholding algorithm [10], [12] to matrix settings [66]. Alter-

natively, instead of solving the matrix problem of (35), we can 
apply the Doppler focusing operation [30] described in “Dop-
pler Focusing.” As illustrated in Figure 8, the approximation 
from (S12) may still be applied in the nonuniform case, where 

.m pp $  Therefore, we can rewrite the Fourier coefficients 
from (27) by replacing p  with mp  for the nonuniform case. 
These may then be approximately expressed in vector form as 
in (32) and recovered as previously described. It is shown in 
[65] that the minimal number of nonuniform pulses required 
to recover the Doppler frequencies of L  targets is identical to 
the uniform case, that is, two L  pulses.

Hardware simulation
The transmission of nonuniform pulses has been implemented in 
the Xampling prototype [40]. Recall that the received signal has a 
bandwidth of 30 MHz and is sampled at the rate of 1 MHz. To 
this fast time compression, we now add compression in the slow 
time domain. In the hardware simulation, P 50=  pulses over a 
CPI of .MP 2 5 sx =  are considered. Half of the pulses, i.e., 

,M 25=  chosen at random, are sent in one direction, while the 
other half are sent in a second direction. Two delay-Doppler maps 
are then simultaneously recovered during a single CPI, as shown 
in Figure 9. Both of the maps are fully recovered, as previously 
mentioned, from compressed samples in both the fast and slow 
time domains.

Range-velocity ambiguity resolution
As presented thus far, targets are traditionally assumed to lie 
in the radar-unambiguous range-velocity region. For a given 
PRI ,x  the maximum unambiguous range is / ,r c 2max x=  and 
the maximum unambiguous velocity is / ( ),r 4max m x=o  where 
m  is the radar wavelength. When the target range and velocity 
intervals of interest are large, traditional pulse-Doppler radar 
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100P =  pulses are chosen uniformly at random [65].
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systems suffer from the so-called Doppler dilemma [67], a 
tradeoff between range and velocity ambiguity, whose product 
is limited to / .r r c 8max max m=o

Several techniques have been proposed over the years to 
mitigate the range-velocity ambiguity by increasing either of 
these parameters. Two main PRF variation-based methods 
are staggered PRFs and multiple PRFs (MPRFs). Staggered 
PRFs are used to raise the first blind speed rmaxo  significantly 
without degrading the unambiguous range [7]. Pulse-to-pulse 
stagger varies the PRF from one pulse to the next, achieving 
increased Doppler coverage [68]. The main 
disadvantage of this approach is that the 
data correspond to a nonuniformly sampled 
sequence, making it more difficult to apply 
coherent Doppler filtering [7]. In addition, 
clutter cancellation becomes more challeng-
ing, and the sensitivity to noise increases 
[69]; therefore, MPRF techniques are typi-
cally preferred. We now review some of the 
MPRF-based methods and then present a 
Xampling approach that solves the delay-Doppler ambiguity 
using phased-coded-transmit pulses.

MPRF
The MPRF approach transmits several pulse trains, each with 
a different PRF. Ambiguity resolution is typically achieved by 
searching for coincidence between either unfolded Doppler or 
delay estimates for each PRF. A popular approach, adopted in 

[70], relies on the Chinese remainder theorem [5] and uses two 
PRFs, such that the numerator and denominator of the ratio 
between them are prime numbers. The ambiguous velocities 
are computed for each train i  as

	 , ,r r k k
2

Z, ,i k i 0 !
x
m= +ot ot 	 (36)

where r ,i 0ot  is the velocity estimate within the unambiguous 
velocity interval ( , ] .r rmax max- o o  Congruence between these 

are found by an exhaustive search, so that 
all r ,i kot  fall within a small, interval, or 
correlation bin. The resulting velocity esti-
mate is computed by averaging overall r ,i kot . 
Assuming T 2= pulse trains with PRFs and 
ratio / / ,m n1 2x x =  where m  and n  are 
relative prime numbers, the expanded 
velocity interval is of size .//m n2 21 2m x m x=  
However, in this approach, a small range 
error on a single PRF can cause a large 

error in the resolved range with no indication that this has 
happened [71].

A clustering algorithm proposed in [71] implements the 
search for a matching interval by computing average distances 
to cluster centers. The average squared error is defined as

	 ( ) | | , , , / ,C k r r k r r0, max
i

T

i k k
1

2
ambf= - =

=

t r/ 	 (37)

(a) (b)

FIGURE 9. The experimental interface of the Xampling radar, with both fast and slow time compression. (a) The true targets’ ranges in two directions (top) 
and superposed low-rate samples from both directions (bottom). (b) The range-velocity map of true and recovered targets in both directions [65]. 

