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We report a scheme for reconstructing the complex envelope
of an optical signal from two decorrelated measurements of
its intensity. The decorrelation is achieved by splitting the
received optical signal into two copies, and by dispersing one
of the copies prior to photo detection. The reconstructed
complex-valued signal is obtained by means of an itera-
tive algorithm that requires only a few tens of iterations.
The starting point of the search procedure is produced by
Kramers–Kronig (KK) reconstruction. With this procedure,
the continuous-wave tone that accompanies the received sig-
nal is reduced by 5 dB to 6 dB compared to the requirement
of a KK receiver alone. © 2020 Optical Society of America

https://doi.org/10.1364/OL.393514

The problem of reducing the cost of fiber-optic transceivers
has been challenging the optical communications community
in recent years [1–11]. An attractive approach for meeting
this challenge has recently been proposed in the form of the
Kramers–Kronig (KK) receiver [4–11], which is capable of
reconstructing complex-valued quadrature amplitude modu-
lation (QAM) modulated signals from a simple intensity
measurement performed with a single photodiode. The main
idea underpinning the KK scheme is that a continuous-wave
(CW) tone accompanies the data-carrying signal, such that its
frequency is incrementally outside the spectrum of the data-
carrying signal, and its power is large enough to ensure that the
overall electric field satisfies the minimum phase condition [4].
The ratio between the CW power and the average power of the
data carrying signal is referred to as the carrier-to-signal-power
ratio (CSPR), and in typical configurations, assuming 16-QAM
modulation, proper operation of the KK scheme requires a
CSPR of approximately 7 dB [4]. While this CSPR is consider-
ably smaller than in other previously reported alternatives [4,5],
it still imposes a non-negligible constraint on the transmitter.
Additionally, the presence of such a strong carrier is undesirable
from the standpoint of nonlinear fiber-propagation effects,
particularly in the presence of multiple-channel transmission, as
is done in wavelength-division-multiplexed (WDM) systems.

The fact that the reconstruction of the optical phase of a
signal from a measurement of its intensity requires the pres-
ence of a sufficiently strong carrier is fundamental, as has been
shown in [12,13]. It is the presence of a carrier that allows the
satisfaction of the so-called minimum phase condition [4],
which guarantees a unique relation between a signal’s phase
and intensity waveforms. In the absence of a carrier, or when
the carrier is insufficiently strong, the received intensity can
be matched to multiple phases, and the reconstruction of the
correct optical phase can no longer be generally guaranteed.
A way of circumventing this requirement has been proposed
in [14], where the complex envelope of a signal is recovered by
means of measuring two decorrelated replicas of the signal’s
intensity. The intensity waveform decorrelation is achieved by
splitting the received optical signal into two identical copies and
passing one of the copies through a known dispersive element
prior to photo detection, as illustrated in Fig. 1. The reconstruc-
tion of the complex envelope of the signal is then performed by
numerically searching for a complex waveform that is consistent
with both of the measured intensities. Yet, since it is impossible
to guarantee neither the uniqueness of an appropriate solution,
nor the ability of finding it with a practical search algorithm,
the above-described procedure requires additional anchors that
ensure the extraction of a correct solution.

In [14], the anchor was provided by applying a KK recon-
struction procedure to the intensity that was received in one
of the arms, and then using the KK-recovered waveform as an
initial condition for the process of searching for the correct
solution. Since the KK procedure is only meant to provide an
initial condition for subsequent optimization, the CW tone
could be considerably smaller than the level that is required for
satisfying the minimum phase condition. Thus, we were able to
numerically demonstrate complex signal reconstruction with a
3 dB weaker CW carrier than would be required in a standard
KK procedure. For this reason, the scheme proposed in [14] was
named the enhanced Kramers–Kronig (EKK) receiver.

Another interesting approach that has been reported recently
anchors the numerical search procedure by inserting known
pilot signals into the transmitted information [15,16]. The
advantage of this approach is that it does not require any CW
carrier, but the reliance on pilot symbols introduces its own toll,
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Fig. 1. The proposed EKK scheme. The received signal is split into two replicas, one of which is dispersed, so as to decorrelate the intensity pat-
terns. The KK is used as initial condition for the algorithm.

mostly in terms of complexity and a larger sensitivity to noise
(as the pilot symbols need to be recoverable with acceptable
reliability). A major issue that is shared by all of the reported
approaches [14–16] is the relatively large number of numerical
search iterations that makes the practical implementation of
these methods rather challenging.

