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Sparse Array Design via Fractal Geometries
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Abstract—Sparse sensor arrays have attracted considerable at-
tention in various fields such as radar, array processing, ultrasound
imaging and communications. In the context of correlation-based
processing, such arrays enable to resolve more uncorrelated sources
than physical sensors. This property of sparse arrays stems from
the size of their difference coarrays, defined as the differences of
element locations. Thus, the design of sparse arrays with large
difference coarrays is of great interest. In addition, other array
properties such as symmetry, robustness and array economy are
important in different applications. Numerous studies have pro-
posed diverse sparse geometries, focusing on certain properties
while lacking others. Incorporating multiple properties into the
design task leads to combinatorial problems which are generally
NP-hard. For small arrays these optimization problems can be
solved by brute force, however, in large scale they become in-
tractable. In this paper, we propose a scalable systematic way to
design large sparse arrays considering multiple properties. To that
end, we introduce a fractal array design in which a generator array
is recursively expanded according to its difference coarray. Our
main result states that for an appropriate choice of the generator
such fractal arrays exhibit large difference coarrays. Furthermore,
we show that the fractal arrays inherit their properties from their
generators. Thus, a small generator can be optimized according to
desired requirements and then expanded to create a fractal array
which meets the same criteria. This approach paves the way to
efficient design of large arrays of hundreds or thousands of elements
with specific properties.

Index Terms—Array design, difference coarray, fractal
geometry, sparse arrays.

I. INTRODUCTION

S ENSOR array design plays a key role in various fields such
as radar [1], radio [2], communications [3] and ultrasound

imaging [4]–[6]. In particular, two major applications of array
processing [7]–[9] are direction-of-arrival (DOA) estimation and
beamforming used for detecting sources impinging on an array.
Such applications often utilize sparse arrays, namely sensor
arrays with non-uniform element spacing, since under certain
conditions they allow to identify more uncorrelated sources than
physical sensors [10]–[12].
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Sparse arrays include the well-known minimum redundancy
arrays (MRA) [13], minimum holes arrays (MHA), nested arrays
(NA) [1] and coprime arrays (CP) [14], to name just a few. Such
arrays enable detection of O(N2) sources using N elements,
unlike uniform linear arrays (ULAs) that can resolve O(N)
targets. This property of increased degrees-of-freedom (DOF)
relies on correlation-based processing and arises from the size of
the difference coarray, defined as the pair-wise sensor separation.
A large difference coarray increases resolution [1], [13], [14]
and the number of resolvable sources [1], [14]. Hence, the size
of the difference set is an important metric in designing sparse
arrays.

Other array properties are also important in specific appli-
cations. For example, typically it is required that the sensor
locations be expressed in closed-form to enable simple and
scalable array constructions. Array symmetry is also often fa-
vorable as it reduces complexity [15], [16] and improves perfor-
mance [17]–[19]. A contiguous difference coarray facilitates the
use of standard DOA recovery algorithms [1]. The array weight
function and beampattern govern the array performance, there-
fore, it is convenient if they can be expressed in simple forms that
allow analysis and optimization. Since electromagnetic element
interaction may lead to adverse effects on the beampattern, an
array with low mutual coupling [20], [21] is beneficial. To reduce
power and cost, the array should be economic where all sensors
are essential [22]. Conversely, elements may malfunction, in
which case redundancy increases the array robustness to sensor
failures [23]–[25].

The introduction of nested arrays [1] and coprime arrays [14]
has sparked great interest in non-uniform arrays, leading to
numerous studies proposing diverse sparse configurations. The
authors of [20], [26] introduced variants of nested arrays, called
super nested arrays (SNA), which redistribute the elements of
the dense ULA part of the nested array to obtain reduced mutual
coupling. In [27], augmented nested arrays (ANAs) are created
by splitting the dense ULA of a nested array into two or four
parts that can be relocated to two sides of the sparse ULA
of a nested array. This leads to increased DOF and reduced
mutual coupling compared with nested and super nested arrays.
To allow robustness to sensor failures, robust MRAs (RMRAs)
are presented in [25] where the sensor locations are given by a
combinatorial problem in which the array fragility [23] is con-
strained. Alternative designs include utilizing array motion [28]
to fill in the holes in the difference coarray of a given sparse array
(e.g., coprime), and array configurations based on the maximum
inter-element spacing constraint (MISC) [29] that achieve more
DOF than nested arrays and ANAs while exhibiting less mutual
coupling than super nested arrays.
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In addition to the above, several variants of coprime arrays
have been introduced. A generalization of coprime arrays named
coprime array with displaced subarrays (CADiS) is developed
in [30]. CADiS is built by compressing the inter-element spacing
of one subarray of the coprime array while displacing the other
subarray, yielding an array with higher number of unique lags in
the difference coarray and reduced mutual coupling. A thinned
coprime array (TCA) is presented in [31] where some of the
sensors of an extended coprime array [14] are removed without
affecting the aperture and the difference coarray, resulting in
lower mutual coupling. Complementary coprime arrays (CCP)
are derived in [32] where a dense ULA is added to an extended
coprime array to ensure contiguous difference coarray. In [33],
part of the sensors in extended coprime arrays and CADiS are
repositioned to create sliding extended coprime arrays (SECAs)
and relocating extended coprime arrays (RECAs) receptively,
which offer increased DOF and reduced mutual coupling com-
pared with the original arrays.