Ambiguity resolution is 
typically achieved by 
searching for coincidence 
between either unfolded 
Doppler or delay estimates 
for each PRF.
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where rkr  is the median value of the T  ranges with index k  
and ramb  is the maximal ambiguous range. The best cluster 
occurs at the value of ,k  where ( )C k  is minimized. This 
happens when all of the ambiguous rang-
es are unfolded correctly, and, hence, all 
of the range estimates have nearly the same 
range. This technique still requires an 
exhaustive search over clusters and does 
not process the samples jointly, thereby 
decreasing the SNR.

Phased-coded pulses
A random-pulse, phase-coding (PC) ap
proach is adopted in [72] to increase the 
range-unambiguous region, while preserving that of the 
Doppler frequency and using a single PRF. A similar tech-
nique may be used to increase the Doppler-frequency-
unambiguous region. Random PC has been adopted in 
polarimetric weather radars, which exploit the inherent 
random phase between pulses of the popular magnetron 
transmitters. In this context, PC mitigates out-of-trip echoes 
[73]. The approach of [72] introduces a random phase, which 
differs from pulse to pulse. The joint processing of recei
ved signals from all of the trains is the key to range ambigui-
ty resolution.

The pulse-Doppler radar transceiver sequentially transmits 
one modulated pulse train, consisting of P  equally spaced 
pulses. For ,t P0 # # x  the transmitted signal is given by

	 ( ) ( ) ,x t h t p e [ ]
T

p

P
jc p

0

1

x= -
=

-

/ 	 (38)

where c p6 @ is uniformly distributed in the interval [ , )0 2r  and 
represents the phase shift of the pth pulse.

As opposed to the common assumption in traditional radar, 
the targets’ time delays lxu  are not assumed to lie in the unam-
biguous time region, i.e., less than the PRI ,x  but rather in the 
ambiguous range [ , ),Q0l !x xu  where Q P<  is the ambiguous 
factor defined by the targets’ maximal range. For convenience, 
the delay lxu  is decomposed into its integer part (the ambiguity 
order) qlx  and fractional part (the folded or reduced delay) 

lx  such that

	 ,ql l lx x x= +u � (39)

where Qq0 1l# # -  is an integer and .0 <l# xx

The received signal is then

	 ( ) ( ) ,x t h t p e e( ) [ ]
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1
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-
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for ( ) .t P Q0 <# x+  The main difference with traditional 
pulse-Doppler radar, aside from the coded phase, is that the 
PRI index in the Doppler shift term is ,p ql+  rather than the 
pulse index .p

The Fourier series of the received signal (40) can be writ-
ten in matrix form, similarly to (35), and recovered using 
matrix CS recovery techniques [72]. The minimal number of 

samples per pulse allowing recovery of X  
with high probability is found to be ,K L2>  
and the minimal number of pulses P  is 

.L Q2 2+ +  This method resolves a maxi-
mum unambiguous range / ,r cQ 2max x=  
while preserving the maximum unambigu-
ous velocity / ( ),r 4max m x=o  thereby increas-
ing their product r rmax maxo  by a factor of ,Q  
under the prior mentioned conditions on the 
number of samples and pulses. 

This approach has three main advantag-
es. First, it improves the delay estimation with respect to the 
MPRF methods since it preserves the resolution of traditional 
pulse-Doppler radar, i.e., / ,1 Bh  while increasing the unambigu-
ous delay region to .Qx  Second, it increases the SNR by jointly 
processing the samples from all of the pulse trains, rather than 
matching the estimated parameters from each pulse processed 
separately. Finally, it provides a systematic delay-Doppler-
recovery method that does not involve an exhaustive search. 
From a practical point of view, this approach does not require 
the use of several pulse trains with different PRFs, thus sim-
plifying hardware implementation.

Cognitive radar and spectrum sharing
Recently, the concept of cognitive radar (CR) [74], inspired by 
the echo-location system of a bat, has been presented as a nat-
ural next step for traditional radar. The cognition property 
requires adaptive transmission and reception capabilities, i.e., 
both the transmitter and receiver are able to dynamically 
adjust to the environment conditions. Many interpretations of 
this idea have been proposed. We focus on one aspect of cog-
nition, the dynamic and flexible adaptation to the spectral 
environment, which allows for spectrum sharing between 
communication and radar systems [36]–[38]. The interest in 
these spectrum sharing radars is largely due to electromagnet-
ic spectrums being a scarce resource, with most services hav-
ing a need for a greater access to it.

The spectrum sharing solution proposed in [39] capitalizes 
on the cognitive abilities of the radar system. It is shown how 
compressed radars may be adapted to allow for spectral coex-
istence between communication and radar signals and flexibil-
ity of the radar transmission. This demonstrates that, beyond 
increasing resolution and realizing compression in the time, 
frequency, and spatial domains, compressed radars have the 
potential to enable otherwise challenging technologies.

