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Abstract—Generic acquisition hardware promotes a unified treatment
of various signal classes. In modern applications involving wide input
bandwidths, uniform sampling, the common practice for generic digitiza-
tion, leads to prohibitively large sampling and processing rates due to the
wide Nyquist bandwidth of the input. In this paper, we present the X-ADC
system which narrows down the input bandwidth by analog preprocessing
prior to sampling at rates substantially lower than Nyquist. As we show,
the X-ADC strategy is generic in the sense that multitude radio and
medical imaging applications with structured signals can utilize the same
architecture for lowrate acquisition. A recently published sub-Nyquist
hardware, which was designed according to the proposed X-ADC scheme,
provides a concrete reference for the present study. We complement the
generic acquisition by reporting on a real-time embedded implementation
of a sub-Nyquist reconstruction algorithm. The embedded design enables,
for example, fast spectrum sensing which is essential to real-time cognitive
radio applications.

I. INTRODUCTION

Signal processing involves hardware and software design. The
front-end amplifies and preprocesses the continuous input before ana-
log to digital conversion (ADC) takes place. Digital signal processing
(DSP) algorithms manipulate the incoming stream of numbers to
achieve a desired effect, e.g., denoising, source separation, estimation
etc. The modern trend is to shift as much processing operations
as possible from analog to digital. In the trend of digitization, the
keys for a successful processing system are two: a generic hardware
platform, so that a single hardware front-end supports a diverse range
of applications, and real-time DSP algorithms with computationally-
light digital complexities.

Compressed sensing (CS) is an emerging paradigm in signal pro-
cessing, named after the works of Donoho [2] and Candès, Romberg
and Tao [3]. The goal in CS is to sample signals at rates lower than
what is traditionally required by the Shannon-Nyquist theorem. To
accomplish this goal, the underlying structure of the input, usually
sparsity in some transform domain, is exploited. Mainstream works
in CS study measurement systems in discrete and finite settings.
More specifically, the focus is on recovery of vectors with only a
few nonzero entries from an underdetermined set of linear equations.
Several frameworks have been proposed for extending CS to analog
signals, including Xampling [4]–[6], finite rate of innovations (FRI)
[7] and random demodulation (RD) [8].

In this paper, we propose a generic sensing architecture which
can reduce the sampling rate of structured analog signal classes. The
scheme, termed X-ADC, is based on mixing the input with a set of
periodic waveforms prior to sampling. The approach is based on the
modulated wideband converter (MWC) which is presented hereafter
as one application of the X-ADC scheme. In Section II, we present
the X-ADC structure in more detail. The X prefix hints at the reduced
sampling rate. We also describe a recent board-level prototype of the
MWC [1], which serves as a reference X-ADC circuit.

The first contribution of this work, Section III, describes how to
employ the X-ADC scheme for reduced-rate sampling in multitude
radio and medical imaging applications involving structured inputs,
including sampling of multiband communications [4], spectrum sens-
ing for cognitive radio (CR) [9], [10], ultrasonic imaging [11], [12]
and RD [8]. The fact that only slight hardware modifications are
required, on the level of assembling or disassembling components in
the existing layout of [1], supports the generality of X-ADC. Once the
samples are obtained by the generic system, application-dependent
algorithms use different processing methods in order to extract the
relevant information.

Our second contribution, presented in Section IV, is a real-
time embedded implementation of the MWC recovery algorithms.
The real-time implementation enables accurate frequency support
detection in a time duration as low as several micro-seconds. Real-
time support detection can, for example, alleviate one of the main
bottlenecks in widespread deployment of CR technology [10].

II. X-ADC HARDWARE

In this section, we describe the X-ADC architecture, which reduces
the input bandwidth so that it can be digitized using existing lowrate
commercial ADCs, while preserving the information of interest for
subsequent digital algorithms.