Most existing array configurations focus on certain properties
while lacking or being indifferent to others. For example, MRA
and MHA yield large difference coarrays but are not expressed
in closed-form. Nested and coprime arrays have simple forms
but the former suffers from high mutual coupling while the
latter exhibit holes in the difference coarray. Super nested arrays
and ANAs enjoy reduced mutual coupling but are not robust
to sensor failures. TCA offers increased DOF compared to
coprime arrays but lacks a contiguous difference coarray. In
contrast, complementary coprime arrays and MISC demonstrate
contiguous difference coarrays but are susceptible to sensor
failures. Moreover, none of the above are symmetric.

There exists a broad range of applications which utilize
sparse sensor arrays, each with different requirements. Hence,
the array design must consider multiple properties and the
appropriate tradeoffs between them, depending on the specific
setting. Moreover, as technology advances, applications such
as massive multiple-input multiple-output (MIMO) communi-
cations utilize an increasing number of sensors, expected to
reach several thousands in the near future [34]. In such settings,
the array construction has to be simple and efficient to allow
scalability. The design process can often be formulated as an
optimization problem which incorporates all the required array
specifications. However, unfortunately, these design problems
are combinatorial in nature, hence, they are intractable in large
scale. Consequently, the development of a systematic and scal-
able approach to design large sparse arrays with multiple desired
properties is of increasing importance.

The main contribution of this paper is in introducing a fractal
design approach for sparse arrays which is scalable and con-
siders multiple array properties. Fractal arrays [35]–[39] are
geometrical structures which display an inherent self-similarity
over different scales, and hence are used in the design of ra-
diating systems to allow mutliwavelength operation [35]. The
construction of fractal structures is performed by recursively
scaling a basic array, known as the generator. Here, we derive
a special type of fractal arrays in which the generator is taken
to be a sparse array and the scaling/translation factor is directly
determined by the generator’s difference coarray. We prove that

an appropriate choice of the generator leads to fractal arrays with
sizable difference coarrays. We then study the properties of the
resultant fractal arrays, showing that they inherit their properties
from the generators. In particular, a sparse fractal array exhibits
the same coupling leakage as the generator, similar increased
DOF, and it is at least as robust as the generator.

Our proposed framework allows to extend any known sparse
configuration to a large array while preserving its properties. It
can be seen as a generalization of Cantor arrays that achieves
increased DOF. Furthermore, a small sparse array can be de-
signed and optimized according to given requirements, and
then recursively expanded to generate an arbitrarily large array
which meets the same design criteria. Thus, we establish a
simple systematic approach for large sparse array design which
incorporates multiple favorable properties.

The paper is organized as follows. Section II reviews prelimi-
naries of sparse arrays, including design criteria, and formulates
the problem. We introduce our proposed fractal arrays in Sec-
tion III-B and study their properties in Section IV. Section V
provides numerical experiments of large array designs and per-
formance analysis. Finally, Section VI concludes the paper.

II. REVIEW OF SPARSE ARRAYS

A. Signal Model

Consider K narrowband sources with carrier wavelength λ
impinging on an N element linear array. The array sensors
are located at dn = nλ/2 where n belongs to an integer set G
(|G| = N ). For brevity, we refer to such an array as a linear array
G. Let si ∈ C and θi ∈ [−π/2, π/2] be the complex amplitude
and DOA of the ith source respectively. Neglecting mutual
coupling [40], the array measurement vector x can be expressed
as

x =

K∑
i=1

sia(θi) +w = As+w ∈ CN , (1)

where s = [s1 s2 · · · sK ]T ∈ CK , A = [a(θ1)a(θ2) · · · a(θK)]
∈ CN×K is the array manifold and a(θ) ∈ CN×1 is a steering
vector at direction θ whose entries are ejπ sin(θ)n (n ∈ G). Here
w represents additive white noise. We assume the source vector
s and the noise w are zero-mean and uncorrelated, so that
� E[s] = 0, E[w] = 0,
� E[wsH ] = 0,
� E[ssH ] = diag(p1, p2, . . ., pK), E[wwH ] = pwIN ,

where pi and pw are the power of the ith source and the noise
respectively. We denote by IN the N ×N identity matrix.