Spectral adaptive transmission
In previous works that implement fast time compression, e.g., 
Xampling radar [30], [40], the transmitter broadcasts a wide-
band signal, which reflects off the targets and propagates back 
to the receiver. The received signal is then filtered before sam-
pling so that only the content of a few narrow bands is sam-
pled and processed. These works only deal with the reception 

Random PC has been 
adopted in polarimetric 
weather radars, which 
exploit the inherent 
random phase between 
pulses of the popular 
magnetron transmitters.
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side of the radar, providing sampling and processing tech-
niques that can be used with any traditional radar transmitter. 
However, for broadband frequency occupation and power sav-
ings, only the narrow frequency bands 
that are to be sampled may be transmit-
ted [31], [39]. This will not affect any 
aspect of the processing since the re
ceived signal is preserved in the bands of 
interest. In fact, since all the signal 
power is concentrated in the processed 
bands, the SNR increases, and the detec-
tion performance improves [75].

Let ( )H fu  be the CTFT of the new 
transmitted radar pulse,

,  
,

H f
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where Nb  is the number of filtered bands and Br
i  and fri  are 

the bandwidth and center frequency of the ith band, respec-
tively. Obviously, the computation of the relevant Fourier 
coefficients c kp 6 @ from (25) will not change. Therefore, the 
recovery methods presented in the “Fast Time Xampling” sec-
tion are applicable here as well.

The concept of transmitting only a few subbands that the 
receiver processes is one way to formulate a frequency-agile 
CR in terms of its ability to adapt to spectral demands. Com-
plying with CR requirements, the support of the subbands 
varies with time to allow for dynamic and flexible adaptation. 
Such a system also enables the radar to disguise the transmit-
ted signal as an electronic countermeasure or to cope with 
crowded spectrums by using a smaller, interference-free por-
tion, as further discussed in the following section.

Application to spectrum sharing
The unhindered operation of a radar that shares its spectrum with 
communication systems has captured a great deal of attention 
within the operational radar community in recent years [36]–
[39]. Recent research programs in spectrum sharing radars 
include the Enhancing Access to the Radio Spectrum project 
by the National Science Foundation [38] and the Shared 
Spectrum Access for Radar and Communication (SSPARC) pro-
gram [37], [76], initiated by the Defense Advanced Research 
Projects Agency.

A variety of system architectures have been proposed for 
spectrum sharing radars, and most place an emphasis on opti-
mizing the performance of either radar [77] or communication 
[78] while ignoring the performance of the other. In nearly all 
cases, the real-time exchange of information between radar 
and communication hardware has not yet been integrated into 
the system architectures. Exceptions to this are automotive 
solutions in which the same waveform is used for both target 
detection and communication [79].

In a similar vein, the sub-Nyquist, CR-based approach 
from [39] incorporates the handshaking of spectral informa-

tion between the two systems. The CR configuration is key 
to spectrum sharing since the radar transceiver can adapt its 
transmission to available bands, thus achieving coexistence 

with communication signals. Suppose the set 
of all frequencies of the available common 
system spectrum is given by .F The commu-
nication and radar systems occupy the subsets 
FC  and FR  of ,F  respectively. The goal is 
to design the radar waveform and its support 

,FR  conditional on the fact that the commu-
nication occupies frequencies ,Fc  which are 
unknown to the radar transceiver [39]. To 
detect the bands left vacant by the commu-
nication signals, spectrum sensing needs to 
be performed over a large bandwidth. Such 

a task has recently received tremendous interest in the com-
munication community, which faces a bottleneck in terms of 
spectrum availability. To increase the efficiency of spectrum 
managment, a dynamic opportunistic exploitation of tempo-
rarily vacant spectral bands by secondary users has been con-
sidered, called cognitive radio (CRo) [80], [81].

A spectrum sharing paradigm using Xampling techni
ques, the spectral coexistence via Xampling (SpeCX) sys-
tem [39] is composed of a sub-Nyquist CRo receiver [81] to 
detect the occupied communication bands so that the radar 
transmitter may subsequently exploit the spectral holes. In 
this setting, the received signal at the communication receiv-
er is given by

	 ( ) ( ) ( ),x t x t x tC R= + 	 (42)

where ( ) ( ) ( )x t r t r tR T RX X= +  is the radar signal sensed by the 
communication receiver, composed of the transmitted and 
received radar signals. The goal is therefore to recover the 
support of ( ),x tC  given the known support of ( ),x tR  which is 
shared by the radar transmitter with the communication 
receiver. This can be formulated as a sparse recovery with par-
tial-support knowledge, studied under the framework of a 
modified CS [82].