In this Letter, we report major advancements in two of
the most important parameters of the EKK receiver. The
required CW power that we report here is now nearly 6 dB
below the power that is required by standard KK, and even
more impressively, the complexity of the optimization pro-
cedure was reduced by more than a full order of magnitude. The
improvement with respect to [14] was realized by combining
the modified gradient expression of [17] with the Polak–Ribiere
conjugate gradient method, which produced more efficient
convergence.

Figure 1 shows the EKK setup. It consists of an optical filter,
followed by a 3 dB splitter and a chromatic dispersion module
that is inserted in the lower branch in order to decorrelate the
detected intensities. The WDM spectra in each of the branches
are then separated into individual channels by means of an opti-
cal demultiplexer, with two decorrelated replicas of each channel
entering each EKK receiver. As noted earlier, one of the receiver
arms undergoes KK reconstruction, which is crude because
the CW carrier is way below what is required in order to fulfill
the minimum phase condition. The KK reconstruction then
serves as initial condition for the numeric optimization process
that searches for the complex waveform as we elaborate below.
Notice that the cost of the additional optical hardware consist-
ing of the dispersive element and of the extra demultiplexer is
expected to be small, as it is shared by all of the WDM channels
in the system. In what follows, we elaborate on the optimiza-
tion process and present simulation results for 16-QAM and
64-QAM modulated transmission in the linear and in the
nonlinear propagation regimes.

We assume a setting identical to that of the KK scheme [4],
where the receiver is preceded by a bandpass optical filter of
bandwidth B . Focusing for the time being on the linear propa-
gation regime, the signal impinging on the first and second
photo-diodes (PD1 and PD2 in Fig. 1, respectively) can be
written as

E (A)(t)= E0e i(πBt+φ)
+

∑
k

ak g (t − kT)+ n(t), (1)

E (B)(t)= E0e i(πBt+φ′)
+

∑
k

ak g ′ (t − kT)+ n′(t), (2)

where an represents complex-valued data symbols and g (t) is
the fundamental pulse waveform including the effect of the
link’s chromatic dispersion. We will assume that the spectrum
of this waveform (typically a raised cosine) is fully contained
in [−B/2, B/2] (implying that the angular frequency is
within ω ∈ [−πB, πB]). The term E0 represents the complex
amplitude of the CW tone, positioned (as in [4–6]) at the low
frequency edge of the received spectrum, and φ is the phase
delay imposed on the CW tone owing to the link’s dispersion.
Finally, n(t) is the filtered contribution of the ASE noise. The
effect of the dispersive element positioned in the lower arm
in Fig. 1 is to modify the phase of the CW tone to φ′ and to
change g (t) and n(t) into g ′(t) and n′(t), respectively. While
in principle any kind of all-pass filter can be used in the role of
the dispersive element, as stated earlier, we assume a dispersive
element that produces a quadratic dependence of the phase
on frequency, namely equivalent to a standard transmission
fiber. Alternatively, any commercially available dispersion
compensation module can also be used in this role.

The goal of the receiver is to reconstruct the transmitted data
symbols from the measured intensities I (A)(t)= |E (A)(t)|2

and I (B)(t)= |E (B)(t)|2. Clearly, when |E0| is large enough
to guarantee the satisfaction of the minimum phase condition
[4], the two fields can be uniquely reconstructed from the corre-
sponding intensities [4]. What we show here is that when |E0| is
reduced to the extent that the minimum phase condition is no
longer satisfied, and the individual fields are no longer uniquely
determined by their intensities [18], the data symbols can still be
effectively extracted by imposing the requirement of consistency
between the two measured intensity waveforms.