The covariance of x can be written as

Rx =

K∑
i=1

pia(θi)a(θi)
H + pwIN . (2)

Vectorizing Rx to a vector rx and averaging duplicate entries
we obtain

rx =

K∑
i=1

pib(θi) + pnδ = Bp+ pwδ ∈ C|D|, (3)

where D is the difference coarray defined below, δ ∈ C|D|

is the Kronecker delta and the steering vectors are b(θ) =
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a∗(θ)� a(θ) where superscript ∗ denotes conjugation and �
is the Khatri-Rao product [3], [41]. The vector rx can be seen
as the signal received by a virtual array whose manifold is
B = [b(θ1) b(θ2) · · ·b(θK)] ∈ C|D|×K and its sensor locations
are determined by the difference coarray D.

Definition 1 (Difference Coarray): Consider a sensor array
G. The difference set of G is given by

D � {d | n1 − n2 = d, n1, n2 ∈ G}.
The difference coarray of an array G is the linear array D.
The DOF of a linear array G is the cardinality of its difference
coarray D.

The performance of correlation-based estimators is governed
by the DOF of the sparse array. When the difference coarray
is larger than the physical array, we can recover more uncorre-
lated targets than sensors or alternatively increase the angular
resolution of DOA estimation [13], [14], [42].

B. Difference Coarray Criteria

Our goal is to generate arrays with increased DOF. To that
end, we outline several popular criteria in sparse array design.
We begin with a few definitions related to sparse arrays.

Definition 2 (Central ULA): Consider a sensor array G with a
difference coarray D. Given a non-negative integerm, let Um �
{−m, . . .,−1, 0, 1, . . .,m}. The central ULA of D is the ULA
defined as

U � argmax
Um⊆D

|Um|.

The central ULA U is the maximum contiguous ULA that
includes the 0th element in the difference coarray.

Definition 3 (Hole-Free/Contiguous Difference Coarray):
Consider a sensor array G whose difference coarray is D and
denote the central ULA of D by U . The difference coarray D is
said to be hole-free (i.e., contiguous) if D = U .

Equipped with the definitions above, we state the following
criteria for sparse array design [22]:

Criterion 1 (Closed-form): For scalability, the sensor loca-
tions should be expressed in closed-form.

Criterion 2 (Hole-free difference coarray): For subspace-
based DOA estimation methods, e.g., MUSIC [43] and ES-
PRIT [44], the number of resolvable sources is determined by the
cardinality of the central ULA. Hence, to exploit the difference
coarray to its fullest extent, we require it to be hole-free [22].

Criterion 3 (Large difference coarray): To achieve increased
DOF with respect to the number of sensors, the number of virtual
elements (unique lags) of the difference coarray should satisfy
|D| = O(|G|2).

Interestingly, most known array geometries do not fulfill
Criteria 1 to 3 concurrently. MRAs [13], RMRAs [25] and
MHAs do not have a closed-form expression. ULAs and Cantor
arrays [22] exhibit difference coarrays whose size is O(N) and
O(N log2 3), respectively. The difference coarray of a co-prime
array is not hole-free, hence, interpolation may be required
which increases complexity [45]–[47]. Note that nested arrays
do meet the discussed requirements, however, they lack other
important array properties. For example, they contain a dense
ULA which results in high mutual coupling. To circumvent

this limitation, super-nested arrays [20] were introduced. How-
ever, the latter are expressed in a closed yet complicated form.
Moreover, both nested arrays and super-nested arrays are not
symmetric and are sensitive to sensor failures [24]. Symmetric
nested arrays are robust to sensor failures but suffer from high
mutual coupling [25].

C. Problem Formulation

To fully exploit the benefits arising from the difference coar-
ray, the array design should satisfy Criteria 1 to 3. However,
the majority of existing array configurations do not meet them
simultaneously. Furthermore, application-specific requirements
should be considered, including properties such as symmetry,
low mutual coupling, robustness to sensor failures, and more.

For small scale, the design tasks are formulated as optimiza-
tion problems which can be solved by brute force methods.
However, these problems are NP-hard in general, hence, for
moderate and large scale they become intractable. Therefore,
an efficient scalable approach for array design is required.