Once FC  is identified, the communication receiver provides 
a spectral map of occupied bands to the radar. Equipped with 
the detected spectral map and known radio environmental map, 
the objective of the radar is to identify an appropriate transmit-
frequency set FF FR C=1  such that the radar’s probability 
of detection Pd  is maximized. For a fixed probability of false 
alarm ,Pfa  the Pd  increases with a higher signal-to-interference 
plus-noise ratio (SINR) [83]. Hence, the frequency selection pro-
cess can, alternatively, choose to maximize the SINR or mini-
mize the spectral power in the undesired parts of the spectrum. 
To find available bands with the least amount of interference, a 
structured sparsity framework [84] is adopted in [39]. Additional 
requirements of transmit-power constraints, range-sidelobe lev-
els, and minimum separation between the bands can also be 
imposed. At the receiver of this spectrum-sharing radar, the sub-
Nyquist processing method of [30] recovers the delay-Doppler 
map from the subset of Fourier coefficients defined by .FR

To increase the efficiency 
of spectrum management, 
a dynamic opportunistic 
exploitation of temporarily 
vacant spectral bands 
by secondary users has 
been considered, called 
cognitive radio.
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This CR system leads to three main advantages. First, the CS 
reconstruction, as presented in [30] on the transmitted fragment-
ed bands, achieves the same resolution as traditional Nyquist 
processing over a significantly smaller bandwidth. Second, by 
concentrating all of the available power in the transmitted nar-
row bands rather than over a wide bandwidth, the CR increases 
the SNR. Finally, this technique allows for a dynamic form of 
the transmitted signal spectrum, in which only a small portion 
of the whole bandwidth is used at each transmission, thereby 
enabling spectrum sharing with communication signals, as 
illustrated in Figure 10(d). There, the coexistence between radar-
transmitted bands in red and existing communication bands in 
white is shown.

SpeCX prototype
The SpeCX prototype, presented in Figure 10, demonstrates 
radar and communication spectrum sharing. It is composed of 
a CRo receiver and a CR transceiver. At the heart of the CRo 
system lies the proprietary modulated wideband converter 
board [29] that implements a sub-Nyquist analog front-end 
receiver, which processes signals with Nyquist rates up to 
6 GHz. The card first splits the wideband signal into M 4=  
hardware channels with an expansion factor of ,q 5=  yield-
ing M 20q =  virtual channels after digital expansion (see 
[85]). In each channel, the signal is mixed with a periodic 
sequence ( ),p ti  which are truncated versions of Gold codes 
[86], generated on a dedicated field-programmable gate array, 
with a periodic frequency .f 20 MHzp =

Next, the modulated signal passes through an analog anti-
aliasing LPF. Finally, the low-rate analog signal is sampled by 
an NI ADC operating at ( )f q f1 120 MHzs p= + =  (with in
tended oversampling), leading to a total sampling rate of 480 MHz. 
The digital receiver is implemented on an NI PXIe-1065 com-
puter with a dc-coupled ADC. Since the digital processing is 

performed at the low rate of 120 MHz, very low computational 
load is required to achieve real-time recovery. The prototype 
is fed with RF signals composed of up to N 5sig =  real com-
munication transmissions, i.e., ten spectral bands with a total 
bandwidth occupancy of up to 200 MHz and varying support, 
with a Nyquist rate of 6 GHz.

The input transmissions then go through an RF combiner, 
resulting in a dynamic multiband input signal that enables fast 
carrier switching for each of the bands. This input is specially 
designed to allow the testing of the system’s ability to rapidly 
sense the input spectrum and adapt to changes, as required 
by modern CRo and shared spectrum standards, e.g., in the 
SSPARC program. The system’s effective sampling rate, equal 
to 480 MHz, is only 8% of the Nyquist rate. Support recovery 
is digitally performed on the low-rate samples. The prototype 
successfully recovers the support of the communication trans-
mitted bands, as demonstrated in Figure 10(b) and (c). Once 
the support is recovered, the signal itself can be reconstructed 
from the sub-Nyquist samples. This step is performed in real 
time, reconstructing the signal bands one sample at a time.

The CR receiver system is identical to the sub-Nyquist sam-
pling prototype of [30], [31] and [40]. In the cognitive case, the 
transmitter only transmits over N 4b =  bands, which constitute 
3.2% of the original wideband signal bandwidth after the spec-
trum-sensing process has been completed by the communica-
tion receiver. Figure 10(d) illustrates the coexistence between 
the radar-transmitted bands in red and the existing communi-
cation bands in white. The gain in power is demonstrated in 
Figure 10(e); the wideband radar spectrum is shown in blue, 
the CR in red, and the noise in yellow on a logarithmic scale. 
The true and recovered range-velocity maps are presented in 
Figure 10(f). All of the L 10=  targets are perfectly recovered, 
and the clutter, depicted in blue, is discarded. Below the map, 
the range-recovery accuracy is shown for three scenarios: from 

(a) (c)

(d)

(e)

(b)

Communication
Analog Rx

Signal Generator Radar Analog Rx Radar Digital Rx Radar Display

Communication
Digital Rx

Communication
Display

FIGURE 10. The SpeCX prototype. The system consists of a signal generator, a CRo communication analog receiver, including the modulated wideband 
converter (MWC) analog front-end board, a communication digital receiver, a CR analog, and a receiver. The SpeCX communication system display 
shows (a) low-rate samples acquired from one MWC channel at a rate of 120 MHz and (b) a digital reconstruction of the entire spectrum from sub-
Nyquist samples. The SpeCX radar display shows (c) the coexisting communication and CR, (d) the CR spectrum compared with the full-band radar, and 
(e) the range-velocity display of both the detected and true locations of the targets [39].
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left to right, the CR in blue (2.5 m), the four adjacent bands with 
the same bandwidth (12.5 m), and the wideband (4 m). The sec-
ond configuration selects four adjacent frequency bands with 
the same bandwidth as the CR (with nonadjacent bands) for 
transmission. Its poor resolution stems from its small aperture. 
The CR system with nonadjacent bands yields better resolution 
than traditional wideband transmission, sampling, and pro-
cessing at the Nyquist rate, due to the increased SNR.