A. Architecture

A block diagram of an X-ADC is depicted in Fig. 1(a). The
continuous input x(t) is passed to m analog preprocessing units.
Each unit multiplies the signal by a pre-defined periodic waveform
pi(t) and applies a filter Hi(f) on the product x̃i(t). The purpose
of Hi(f) is to shape the frequency response of the product and in
particular to narrow down the bandwidth. Finally, the filtered output
yi(t) is sampled every Ts seconds, resulting in a digital stream of
numbers yi[n]. The reduced bandwidth of yi(t) permits the use of
commercial ADC devices with low sampling rate and low analog
input bandwidth. This is in contrast with the premium devices needed
to acquire x(t) at its high Nyquist rate.

The second ingredient of X-ADC is a periodic generator unit that
provides the waveforms pi(t). Since pi(t) is periodic, it has a Fourier-
series expansion

pi(t) =

∞∑
`=−∞

ci` e
j2π`t/Tp , (1)

where Tp is the period duration and ci` are a set of coefficients. The
consequence of periodic mixing is deliberate aliasing of the spectrum
of x(t), so that the product x̃i(t) contains shifted copies of the input
spectrum X(f) at equally-spaced frequency spacing

X̃i(f) =
∑
`

ci`X(f − `/Tp). (2)
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Fig. 1. Generic sensing architecture using periodic mixing (a). A hardware prototype with (b) four-channel analog front-end and a 2 GHz periodic generator
(c) was reported in [1].

B. Circuit work

A hardware design that complies with the X-ADC scheme was
reported in [1]. Fig. 1 depict photos of two hardware boards. One
performs the RF mixing and filtering stage while the other provides
four high-speed periodic functions pi(t). The markers in panels (b)
and (c) of Fig. 1 highlight the interesting blocks in our design.

The RF board splits x(t) into m = 4 analog processing branches.
Tunable amplification gains along the path ensure a signal to noise-
and-distortion ratio of 15 dB at the outputs yi(t), which was verified
experimentally over a dynamic range of 50 dB input power [1].
In contrast to standard RF mixing with a single sinusoid, X-ADC
requires periodic mixing, that is simultaneous multiplication with the
multiple sinusoids (1) comprising pi(t). To support the nonordinary
mixing additional circuitries were inserted: wideband equalization,
passive mixing and adjustable power control with frequency reshap-
ing option [1]. An elliptic filter with up to 14 stages allows a flexible
choice for Hi(f) in a wide range of pass and stop band combinations.

The periodic generator produces four sign alternating waveforms

pi(t) = αik, k
Tp
M
≤ t ≤ (k + 1)

Tp
M
, 0 ≤ k ≤M − 1, (3)

with programmable signs αik ∈ {+1,−1}, derived from four taps
of a single shift-register (SR) of length M = 108 and clock rate of
2 GHz. Other choices for pi(t) are possible, since in principle only
the periodicity is a design constraint.

The X-ADC is a modular platform; parallelizing two four-channel
X-ADC boards results in a structure with m = 8 branches and so
forth. In particular, with sufficiently large m, the technology can scale
up to the Nyquist rate.

III. GENERIC SENSING

We now explain how certain choices of pi(t) in conjunction with
specific filtering Hi(f) exploit the aliasing phenomenon to achieve
innovative radio and medical applications, thereby supporting the
generality of the method.

A. Sub-Nyquist sampling of multiband signals

The X-ADC concept of mixing with periodic waveforms is based
on the MWC system [4]. The MWC application enables the design of
a communication receiver which intercepts N narrowband transmis-
sions, but is not provided with knowledge of their carrier frequencies.
In this scenario, standard RF demodulation cannot be used. The X-
ADC setup in this case is [4]

m ≥ 2N,
1

Tp
≥ B, Ts = Tp, (4)

with identical lowpass filters Hi(f) = H(f) having 1/2Ts cutoffs,
where B is the maximal expected bandwidth of an individual
transmission. The X-ADC aliases equally-spaced spectrum slices,
each of width 1/Tp to the origin, as illustrated in Fig. 2. It follows
from (4) that at most 2N spectrum slices intersect with the signal
frequency support. The X-ADC circuit of Figs. 1(b)-(c) also supports
a more advanced configuration of the MWC in which the number of
channels is collapsed by a factor of q by taking Ts = Tp/q and
extending the filter cutoffs accordingly. In the prototype, q = 3 is
used to provide effectively mq = 12 sampling branches from only
m = 4 physical channels. This setup enables recovery of multiband
inputs with N = 6 bands, or equivalently N/2 = 3 narrowband
transmissions. Real-time reconstruction of the multiband input x(t)
from the lowrate sequences yi[n] is discussed in the next section.
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Fig. 2. Several narrowband transmissions result in an input signal with
multiband frequency support.