To address this issue, we propose a fractal array design in
which an array, called a generator, is recursively enlarged based
on its difference coarray. We study the proposed array with
respect to Criteria 1-3 and other important properties. We show
that the resultant fractal arrays enjoy the same properties as the
generator. Any array can be used as a generator, thus, extending
known sparse array configurations. Moreover, a small-scale
generator with required properties can be designed and then
expanded by the proposed scheme to construct large fractal
arrays which share the same properties.

We emphasize that our goal is not to present a specific array
configuration which is optimal or superior to previously pro-
posed arrays in terms of a specific property. Our aim is to offer
a flexible framework for constructing large sparse arrays which
exhibit multiple properties with the appropriate balance between
them, determined by the specific application.

III. SPARSE FRACTAL ARRAY DESIGN

Fractal arrays possess an inherent self-similarity in their ge-
ometrical structure and have been used over the years in the
design of radiating systems, allowing multiwavelength opera-
tion. However, so far, fractals have not been studied extensively
in the context of sparse array design.

In this section we present our main approach to designing
sparse fractal arrays with increased degrees of freedom. To that
end, we first briefly describe well-known fractals called Cantor
arrays which exhibit a relatively small number of DOF [22].
Then, we introduce a simple array design in which we recur-
sively expand a generator array in a fractal fashion, allowing to
construct arbitrarily large arrays that satisfy Criteria 1 to 3. In
addition, the proposed scheme can be seen as a generalization
of Cantor arrays, leading to sparse fractal arrays with increased
DOF.

For simplicity, we assume henceforth that the leftmost ele-
ment of an arbitrary array is located at 0. Otherwise, the array
can be translated to fulfill this assumption.
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Fig. 1. Cantor arrays with (a) r = 2 and (b) r = 3.

A. Cantor Arrays

Given two integer sets A and B, we define their sum set as

A + B � {a+ b | a ∈ A, b ∈ B}.
Cantor arrays [38], [39] are fractal arrays defined recursively as
follows:

Cr+1 � Cr ∪ (Cr + 3r), r ∈ N, (4)

where∪denotes the union operator. Note that the array definition
(4) is equivalent to the definition given in [22]. Cantor arrays are
symmetric and Cr hasN = 2r physical elements. See examples
of Cantor arrays in Fig. 1.

As proven in [22], Cr has a hole-free difference coarray Dr

with size |Dr| = 3r. Hence, Cantor arrays satisfy Criteria 1 to 3
along with symmetry. However,

|Dr| = 3r = (2log2 3)r = (2r)log2 3 = N log2 3,

i.e., the difference coarray has size O(N log2 3) ≈ O(N1.585).
This asymptotic result is inferior to the performance obtained
by other sparse arrays such as nested arrays and MRAs that
have size O(N2) difference coarray. In addition, the number of
sensors N is constrained to be a power of two.

To overcome these limitations, we next present a fractal
scheme in which the generator is taken to be a sparse array.
We show that Cantor arrays are a special case of the proposed
arrays and that an appropriate choice of the generator leads to
fractal arrays with increased DOF.

B. Sparse Fractal Arrays

Here we introduce a fractal array design in which a generator
array is expanded in a simple recursive fashion. We study the
properties of the resultant arrays and prove they fulfill Criteria
1 to 3 when the generator satisfies them.

Consider an L element linear array whose sensor locations
correspond to an integer set G (|G| = L). Denote the difference
coarray of G by D and let U be the central ULA of D. We propose
the following fractal array definition:

F0 � {0},
Fr+1 �

⋃
n∈G

(Fr + n|U |r), r ∈ N, (5)

where |U | denotes the cardinality of the set U . Note that F1 is
exactly the array G, known as the generator in fractal terminol-
ogy [36]–[39]. For brevity, we define the array translation factor
as M � |U | and we refer to r as the array order. Definition (5)
is similar to the definition given in [48], but here we do not
assume the generator has a hole-free difference coarray and the
translation factor is determined by the central ULA.

The fractal array Fr consists of replicas of Fr−1 translated
according to the element locations of G and the cardinality of

U . This process is repeated a finite number of times, given
by the array order r, to create a fractal array composed of
copies of the generator where the number of sensors is Lr at
most. When G = [0 1], the array definition (5) reduces to (4),
therefore, the proposed arrays can be seen as a generalization of
Cantor arrays. Unlike previous related work [35]–[39] where the
translation factor can be an arbitrary natural number, here, it is
directly determined by the generator’s difference coarray. Fig. 2
illustrates fractal arrays created by (5) using different generators.