Compressed MIMO radar
Compressed radar methods have recently been extended to 
MIMO settings, in which their impact may be even greater 
than for single-antenna configurations. MIMO radar systems 
belong to the family of array radars, which allow for the si
multaneous recovery of the targets’ ranges, Dopplers, and 
azimuths. This 3-D recovery results in high digital processing 
complexity. One of the main challenges of MIMO radar is 
therefore coping with complicated systems in terms of cost, 
high computational load, and hardware implementation. CS 
has been naturally applied to MIMO to reduce the processing 
complexity on the digital side as well as allow for spatial com-
pression, in addition to the time compression achieved in sin-
gle-antenna systems. In MIMO radars, the array aperture, 
which depends on the number of antennas, dictates the azimuth 
resolution. Since the aperture is determined by the number of 
antennas in traditional virtual ULAs, high-azimuth resolution 
requires a large number of antennas.

Increased resolution
As in single-antenna radar systems, CS has first been exploit-
ed to increase the parameter resolution. Here, the MIMO array 
is composed of T  transmitters and R  receivers so as to 
achieve the desired aperture ,/TRZ 2=  as shown in Figure 2. 
The transmitted signal at the mth transmit antenna is given by 
(12), and each receiver samples the received signal at the 
Nyquist rate, as in a traditional MIMO. Assuming a sparse tar-
get scene, in which the ranges, Dopplers, and azimuths lie on 
a predefined grid, the work of [15] is extended to MIMO 
architectures in [18] and [19]. The transmit and receive array 
manifolds respectively, are given by

	 ( ) , , , ,e e eaT j j j T2 2 2 T1 2 fi = rp i rp i rp i6 @ 	 (43)

and

	 ( ) [ , , , ] ,e e eaR j j j T2 2 2 R1 2 fi = rg i rg i rg i 	 (44)

where mp  and qg  are the relative mth transmit and qth receive 
antenna spacings. The R N#  received signal matrix from a 
unit strength target at direction ,i  with delay x  and Doppler o  
is defined as

	 ( ) ( ) ( , ) .Z a a SR T
T Ti i x o= 	 (45)

Here, ( , ) ( ) ,s t eS ,
T

i m m i
j t2 ix o x= - ro  where ti  are the sampling 

times and m  indexes the transmitted waveforms. In this case, 

the columns of the dictionary A are given by ( )vec Z  for all 
possible combinations of ,i  ,o  and x  on a predefined grid.

The targets’ parameters are recovered by matching the 
received signal with dictionary atoms. To achieve measure-
ment diversity, random waveforms may be used, while the 
antenna locations are deterministic. ULAs are considered in 
[18] for both the transmit and receive arrays that do not benefit 
from the virtual array configuration. Alternatively, determinis-
tic waveforms can be used, e.g., Kerdock codes [19], while the 
antenna locations are selected uniformly at random over the 
aperture / .TRZ 2=  Bounds on ,N  with respect to the number 
of antennas T  and R  and the number of samples that ensure 
targets’ parameters recovery, are provided in [18] and [19].

A similar approach extends the framework of [15] to the 
MIMO setting by adding an azimuth matrix to the time-shift 
and frequency-modulation matrices T  and ,M  respectively, as 
defined in (14). In this case, each target lying on the grid is rep-
resented by a time shift, a frequency modulation, and an angle 

eA ,
( )

q m
j m q= i p g+  [87].

In both works, assuming N  grid points in each dimension, 
the number of columns of A is .N3  The processing efficiency 
is thus penalized by a very large dictionary that contains every 
parameter combination. Note that the previously mentioned 
works focus on increased parameter resolution and do not deal 
with reduced time/spatial sampling and processing rates.

Reduced processing
Fast time compression is performed in [23]–[25], in which the 
Nyquist rate samples are compressed in each antenna before 
being forwarded to the central unit. A circular array is adopted in 
[23], with transmit and receive nodes uniformly distributed on a 
disk with a small radius. At each receive antenna, linear projec-
tions of the measurement vector are retained so that the resulting 
samples are compressed in both the slow and fast time domains. 
Both individual reconstruction at each receiver and joint process-
ing at a fusion center are proposed, using CS recovery methods. 
The actual sampling is still performed at the Nyquist rate.