B. Spectrum sensing for cognitive radios

A CR device exploits temporarily unused spectrum intervals, or
“holes”, for transmission on an opportunistic basis, as visualized
in Fig. 3(a). Real-time spectrum sensing of the available holes is
therefore essential for this radio technology. Clearly, the X-ADC plat-
form together with the MWC reconstruction algorithm can provide
spectrum sensing functionality. Nonetheless, in the CR setting, the
hardware can be modified to better optimize the design for holes
detection rather than multiband reconstruction. One option is setting
up the system with 1/Tp < B. The aliasing spacing becomes small
and consequently the resolution of support/hole detection improves.
For multiband sampling the setting 1/Tp < B results in splitting



the energy of an individual transmission between several adjacent
spectrum slices, thereby increasing the reconstruction complexity.
Since CR needs no reconstruction functionality, a large period Tp can
be used by concatenating more registers in the chain of the periodic
generator. Alternatively, a linear feedback shift-register (LFSR) can
be constructed with XOR gates. For example, the LFSR in Fig. 3(b)
outputs a periodic sign pattern with length 29 − 1 = 511. The
frequency resolution is five times higher than that of the M = 108
standard SR. The number of registers is reduced by a factor of 12.
A theoretical study [13] indicated that popular LFSR sequences are
suitable choices for support detection.

(a) (b)

Fig. 3. A map of available spectrum holes (a). The shaded areas represent
frequency intervals occupied by licensed users. An optional maximal-length
LFSR (b) for spectrum sensing using the X-ADC platform.

C. Ultrasonic imaging

An ultrasonic imaging system transmits an acoustic wave g(t)
towards a scanned tissue, which reflects several attenuated and
delayed echoes

x(t) =

L∑
`=1

a`g(t− t`), t ∈ [0, T ], (5)

where T is the duration of a single transmission-probing cycle, and
L is the maximal expected number of echoes. The unknowns are
the time delays t` and amplitudes a`. Fig. 4(a) illustrates a typical
reflection pattern from a single acoustic path.

Typically, g(t) has short time duration and therefore large Nyquist
range. Recently, [11], [12] developed a stable and low complexity
algorithm for recovery of an ultrasonic pulse stream, such as (5),
from about 2L samples per interval T , effectively removing the
dependency of the sampling rate on the bandwidth of g(t). The
approach relies on the fact that x(t) is confined to a finite duration
T . Therefore, in principle, 2L coefficients from its Fourier expansion

mi =
1

T

∫ T

0

x(t) ej2πkit/Tdt, (6)

with {ki} denoting a set of 2L consecutive integers, determine
the unknowns t`, a` [11], [12]. Instead of generating 2L frequency
sources to directly measure mi, the generic X-ADC platform can
be utilized to obtain a linear mixture of mi by proper filtering
of pi(t), which zeros out all but 2L Fourier coefficients ci`. The
reshaping circuit that is assembled on the local-oscillator port in the
RF front-end provides this feature; see Fig. 1(b). Mixing with filtered
periodic functions boils down to a linear relation v = Cm, with
a square invertible matrix C containing only those coefficients ci`
that passed the filtering. Inverting C returns the measurement vector
m = {m1, · · · ,m2L}, and the reconstruction flow of [11], [12] can
proceed accordingly.