Next, we show that an appropriate choice of the generator
leads to fractal arrays which meet Criteria 1 to 3. First, the
suggested arrays are expressed in closed-form, hence, they
automatically satisfy Criterion 1. The result related to Criteria 2
is stated in the following theorem.

Theorem 1: Consider an array G whose difference coarray is
D. Let Fr be the fractal array created according to (5) with G
for some fixed r. The difference coarray Dr of Fr is a hole-free
array if D is hole-free. Moreover, we have

Dr =

[
−Mr − 1

2
,
Mr − 1

2

]
,

where M = |U | = |D|.
Proof: We prove the theorem by induction.
� Base (k = 1): In this case F1 = G. Hence, D1 = D which

can be written as

D1 = D =

[
−M − 1

2
,
M − 1

2

]
,

where M = |D| since D is hole free.
� Assumption (k = r): Dr is a hole-free array given by

Dr =

[
−Mr − 1

2
,
Mr − 1

2

]
.

� Step (k = r + 1): By the definition of the difference coar-
ray, we have

Dr+1 � {k − l : k, l ∈ Fr+1}
= {s+ uMr − (t+ vMr) : s, t ∈ Fr, u, v ∈ G}
= {(s− t) + (u− v)Mr : s, t ∈ Fr, u, v ∈ G}
= {m+ nMr : m ∈ Dr, n ∈ D}.

Since D and Dr are hole-free and satisfy |D| = M, |Dr| =
Mr, we obtain that Dr+1 consists of M consecutive repli-
cas of Dr. Hence, Dr+1 is hole-free and

Dr+1 =

[
−Mr+1 − 1

2
,
Mr+1 − 1

2

]
.

�
Theorem 1 demonstrates the importance of the difference

coarray in our array definition. Choosing a generator whose
difference coarray is hole-free, e.g., a ULA, leads to a fractal
array that satisfies Criterion 2 for any order r. For example, when
the generator is a nested array the resultant fractal array has a
contiguous difference coarray, while for a coprime generator
array we get holes (see Fig. 3). Notice that when the generator
has a hole-free difference coarray, it holds that |Fr| = |G|r.

We continue to the third criteria.
Theorem 2: Consider an L element array G whose difference

coarray satisfies M � |U | = O(L2). Let Fr be the fractal array
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Fig. 2. Fractal Arrays. Different generator arrays (a) Cantor array, (c) ULA, (e) MRA, (g) MHA and their respective fractal extensions with (b) r = 3,
(d) r = 3, (f) r = 2, (h) r = 2.

Fig. 3. Difference Coarray. Different generator arrays (a) expanded coprime array, (e) nested array, (i) MRA and the non-negative parts of their difference
coarrays given by (b), (f), and (j) respectively. The fractal extensions for r = 2 of the generators are shown in (c), (g), and (k), while the corresponding non-negative
parts of their difference coarrays are (d), (h), and (l).

created according to (5) with G for some fixed r. Then, the
difference coarray Dr of Fr satisfies

|Dr| = O(N2),

where N ≤ Lr is the number of physical sensors in Fr.
Proof: Denote by Ur the central ULA of Dr. We first prove

by induction that[
−Mr − 1

2
,
Mr − 1

2

]
⊆ Ur,

implying that |Ur| = O(Mr).
� Base (k = 1): In this case F1 = G. Therefore, U1 = U

which can be written as

U1 = U =

[
−M − 1

2
,
M − 1

2

]
,

whereM = |U | since U is a symmetric ULA by definition.

� Assumption (k = r): Assume that[
−Mr − 1

2
,
Mr − 1

2

]
⊆ Ur.

� Step (k = r + 1): We define the following sets

Tr �
[
−Mr − 1

2
,
Mr − 1

2

]
,

Yr � {m+ nMr : m ∈ Tr, n ∈ U} ,
Vr � {m+ nMr : m ∈ Ur, n ∈ U}.

Notice that we can write Yr explicitly as

Yr =

[
−Mr+1 − 1

2
,
Mr+1 − 1

2

]
.
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Furthermore, it holds that Ur ⊆ Vr and by definition of
the central ULA we obtain that Ur+1 includes Vr, i.e.,
Vr ⊆ Ur+1. By the induction assumption, we have that
Tr ⊆ Ur, hence, Yr ⊆ Vr which in turn suggests that

Yr =

[
−Mr+1 − 1

2
,
Mr+1 − 1

2

]
⊆ Ur+1,

since Vr ⊆ Ur+1. Thus, we get that

|Ur+1| ≥
∣∣∣∣∣
[
−Mr+1 − 1

2
,
Mr+1 − 1

2

] ∣∣∣∣∣ = Mr+1.