We assume that the photo-currents, which are equivalent
to the intensity waveforms, are sampled at their Nyquist rate,
which is equal to 2B (the intensity bandwidth), and that the
processing is applied to blocks of N symbols at a time. The task
of recovering the transmitted data can be expressed as a problem
of finding the minimum of the following expression:

{â}Nk=1 = argmin
zk

Q({zk}
N
k=1), (3)

where

Q({zk}
N
k=1)=

2N−1∑
m=0

(√
I (A)m −

∣∣Am
(
{zk}

N
k=1

)∣∣)2

+

(√
I (B)m −

∣∣Bm
(
{zk}

N
k=1

)∣∣)2

, (4)
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and where

Am
(
{zk}

N
k=1

)
= E0ime iφ

+

∑
k

zk g (mTs − kT) , (5)

Bm
(
{zk}

N
k=1

)
= E0ime iφ′

+

∑
k

zk g ′ (mTs − kT) , (6)

with Ts = 1/2B being the sampling interval, and with I (A,B)m =

I (A,B)(mTs ). Notice that the use of the amplitude as opposed to
the square amplitude in Eq. (4) is not common, but as has been
demonstrated in [17], it is advantageous in situations of the kind
that we have here.

The process of finding the values of {zk}
N
k=1 that minimize the

expression in Eq. (4) is done by means of iterative optimization.
This class of optimization problems has been studied extensively
in multiple areas of research (see, for example [11,19], and
references therein), and various algorithms for its solution have
been proposed. In this work, we use the Polak–Ribiere conjugate
gradient method with the modified gradient expression of [17],
whose details are discussed therein. Briefly put, the optimization
procedure operates as follows. The first stage is to recover a
rough estimate for the received signal by applying the standard
KK algorithm to the received intensity samples {I (A)j }

2N
j=1, where

I (A)j = I (A)(t = jTs ), and where N is the number of symbols in
the processed frame [4]. Then, after dispersion compensation
and removal of the CW carrier, an initial estimate for the data
symbols is generated {â (0)m } and fed into the optimization block
(marked as OPT in Fig. 1). We stress that we implemented the
algorithm of [17] as is, with the only difference being that we
used it with the Polak–Ribiere version of the conjugate gradient.
The reason for adopting it was purely empirical, as it was found
to perform better than all other algorithms that we have tried.

We considered five WDM channels spaced by 50 GHz,
with 16- and 64-QAM modulated data at 32 Gbaud while
using raised cosine pulses with a roll-off factor of 0.03. The
link consisted of a 100 km span of standard single-mode fiber
(D= 17 ps/nm/km, γ = 1.3 W−1 km−1, and attenuation
of 0.2 dB/km), and the overall span-loss budget was 22 dB.
As is usually the case in optically amplified transmission, we
neglect thermal receiver noise and assume that the noise figure
of the optical preamplifier is 5 dB. In all our simulations, the
dispersive element placed in the lower branch in Fig. 1 produces
chromatic dispersion of 340 ps/nm (equivalent to 20 km of
SMF), except in Fig.5, where this dispersion is varied. Each data
point is obtained by generating 70 independent frames of 211

symbols, ensuring valid bit-error rate (BER) estimates in the
relevant range of values.

In order to illustrate the efficiency of the optimiza-
tion procedure, we show in Fig. 2 the root mean square
(RMS) estimation error of the sample points, defined as

σ (m)err =

√
E[(ak − â (m)k )2], as a function of the number of

optimization steps m, where E[·] represents averaging with
respect to the constellation symbols. The two panels shown
in Fig. 2 were plotted for two different values of the effective
optical signal-to-noise ratio (OSNR), which is defined as the
OSNR that one would observe in the absence of the CW tone
signal (we use the conventional definition of OSNR as the ratio
between the average signal power and the noise power within a
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Fig. 2. The root mean square error of the recovered symbols as
a function of the number of optimization iterations. Legends show
modulation format and CSPR value. RMSE values are normalized
to the result without optimization. (a) Effective OSNR of 22 dB.
(b) Effective OSNR of 31 dB.

12.5 GHz bandwidth). Figure 2(a) corresponds to a high effec-
tive OSNR of 31 dB where the errors are dominated by signal
reconstruction. In Fig. 2(b), the effective OSNR is significantly
lower (22 dB), and the errors (especially in the case of 64-QAM)
are strongly affected by amplification noise. The various curves
correspond to different CSPR values and modulation formats,
as indicated in the figure legends. All curves were normalized
to the error of the KK receiver, which corresponds to the zeroth
iteration. In all cases, good convergence is observed already
after 10 iterations—a 2 orders of magnitude improvement
relative to [14]. The improvement in the overall computational
complexity is however only slightly bigger than 1 order of mag-
nitude. That is because up to 10 evaluations of the gradient per
iteration are required within the conjugate gradient method.
In the results that are displayed in what follows, we use 50 opti-
mization steps in order to avoid possible dependencies of the
optimization on operating conditions and to guarantee beyond
doubt the integrity of the quantities that are being evaluated and
compared. It must be noted that even this number of iterations
is significantly smaller than in previously reported techniques
[14–16].