The MIMO matrix completion (MIMO-MC) radar [24], 
[25] employs MC techniques to avoid parameter discretization, 
which is typically used in CS methods. Two configurations are 
proposed for azimuth-Doppler recovery in a range bin of inter-
est. In the first scenario, each receiver performs an MF and 
forwards the maximum of each MF output to the fusion center. 
The samples from the pth pulse transmitted to the fusion center 
can then be written in matrix form as

	 ,X A D Ap R p T
TR= 	 (46)

where X p  is the R T#  matrix that contains the maximum of 
the MF output for each transmitter and each receiver. For 
ULA configurations, the lth column of the T L#  transmitter-
steering matrix AT  is given by ( ) , , ,e1A ( )sin

T l
j dT l

2

f= i
m
r6

,e ( ) ( )sinj T d T1 T l
2 i-
m
r @  where dT  is the interelement spacing. The 

steering matrix AR  at the receiver is similarly defined. The 
diagonal matrix R contains the targets’ RCS ,la  and the diag-
onal matrix D  contains the targets’ Dopplers such that 
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.eD ( , )
( )

p l l
j p2 1l

2

= o x-m
r

 In this scheme, each receiver transmits 
the output of a few randomly chosen MFs to the fusion center 
so that X p  is only partially known.

In the second scenario, the receivers for-
ward Nyquist samples to the fusion center 
without performing the MF. In this case, the 
samples are written as

	 ,X A D A Sp R p R
TR= � (47)

where S is the T N#  matrix that contains 
the Nyquist rate samples of each transmit-
ted waveform ( ) .s tm  In this scheme, each 
receive antenna randomly acquires a subset 
of the Nyquist samples and transmits these 
to the fusion center. In both cases, the 
fusion center performs MC before para-
metric estimation methods are applied to 
extract li  and ,lo  such as multiple signal 
classification, also known as MUSIC [88]. In these works, sam-
pling and processing rate reduction are not addressed 
since compression is performed in the digital domain after 
sampling, and the missing samples are reconstructed before 
recovering the targets’ parameters. Instead, these approaches 
are aimed at reducing the communication overhead between 
the receivers and the fusion center.

Spatial compression
Several recent works have considered applying CS to MIMO 
radar to reduce the number of antennas or the number of sam-
ples per receiver without degrading resolution. The problem 
of azimuth recovery of targets all in the same range-Doppler 

bin is investigated in [28]. Spatial compressive sampling is 
performed, in which the number of antennas is reduced while 
preserving the azimuth resolution. The classic MIMO virtual 
array configuration requires receivers with maximum spacing 

/2m  and transmitters with spacing /R 2m  (or vice versa). The 
product RT  thus scales linearly with aperture, which sets 
the azimuth resolution. Spatial compression is achieved by 
using a sparse random-array architecture [28], in which a low 
number of transmit and receive elements are placed at ran-
dom over the same aperture ,Z  achieving similar resolu-
tion as a filled array, but with significantly fewer elements. 
The random-array configuration is illustrated in Figure 11. 
Beamforming is applied on the time-domain samples ob
tained from the thinned array at the Nyquist rate, and the 
azimuths are recovered using CS techniques. Recovery guar-
antees and guidelines concerning the choice of the product 

RT  and the antenna locations are provid-
ed. The methods for choosing the antenna 
locations using deep networks are investi-
gated in [89].

Time and spatial compression
In all of the previously discussed works, 
recovery is performed in the time domain on 
acquired or reconstructed Nyquist rate sam-
ples for each antenna. The sub-Nyquist 
MIMO radar (SUMMeR) system, presented 
in [32], extends the Xampling concept to 
MIMO configurations and breaks the link 
between the aperture and the number of 
antennas, similar to [28]. The concept of 
Xampling is applied both in space (antenna 
deployment) and in time (sampling scheme) 

to simultaneously reduce the required number of antennas 
and samples per receiver, while preserving time and spatial res-
olution. In particular, targets’ azimuths, ranges, and Dopplers 
are recovered from compressed samples in both space and time, 
while keeping the same resolution induced by Nyquist rate sam-
ples obtained from a full virtual array with low computation-
al cost.

The SUMMeR system implements a collocated MIMO 
radar system with M T<  transmit and Q R<  receive anten-
nas, whose locations are chosen uniformly at random within 
the aperture of the virtual array described previously in this 
section, i.e., { } ~ ,Z0Um m

M
0
1p =
- 6 @ and { } ~ , ,Z0Uq q

Q
0
1

g =
- 6 @  

respectively, as shown in Figure 11. Note that, in principle, the 
antenna locations may be chosen on the ULAs’ grid; however, 
this configuration is less robust than range-azimuth ambiguity 
and leads to coupling between these parameters in the pres-
ence of noise [32]. An FDMA framework is adopted so that 
spatial compression, which, in particular reduces the number 
of transmit antennas, removes the corresponding transmitting 
frequency bands as well. The transmitted signals are illus-
trated in Figure 12 in the frequency domain. Figure 12(a) and 
(b) shows a standard FDMA transmission for T 5=  and the 
resulting signal after spatial compression for .M 3=

TBh TBh

Bh Bhf f

(a) (b)

FIGURE 12. The frequency division multiple access transmissions: (a) 
standard and (b) spatial compression [32].

