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As a typical signal processing problem, direction-of-arrival (DOA)
estimation has been adapted to a wide range of applications in radar-
based systems. A high DOA resolution requires a large number of
antenna elements which increases the overall cost. To minimise the
cost, it is desirable to choose an optimum sub-array from a full
array. To enable cognition, the subarrays are selected based on the
present target scenario. By using deep learning (DL) based techniques,
the authors show a cognitive sparse array selection technique. By using
hardware simulations, they demonstrate the applicability of the deep
learning (DL)-based sparse antenna selection network in direction-
of-arrival (DOA) estimation problems. They show that the DL-based
sub-arrays lead to a higher direction-of-arrival (DOA) estimation accu-
racy by 6 dB over random array selection.
Introduction: With the growing complexity of the dynamically
changing electromagnetic environment, the concept of cognitive radar
has gained ever-increasing attention in recent years, due to its flexibility
of response to various environmental changes. For example, in the
automotive radar application, the bandwidth available for the radars is
fixed. Depending upon the number of radars needs to operate at any
given instant, the bandwidth has to be adaptively shared among the
radars without causing interference [1].

Another critical resource in a radar system is the number of elements
in an antenna array, which determines the array resolution as well as
the accuracy of the direction-of-arrival (DOA) estimation. For a given
wavelength, high direction-of-arrival (DOA) resolution requires a
large aperture array which leads to a large number of array elements
[2]. As each array element requires its own dedicated hardware, the
overall cost of the system increases. Moreover, the computational cost
of processing the data stream from multiple array elements is very
high. To build an economic system in terms of cost and power con-
sumption, it is desirable to choose a subset of array elements instead
of a full array at the expense of resolution. As only a few array elements
are considered from the full array, we denote the sub-array as a sparse
array. By assuming that the degradation of the resolution is within the
acceptable limits, working with sparse arrays has two distinct advan-
tages. First, as mentioned, the computational cost reduces as one has
to work with a smaller amount of received data. Second, it facilitates
cognition. For example, consider the following two cognitive systems:
(i) one can choose the subset of array elements from the full array
based on the current target scenario such that accuracy of DOA
estimation is high; (ii) different non-overlapping subsets of array
elements can be assigned adaptively to track different targets. In this
Letter, we consider the first scenario and demonstrate a hardware proto-
type for the same.

The problem of sparse antenna array selection has been a very active
research topic in recent years. In the literature, nearly most of the
antenna selection algorithms adopt an optimisation-based algorithm or
a greedy search algorithm, which will take a long time and obtain sub-
optimum solutions [3]. Recently, Elbir et al. [4] proposed a deep learn-
ing (DL)-based sparse antenna array selection method by assuming a
single-target scenario. The work has been extended to two target
cases [5]. To select antennas in a cognitive radar, Elbir et al. constructed
a convolution neural network (CNN) model as a multiclass classification
framework where each class designates a possible sub-array. Numerical
experiments have shown that the convolution neural network (CNN)
classification network provides more accurate direction-of-arrival
(DOA) estimates than random array selection (RAS).

In this Letter, we propose a hardware prototype demonstrating
the applicability of the deep learning (DL) approach as developed in
[5]. Specifically, we demonstrate a deep learning (DL)-based sparse
sub-array selection technique based on the current target scenario. We
show that the sub-array chosen by the trained antenna selection
network can achieve almost the same estimation accuracy as the best
sub-array with the lowest Cramér-Rao lower bound (CRB). Using hard-
ware simulations, we demonstrate the applicability of cognitive antenna
selection for DOA estimation and its accurate performance over random
array selection (RAS). Next, we describe our cognitive radar system,
followed by the details of the hardware and the simulation results.
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Antenna selection in cognitive radar system: In [5], an optimal
K-element sparse array is chosen to minimise the Cramér-Rao lower
bound (CRB) of direction-of-arrival (DOA) estimation. Alternatively,
choosing K antenna elements from a total of N elements can also be
viewed as a classification problem wherein each class denotes a possible
sub-array. Once the optimum sparse sub-array is obtained, we can esti-
mate the DOAs based on the noisy observed signals from the selected
antennas.

In this work, we assume the following scan mechanism. Generally, the
targets move slowly compared to the high-speed switch antenna array. In
the first scan, we assume that all the receive antennas are active and feed
their received signals to the CNN classification network. Then the output
of the network determines an optimal antenna array where only K anten-
nas will be used and cognitive systems will continue to use this sub-array
for a predetermined number of scans before switching back to the full
array [4]. Our hardware prototype is designed to address this setting.
We apply the following three antenna selection methods and compare
their performance with that of full array.

† Best sub-array: the beam forming performance gives the lowest
Cramér-Rao lower bound (CRB).
† Random sub-array: it is selected by RAS.
† convolution neural network (CNN) sub-array: it is selected by a
trained convolution neural network (CNN), whose input datasets are
three real-valued channels while the output is the best sub-array index
among all the possible sub-arrays.

Once the antenna array is selected, the DOA is estimated from the
signals from the sub-array elements by applying multiple signal classi-
fication algorithm (MUSIC).

Mathematical modelling: Consider an N-element antenna array system
with the elements located at pnd|pn [ N3{ }

where d is the inter-element
spacing as half the carrier wavelength l and n is the index of antennas
ranging from 1 to N. The position vector pn in the Cartesian coordinate
system takes integer value.