Now, since Ur ⊆ Dr we have

|Dr| ≥ |Ur| ≥ 2

(
Mr − 1

2

)
+ 1 = Mr,

i.e., |Dr| = O(Mr). Finally, since M = O(L2) and N ≤ Lr

we obtain that Mr = O(L2r) and thus

|Dr| = O(Mr) = O(L2r) = O(N2),

completing the proof. �
Theorem 2 implies that for a proper choice of the generator,

e.g., a co-prime array, we obtain fractal arrays that fulfill Crite-
rion 3. In particular, the size of the central ULA is |U | = O(N2)
where N is the number of physical elements, as occurs in nested
arrays and coprime arrays. Thus, the proposed fractal arrays are
an improvement over Cantor arrays since they exhibit increased
DOF and their number of sensors N is not necessarily a power
of two.

From the last two theorems, we can use a generator with a large
contiguous difference coarray, such as a nested array (Fig. 3), to
create an arbitrarily large array that satisfies Criteria 1 to 3. In the
following section, we show that similar results can be obtained
for other significant array properties.

IV. SPARSE FRACTAL ARRAY PROPERTIES

As shown in the previous section, we can build fractal arrays
that satisfy the major criteria of sparse array design. How-
ever, other known array geometries also meet these criteria,
for instance, nested arrays. To emphasize the advantage of the
proposed fractal arrays, we extend our study to other desired
array properties [20], [22], [24], [49] which are important in
diverse applications. Similar to Section III-B, we show that these
fractal array properties are induced by the generator.

A. Symmetry

Symmetric arrays are favorable in various applications rang-
ing from DOA estimation [19] to ultrasound imaging [4], [5],
[50], [51]. Symmetry induces a special structure on the acquired
signals which can be exploited to reduce the computational
burden, aid in calibration and ultimately improve DOA estima-
tion [15]–[19], [52].

Definition 4 (Reversed Array): Consider a sensor array G.
The reversed version of an array G is defined as

Ĝ � {max(G) + min(G)− n | n ∈ G}.
As we assume that min(G) = 0 for any array, the above defini-
tion reduces to

Ĝ = {max(G)− n | n ∈ G}.

Definition 5 (Symmetric Array): Consider a sensor array G
and denote by Ĝ its reversed array. We say that an array G is
symmetric if G = Ĝ.

The following theorem states a sufficient condition for fractal
arrays to be symmetric.

Theorem 3: Let Fr be a fractal array whose generator is G.
Then, Fr is symmetric if G is symmetric.

Proof: We prove the theorem by induction.
� Base (k = 1): F1 = G, hence, F1 is symmetric.
� Assumption (k = r): Fr is symmetric.
� Step (k = r + 1): First, we assume min(G) = 0, leading

to min(Fr) = 0. In addition, we can rewrite Fr+1 as

Fr+1 = {m+ nMr : m ∈ Fr, n ∈ G}.
Hence, we get

max(Fr+1) = max(Fr) + max(G)Mr,

min(Fr+1) = min(Fr) + min(G)Mr = 0. (6)

Let Ĝ, F̂r and F̂r+1 denote the reversed arrays of G, Fr and
Fr+1 respectively. From the above equations we obtain

F̂r+1 � {max(Fr+1) + min(Fr+1)− l : l ∈ Fr+1}
= {max(Fr+1)− l : l ∈ Fr+1}
= {max(Fr) + max(G)Mr − l : l ∈ Fr+1}.

Note that each l ∈ Fr+1 can be expressed as l = m+ nMr

for some m ∈ Fr and n ∈ G. Therefore,

F̂r+1 = {max(Fr+1)− (m+ nMr) : m ∈ Fr, n ∈ G}
= {max(Fr) + max(G)Mr − (m+ nMr) :

m ∈ Fr, n ∈ G}
= {max(Fr)−m+ (max(G)− n)Mr :

m ∈ Fr, n ∈ G}
= {m̂+ n̂Mr : m̂ ∈ F̂r, n̂ ∈ Ĝ},

where the last equality follows from the definition of the
reversed array. Since Ĝ = G and F̂r = Fr, we get

F̂r+1 = {m̂+ n̂Mr : m̂ ∈ Fr, n̂ ∈ G} = Fr+1,

so that Fr+1 is symmetric. �
For Cantor arrays, the generator is G = [0 1] which is sym-

metric. Thus, Theorem 3 provides an alternative explanation for
the result presented in [22] regarding the symmetry of Cantor
arrays.