Spatial compression 
is achieved by using a 
sparse random-array 
architecture, in which a 
low number of transmit 
and receive elements are 
placed at random over the 
same aperture Z, achieving 
similar resolution as 
a filled array, but with 
significantly fewer 
elements.

λZ

λZ

λ
2

λ
2

R
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(b)

FIGURE 11. An illustration of MIMO arrays: (a) the standard array and (b) 
the random thinned array [32].
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The transmitted pulses, defined in (12), are reflected by the 
targets and collected at the receive antennas. Under the assump-
tions described in “Targets’ Assumptions,” the received signal 

( )x tqu  at the qth antenna is the sum of time-delayed, scaled rep-
licas of the transmitted signals:

	 ,( )x s
c v
c v t

c v
R

t
,

q l m
l

l

l

l mq

l

L

m

T

10

1

a=
-
+ -

+==

-

u c c mm// � (48)

where R ,l mq  is the sum of the distances from the mth transmit-
ter and qth receiver to the lth target, which account for the 
array geometry. After demodulation to the baseband, the 
received signal can be further simplified to

	 ,( )x h t p e etq l
l

L

m

M

p

P

m l
j j f p

10

1

0

1
2 2mq l l

D

a x x= - - rb j r x

==

-

=

-

^ h/// 	 (49)

where ,f 1cmq q m mb g p= + +m^ ^h h  with fm  the mth-transmis-
sion-carrier frequency and m  the signal wavelength. The goal 
is to estimate the targets’ ranges, azimuths, and velocities, i.e., 
to estimate , ,l lx j  and f lD  from low-rate samples of ( ),x tq  and 
small numbers m  and Q  of the antennas.

Similar to the Xampling processing in [30], SUMMeR con-
siders the Fourier coefficients of the received signal ( )x tq

p  
at the qth antenna. To jointly recover the targets’ ranges, azimuths, 
and Doppler frequencies, the concept of Doppler focusing from 
[30] (see “Doppler Focusing”) is applied to the MIMO setting, 
and the CS algorithms are extended to simultaneous matrix 
recovery [32]. The minimal number of channels required for 
the recovery of L  targets’ parameters in noiseless settings is 

,MQ L2$  with a minimal number of MK 2L$  samples per 
receiver and P L2$  pulses per transmitter [32]. The SUM-
MeR system has been implemented in hardware, as described 
in the following section.

Hardware prototype
The cognitive SUMMeR prototype [41], [42] extends the 
Doppler focusing, Xampling-based prototype [40] to the 
MIMO configuration. It simultaneously recovers the targets’ 
delays, Dopplers, and azimuths from sub-Nyquist samples. 
More specifically, it implements a receiver with a maximum 
of eight transmit and ten receive antenna elements. The same 
hardware is used for each receive element and serially feeds 
the signals of all R 10=  receivers to the same prototype.

To avoid the use of an overwhelmingly large number of 
ADCs and bandpass filters for an 8 10#  array, a cognitive 
transmission is adopted wherein each transmit signal lies in 
N 8b =  disjoint, narrow slices over a 15-MHz band. Each sub-
band is the width of 375 kHz, leading to a total signal band-
width of 3 MHz. The transmit subbands, locations were chosen 
so that all can be subsampled using a single low-rate ADC 
without aliasing between them [41]. This allows the reduction 
of the number of samplers. The signal is subsampled at 7.5 MHz, 
whereas a noncognitive signal would have occupied the entire 
15-MHz spectrum requiring a Nyquist sampling rate of 30 MHz. 
Therefore, the use of cognitive transmission enables spec-
tral sampling reduction by a factor of four for each channel. 
The effective signal bandwidth is reduced by a factor of five 
( 15/3 MHz),=  respectively, for each channel. 

The system may be configured to operate in various array 
configurations simulating different numbers and locations of 
the antennas. The hardware switches off the inactive channels 
and does not sample any data over the corresponding ADCs. 
This governs the spatial compression by reducing the number  
of receivers and transmitters. In its baseline configuration, the sys-
tem uses only half of the antennas with respect to the full vir-
tual array, i.e., M 4=  transmitters and Q 5=  receivers. Figure 13 
shows the sub-Nyquist MIMO prototype, user interface, and 

FIGURE 13. The sub-Nyquist MIMO prototype and user interface. The analog preprocessor module consists of two cards mounted on opposite sides of a common 
chassis. The inset shows the simplified block diagram of the system. The subscript r  represents the received signal samples for the r th receiver. Wherever ap-
plicable, the second subscript corresponds to a particular transmitter. The square brackets (parentheses) are used for digital (analog) signals [41], [42].
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radar display. The inset graph depicts the signal flow through a 
simplified block diagram. 