We assume that there are K narrow-band signals impinging on the
N-element array from K distinct DOAs uk , fk

{ }K
k=1 which denote the

elevation and azimuth angles in spherical coordinates, respectively.
For each antenna, the received signal at snapshot time t yields a sum
of K exponential components as follows:

yn t( ) =
∑K
k=1

xk t( ) exp −j
2p

l
dpTnk(uk , fk )

( )
, 1 ≤ n ≤ N . (1)

Here xk t( ) is the complex amplitude of the kth source signal and its cor-
responding Cartesian coordinate is k(uk , fk ) which can be calculated as
k(uk , fk ) = [ sin (fk ) cos (uk ), cos (fk ) cos (uk ), cos (uk )]

T.
As we discretise the angle space into M grids (K ≪ M ) with the

assumption that each source direction-of-arrival (DOA) lies on the pre-
scribed grid points, the noise-corrupted received signal vector of the
whole sparse array can be modelled as

y t( ) =
∑M
k=1

xk t( )a uk , fk

( )+ w t( ) (2)

where a uk , fk

( )
is the steering vector of the sparse array whose element

is computed as an uk , fk

( ) = exp −j(2p/l)dpTnk(uk , fk )
( )

. Here
w t( ) = w1 t( ), w2 t( ), . . . , wN t( )[ ]T is the additive noise vector. The
target signal x t( ) = x1 t( ), x2 t( ), . . . , xM t( )[ ]T is a K-sparse vector
which means that only K elements of source angles are non-zero
values and other M − K( ) elements of non-existent angles are zero.
For the sake of clarity, hereafter we neglect the time index t and
rewrite (2) into y = Ax+ w where the array manifold matrix A can be
written as A = a v1( ), a v2( ), . . . , a vM( )[ ].

Based on the spatial sparsity of sources, many sparse recovery algor-
ithms such as fast iterative shrinkage-thresholding algorithms have been
widely applied to single-snapshot direction-of-arrival (DOA) estimation
[6, 7]. However, as aggregated data across multiple snapshots leads to a
more stable estimate, we will put more emphasis on the multiple-snapshot
direction-of-arrival (DOA) estimation. We provide the DOA estimation
results by using MUSIC algorithm as described in [5].

Hardware prototype: A schematic of the proposed hardware is shown
in Fig. 1a which consists of the following main blocks: a receive (Rx)
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antenna array, a receiver board (Rx board) and a personal computer (PC)
controller. The hardware is shown in Fig. 1b. The Rx antenna array
operates at 2.4 GHz and it is fixedly divided into 16 sets of 4 patch
antennas each. Only one antenna of each set can be selected at a time,
via 4 to 1 high-speed selector. The receiver board consists of a downcon-
verter board, two analogue-to-digital converter (ADC) cards and a field-
programmable gate array (FPGA) board, where the received analogue
signal is converted to the baseband digital signal. Its first step is to
down-convert the amplified analogue signal to baseband by a downcon-
verter board which will mix the received signal with a local oscillator
and pass it through a baseband filter. After analogue down-conversion,
an eight-channel FMC168 ADC card is adopted to sample the analogue
baseband signal. Then the VC707 FPGA-based processing board trans-
mits the digital outputs to the host PC controller in a high-speed mode
where they are utilised for estimating the target DOAs.
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Fig. 1 Hardware prototype of the sparse array demo

a Flowchart of the proposed demo prototype
b Full prototype with indications corresponding to the flowchart
c Screen shot of GUI

The graphical user interface (GUI) is shown in Fig. 1c, wherein a
single sparse array is presented in both the plane and 3D view. In the
sparse array demo, the full array is formed by N = 16 antennas in the
shape of either uniform rectangular array, diamond or a random
pattern. To address adaptation in dynamic automotive environments,
we implement various options in the demonstration. For example,
users can choose a combination of the following configurations: six
different target scenarios, three different antenna array patterns, three
different numbers of antennas used in each sub-array and four decreas-
ing noise levels. The detail view at the bottom shows the antenna pat-
terns and beam patterns for the full array and three sub-arrays based
on the configurations presented above. On the right side, we compare
the performance of the full array and three selected sub-arrays in
terms of the estimated DOAs as well as the root mean square error
(RMSE), simultaneously for all the targets.

Next, we compare the performance of different antenna selection
methods. To avoid interference due to wireless networks, specifically
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WiFi operating at 2.4 GHz, the data is transmitted through cables
instead of over the air. In particular, we employ a 16-channel transmit
board, similar to the Rx board shown in Fig. 1a, to transmit the
signals generated in MATLAB. The signals are generated as in [5]
and the DOAs from the received signals are estimated by applying
MUSIC algorithm. The performance of the proposed cognitive arrayn
selectio strategy under different signal-to-noise ratio (SNR) values is
shown in Fig. 2. Comparing the direction-of-arrival (DOA) estimation
performance of three sub-arrays, the proposed convolution neural
network (CNN) approach effectively selects the best sub-array for a
large range of SNRs and it provides effective performance as compared
to random array selection (RAS). Especially, the convolution neural
network (CNN)-based method has 6 dB lower root mean square error
(RMSE) compared with random array selection (RAS) in the case of
MUSIC estimation results.
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Fig. 2 Simulation result of multiple-snapshot direction-of-arrival (DOA) esti-
mation by applying MUSIC algorithm
Conclusion: A high direction-of-arrival (DOA) resolution requires a
large number of antennas, which usually entails dedicated hardware
equipment for each radar receive antennas and results in high cost. In
many radar applications, instead of the entire array, a cognitively
selected sub-array offers potential advantages of balancing hardware
cost and high resolution. To optimally choose the sub-arrays based on
the target DOAs, we use a convolutional network which accepts the
array covariance matrix as its input and selects the best sparse sub-array
which minimises the root mean square error (RMSE). This approach
aids in cognition where multiple antennas are simultaneously operating
to track different targets in different directions based on the current
target scenario.
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