B. Weight Function and Beampattern

Next, we consider the weight function and beampattern of
fractal arrays. The weight function is an important characteristic
of a linear array and is associated with several array properties
such as mutual coupling [20], [26], array economy [22] and
robustness [23]–[25]. In addition, the array beampattern, related
to the weight function through the Fourier transform, dictates
the array directivity and impacts the performance of correlation-
based estimators and beamformers.

We start with defining the weight function and the correspond-
ing beampattern.
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Definition 6 (Weight Function): Consider a sensor array G.
The weight function wG(m) equals the number of sensor pairs
in G with separation m. Namely, [22]

wG(m) =
∣∣{(n1, n2) ∈ G2 : n1 − n2 = m}∣∣ ,

where we define S2 � S × S for any set S.
Note that wG(m) > 0 for any m ∈ D and zero otherwise,

where D is the difference coarray of G. Thus, the weight
function is directly related to the difference coarray as well as
the beampattern defined next.

Definition 7 (Beampattern): Consider a sensor array G whose
difference coarray is D. The beampattern of G is defined as

BG(ω) �
∑
m∈D

wG(m) exp (−jωm) ,

where wG(m) is the weight function of G, ω = π sin(θ) and
j =

√−1 is the imaginary unit.
Since wG(m) is an even function [42], the beampattern

BG(ω) is real-valued. Moreover, wG(m) = 0 for any m /∈ D,
therefore

BG(ω) =
∑
m∈D

wG(m) exp (−jωm)

=

∞∑
m=−∞

wG(m) exp (−jωm) = F{wG}(ω),

where F{·} represents the discrete-time Fourier transform.
To derive both the weight function and the beampattern, we

use the next definition.
Definition 8 (�-Expansion): Consider a sensor array G whose

weight function is wG(m). Given a positive integer �, we define
the �-expansion of wG(m) as the function

w↑�
G (m) �

{
wG(n), m = n�,

0, otherwise.

In other words, we create w↑�
G by adding �− 1 zeros between

each pair of consecutive entries of wG .
The Fourier transform of w↑�

G is given by

F{w↑�
G}(ω) =

∞∑
m=−∞

w↑�
G (m) exp (−jωm)

=

∞∑
n=−∞

wG(n) exp (−jωn�)

= BG(�w).

Equipped with the above definition, we provide closed-form
expressions for the weight function and the beampattern of
fractal arrays in the following theorem.

Theorem 4: Let Fr be a fractal array whose generator is G.
Denote the weight function and beampattern of G by wG and
BG(ω) respectively. The weight function wr of Fr is then given
by

w0(m) = δ(m),

wr(m) =
r−1
�
i=0

w↑Mi

G (m), r ≥ 1,

where δ(·) is the Kronecker delta function and � denotes mul-
tiple convolution operations. The beampattern Br(ω) of Fr is

given by

Br(ω) =
r−1∏
i=0

BG

(
M iω

)
,

where BG(ω) is the beampattern of G.
Proof: We first prove the expression for the weight function.

Note that F0 = D0 = {0}, hence, w0(m) = δ(m). For r ≥ 1,
we prove the result by induction.
� Base (k = 1): In this case F1 = G, and indeed we get

w1 =
0
�
i=0

w↑Mi

G = w↑1
G = wG.

� Assumption (k = r): wr =
r−1
�
i=0

w↑Mi

G .
� Step (k = r + 1): By definition,

wr+1(m) �
∣∣{(m1,m2) ∈ F2

r+1 : m1 −m2 = m}∣∣.
Recall that each v ∈ Fr+1 can be expressed as v = n1 +
n2M

r for some n1 ∈ Fr and n2 ∈ G. Therefore,

wr+1(m) =
∣∣{(m1,m2) ∈ F2

r+1 : m1 −m2 = m}∣∣
=
∣∣{(n1, n2, l1, l2) ∈ F2

r × G2 :

n1 + l1M
r − (n2 + l2M

r) = m}∣∣
=
∣∣{(n1, n2, l1, l2) ∈ F2

r × G2 :

n1 − n2 + (l1 − l2)M
r = m}∣∣.

Now, for a fixed l ∈ D, consider the product between the
number of tuples (l1, l2) and the number of tuples (n1, n2)
that satisfy l1 − l2 = l and n1 − n2 = m− l ·Mr respec-
tively. Notice that computing the latter for all l ∈ D and
summing the results equals the desired number of quadru-
ples (n1, n2, l1, l2). Thus, we can write

wr+1(m) =
∑
l∈D

(
∣∣{(l1, l2) ∈ G2 : l1 − l2 = l}∣∣

· ∣∣{(n1, n2) ∈ F2
r : n1 − n2 = m− l ·Mr}∣∣).