The experimental process consists of the following steps. 
The simulated radar scenario is stored in a custom-designed 
waveform generator. The scenario includes pulse-transmis-
sion modeling, accurate power loss due to wave propagation 
in a realistic medium, and interaction of a transmit signal 
with the target. A large variety of scenarios, consisting of 
different targets’ parameters, i.e., delays, Doppler frequen-
cies, and amplitudes, and array configu-
rations, i.e., the number of transmitters and 
receivers and antenna locations, may be 
examined using the prototype. The waveform 
generator board then produces an analog 
signal corresponding to the synthesized 
radar environment, which is amplified and 
routed to the MIMO radar-receiver board. 
The prototype samples and processes the 
signal in real time. The physical array aper-
ture and simulated target response correspond to an X-band 
f 10 GHzc =^ h radar.

Figure 14 presents some recovery results from the proto-
type. In the experiment, P 10=  pulses were transmitted at a 
uniform PRF of 100 Hz.n  The received signal corresponding 
to the echoes from L 10=  targets, placed at arbitrary ranges 
with azimuths and with arbitrary velocities, was injected into 
the transmit waveform generator. In the experiment, when the 
angular spacing (in terms of the sine of azimuth) between any 
two targets was greater than 0.025 and the signal SNR 8 dB,=-  
the recovery performance of the compressed configuration in 
time and in space was equivalent to that of a full array, i.e., 
with eight transmitters and ten receivers. The figure shows the 
obtained plan position indicator plot and range-azimuth-Dop-
pler maps for both true and recovered targets. Here, a success-

ful detection (green circle) occurs when the estimated target is 
within one range cell, one azimuth bin, and one Doppler bin 
of the ground truth (blue circle). More experiments in [41] and 
[42] demonstrate that the prototype performance is robust, with 
SNRs dropping to as low as –10 dB, and the time and spatial 
resolution are preserved by simulating couples of close targets 
in range, Doppler, and azimuth.

Conclusions and future challenges
In this article, we reviewed several compressed radar systems 
that aim to reduce complexity while preserving parameter 
resolution. Throughout this article, we considered different 
popular radar systems, including pulse-Doppler and step-fre-
quency radars as well as MIMO configurations. In particular, 
we showed that temporal, spectral, and spatial compression 
can be implemented without decreasing Doppler, range, and 
azimuth resolution. To recover these parameters for L  targets, 
the minimum number of required samples per pulse, the mini-
mum number of pulses, and the minimum number of channels 
are each equal to .L2  These are determined by the actual num-
ber of DoF of the parameter estimation problem, governed by 

,L  rather than a function of design parameters, such as signal 
bandwidth, CPI, or aperture. This is essential since the latter 
determine range, Doppler, and azimuth resolution and are 
increased for higher performance. By breaking the traditional 
links between the sampling rate, number of pulses, and anten-
nas on the one hand and parameter estimation on the other 
hand, increased performance may be achieved without increasing 
sampling and processing rates.

An advantage of the Xampling system is that traditional 
radar-processing algorithms can be easily adapted and applied 

directly to the sub-Nyquist samples. For exam-
ple, clutter-cancellation techniques have 
been implemented on the Xampling radar 
prototypes. These significantly enhance 
the performance of compressed radars with-
out requiring the reconstruction of Nyquist 
rate samples. In addition, while CS-based 
methods traditionally do not perform well 
in the presence of large noise, since they 
inherently reduce SNR, Doppler focusing, 

applied to samples obtained using Xampling, enjoys an SNR 
improvement that scales linearly with the number of pulses, 
obtaining good detection at low SNRs. 

An essential part of the approach adopted in this survey is 
the relation between the theoretical algorithms and practical 
hardware implementation, demonstrating real-time target 
detection from compressed samples in the fast and slow time 
domains, as well as in space. The prototypes presented here 
were built from off-the-shelf components, paving the way to 
enable commercial, compressed radar systems. To this end, 
such hardware prototypes should be further extended to imple-
ment radar transmit and receive systems and deploy them to 
be tested on real data. This would permit assessing their per-
formance in real-world conditions, including different types of 
noise, clutter, and interference.
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FIGURE 14. The SUMMeR prototype recovery performance: (a) the plan 
position indicator (PPI) display. The origin is the location of the radar. The 
red dot indicates the north direction relative to the radar. The positive/
negative distances along the horizontal axis correspond to the east/west 
direction of the radar. Similarly, the positive/negative distances along the 
vertical axis correspond to the north/south direction of the radar. The es-
timated targets are plotted over the ground truth. (b) The range-azimuth-
Doppler map for the same targets. The lower axes represent the Cartesian 
coordinates of the polar representation of the PPI plots from (a). The 
vertical axis represents the Doppler spectrum [32].

The transmit subbands, 
locations were chosen so 
that all can be subsampled 
using a single low-rate 
ADC without aliasing 
between them.
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