Figure 3(a) shows the system BER as a function of the effec-
tive OSNR in the linear operation regime (i.e., with the value
of γ artificially set to 0) in the case of 16-QAM modulation.
Similarly to [4–6], consideration of the effective OSNR facil-
itates the comparison between the proposed schemes, the
standard KK, and the ideal additive white Gaussian noise
(AWGN) channel. The solid lines show the KK results for
CSPRs of 5 dB, 6.5 dB, and 7.25 dB. The dashed curves cor-
respond to the EKK scheme, and they show that the same
performance as with KK can be obtained with CSPR values
of −0.5 dB, 1 dB, and 2.5 dB, respectively—an advantage of
5.5 dB in the first two cases and an advantage of 4.75 dB in the
third case. Figure 3(b) addresses the same scenario, but with
the nonlinearity accounted for. Here, to change the effective
OSNR, the launched signal power is changed, while keeping
the noise power constant. The advantage of the reduced CSPR
is clearly visible, as the performance of the EKK system is much
less sensitive to nonlinear interference than the performance
of KK, owing to the reduced CW power. Indeed, the case that
is most affected by nonlinear distortions is the case with the
highest CSPR (of 7.25 dB). The same picture is observed in
the case of 64-QAM transmission, as illustrated in Fig. 4. In
the case of linear transmission [Fig. 4(a)], the CSPR values are
6 dB, 7.5 dB, and 8 dB in the case of KK, and the same respective
BER performance levels are obtained with CSPR values of 0 dB,
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Fig. 3. BER vs. Effective OSNR for 16-QAM signal modulation
in the cases of (a) linear and (b) nonlinear propagation. The dashed
and solid curves correspond to EKK and KK, respectively. The legends
in (a) show the CSPR in each of the cases, and they apply also to plot
(b). The dashed–dotted curve is the theoretical curve of ideal coherent
detection back to back.
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Fig. 4. Same as Fig. 3, but for 64-QAM.

2 dB, and 3 dB, with the EKK procedure—a CSPR gain of 5 dB
to 6 dB in all cases. Once again, in the nonlinear propagation
case, the advantage of the EKK scheme becomes even far more
evident, as the nonlinear penalty associated with the high CW
power carried by each of the WDM channels is avoided.

Finally, in Fig. 5, we examine the amount of chromatic dis-
persion used to decorrelate the intensities in the two branches
of the receiver. Fixing the effective OSNR to 25 dB and the
CSPR to 3 dB, we plot the resultant BER of the EKK receiver
in the linear propagation regime, as a function of the dispersive
spread β ′′LB2, where β ′′L is the accumulated dispersion of the
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Fig. 5. BER vs. the dispersion of the dispersive module placed in the
lower arm in the receiver in Fig. 1. The dispersive effect is quantified
in terms of the dispersive spread of the signal in symbol units β ′′LB2.
The curves are plotted for CSPR= 3 dB and for an effective OSNR of
25 dB without fiber nonlinearity.

decorrelating element. Interestingly, sufficient decorrelation
occurs when the dispersive spread of the propagating waveform
is of the order of 0.4 symbols, with no visible improvement that
is observed for higher dispersion values.

To conclude, we have introduced and characterized the EKK
receiver, which recovers complex-valued symbols from two
direct detection measurements. The two directly measured
signals differ only by the fact that one of them experiences a
slightly higher chromatic dispersion than the other. With the
proposed EKK scheme, the CW carrier power that is required
for signal reconstruction is lower by 5 dB to 6 dB compared
to the requirement of the regular KK scheme. The numerical
search procedure was shown to reliably converge to the correct
solution within a few tens of iterations, saving an order of mag-
nitude in complexity relative to previously published results.
Natural extensions of this work would be to explore the impact
of imperfections in implementation and the effects of thermal
receiver noise.
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