D. Random demodulation

RD is a strategy for reduced-rate sampling of multitone signals,
consisting of a finite number of harmonic sinusoids. A single channel

(a) (b)

Fig. 4. A typical ultrasonic signal (a) consists of reflected echoes of the
known transmitted pulse shape g(t). Lowrate measurements are realized in
(b) by an X-ADC device that filters the periodic waveforms pi(t) prior to
mixing.

mixes the input with a pseudo-random bit sequence (PRBS), inte-
grates the product and dumps the output at a low rate. The PRBS
needs to be sufficiently long to approximate a true random sequence.
The X-ADC prototype can provide PRBS lengths up to 2r − 1,
r ≤ 108. The integrator is a first-order filter, thus requires assembling
only a degenerated version of the elliptic lowpass filter. We point out
that while realizing the RD method is possible using the circuit of
Figs. 1(b)-(c), the method is computationally limited to signals with
low Nyquist rate due to the complexity of the recovery algorithm
which scales with the Nyquist rate of the input [5]. The approach also
requires accurate time-domain properties, e.g., sign transitions sharply
aligned to Nyquist intervals and a rectangular integrator response,
which are difficult to obtain at high rates. In contrast, the previous
applications (MWC, cognitive spectrum sensing and imaging) require
only the periodicity of pi(t), which can be achieved at high rates.
Further details and comparisons appear in [5].

IV. REAL-TIME RECONSTRUCTION

Reducing the sampling rate is one important aspect of analog sens-
ing. The computational complexity in the digital domain is another
important factor in practice. In this section, we describe a real-time
fixed-point implementation of the MWC reconstruction algorithm
[4] on an Altera Stratix III field-programmable gate array (FPGA)
mounted on a Gidel PROCStar-III development board. Figure 5
depicts a high-level block diagram of the real-time design. Clock
rates of the various modules are marked.
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Fig. 5. Block diagram of a real-time design for sub-Nyquist reconstruction.



A. Frame construction

As described in [4], the reconstruction procedure begins by con-
structing a frame (or a basis) of the measurements and decomposition
as follows

y[n] → Q =
∑
n

y[n]yH [n] → Q = VVH , (7)

where y[n] = [y1[n], . . . , ym[n]]T and VH is the conjugate trans-
pose of V. The decomposition step to V enables removal of the
noise space, but demands a substantial amount of multiplications
and FPGA resources. In the FPGA design, we decided to avoid the
decomposition, and instead increased the number Nsamples of y[n]
snapshots that are aggregated to Q. Based on recovery results of
Monte-Carlo simulations, Fig. 6, we chose Nsamples = 70.
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Fig. 6. Successful support recovery vs. number of samples used for
constructing the frame matrix Q.

B. Support detection

Given the frame Q (or V) an underdetermined system

Q = CU, (8)

is solved for U with minimal number of nonidentically zero rows,
where C containing the Fourier coefficients ci`. The sparsest U is
proved in [4] to indicate the support of x(t) at 1/Tp frequency
resolution, as visualized in Fig. 2.

We chose the multi orthogonal matching pursuit (M-OMP) [14]
algorithm for solving (8), since it involves simple algebraic com-
putations. In M-OMP, every iteration reveals a new nonzero row of
U and a corresponding column of C. A pseudo-inverse matrix C†S ,
computed for the column subset CS that is indicated by the current
nonzero index set S, updates a residual Q̃ for the next iteration. To
reduce computations, we used a Gram-Schmidt procedure proposed
in [14] to update C†S sequentially. In addition, taking into account
that since x(t) is real-valued, so that S is symmetric, we modified
the M-OMP matching rule to find two symmetric indices at each
iteration. Consequently, S is recovered in N , rather than 2N , cycles.

C. Parallel execution and gate-level simulation

The major advantage of FPGA programming is the ability to par-
allelize computations in time. We constructed a matrix multiplication
unit (MaMu) of 144 complex multipliers, which is utilized for both
frame construction and M-OMP computations. Once the index set
S is detected, the contents zk[n] of the relevant spectral intervals
are reconstructed at real-time by applying C†S on the incoming
measurements y[n].

To conclude, we present a result of gate-level simulation affirming
real-time performance. Three signal generators were combined to the
X-ADC input terminal: amplitude-modulated (AM) with carrier 871
MHz, frequency-modulated (FM) with carrier 631 MHz and pure sine
at 981 MHz. Frame construction and the modified M-OMP algorithm

Fig. 7. Real-time support recovery.

detected the correct active slices. The entire procedure lasted less than
7µsecs.
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