In addition, we have that

wG(l) =
∣∣{(l1, l2) ∈ G2 : l1 − l2 = l}∣∣,

wr(m− l ·Mr) =
∣∣{(n1, n2) ∈ F2

r :

n1 − n2 = m− l ·Mr}∣∣.
Hence, we obtain

wr+1(m) =
∑
l∈D

wG(l)wr(m− l ·Mr).

Since wG(l) = 0 for any l /∈ D, we have w↑Mr

G (n) = 0 for
any n 
= l ·Mr (l ∈ Z) which leads to

wr+1(m) =
∑
l∈Z

wG(l)wr(m− l ·Mr)

=
∑
n∈Z

w↑Mr

G (n)wr(m− n)

=
{
w↑Mr

G � wr

}
(m).

By our assumption on wr we get

wr+1 = w↑Mr

G � wr =
r
�
i=0

w↑Mi

G .
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Fig. 4. Weight Functions and Beampatterns. (a) The weight function wG(m) of G = [0 1 4 6] and (b) its �-extension w↑�
G
(m) with � = 13. (c) The weight

function w2(m) of the second-order fractal extension of G, given by the convolution of (a) and (b) indicated by red symbols. The beampatterns related to wG(m),
w↑�

G
(m) and w2(m) are shown in (d), (e), and (f) respectively, where the latter stems from the product marked in red.

Finally, multiple convolution operations translate to products
in the Fourier domain, leading to the given expression for the
beampattern. �

Theorem 4 provides simple expressions for both the weight
function and beampattern which facilitate their analysis and
optimization. These expressions suggest that the choice of the
generator has a significant impact on the beampattern of the
resultant fractal array with respect to the side-lobe level, grating
lobes and the main-lobe, where the latter is also directly affected
by the array order r.

To demonstrate the above, we present a simple example in
Fig. 4 where we use an MHA as a generator G = [0 1 4 6]
and its fractal extension F2. The generator’s weight function
wG(m) and its �-extension w↑�

G (m) are shown in Fig. 4(a) and
4(b) respectively where � = 13 is determined by the difference
coarray. The weight functionw2(m)of F2, displayed in Fig. 4(c),
results from the convolution (marked in red) of wG(m) and
w↑�

G (m), as stated by Theorem 4. In addition, we provide in
Fig. 4 the beampatterns BG(ω), BG(�ω) and B2(ω) which
correspond to the weight functions wG(m), w↑�

G (m) and w2(m)
respectively. As can be seen, the beampattern BG(�ω), given in
Fig. 4(e), consists of � copies of the generator’s beampattern
shown in Fig. 4(d), each compressed by a factor of �. We
outline in blue the beampattern B2(ω) of F2 in Fig. 4(f), which
results from the product of wG(m) and BG(�ω) shown in
dashed-lines.

Observing the beampatterns, we can infer that the main-lobe
of B2(ω) is determined by the main-lobe of BG(ω) (which in
turn is dictated by the generator difference coarray) and the
compression factor �r−1 where r is the array order. Therefore,
the main-lobe width of B2(ω) decreases as � and r increase,
which is expected since the array aperture grows accordingly.
Moreover, typically, the minimum inter-element spacing of the
generator is half the wavelength to prevent grating lobes. This
ensures that the beampattern of the resultant fractal array also

exhibits no grating lobes thanks to the product expression given
in Theorem 4 which eliminates any grating lobes appearing
in BG(�ω). Note, however, that the side-lobe level of B2(ω)
may be lower (as in Fig. 4) or higher than that of BG(ω).
Therefore, the generator should be carefully designed to achieve
adequate side-lobe levels. One can obtain low side-lobes by
relying on the expression of the beampattern given in Theorem 4
and computing appropriate weights to apply on the difference
coarray of Fr.

C. Array Economy and Robustness

Two contradicting properties of an array are the array econ-
omy and robustness to sensor failures. Array economy is related
to the essentialness of each sensor which means that removing a
specific sensor degrades the difference coarray [22]. To reduce
power and cost, one may desire to remove redundant array
elements. When all sensors are essential, the array is said to
be maximally economic [22]. On the other hand, sensors might
malfunction and create discontinuities (holes) in the difference
coarray, making maximally economic arrays sensitive to element
faults. Therefore, redundant elements may be added to make the
array robust to sensor failures.

Here we investigate fractal arrays with respect to the proper-
ties of essentialness and robustness using the notion of fragility
introduced in [23]. To that end, we begin with the following
definitions.

Definition 9 (Essentialness): Consider a sensor array G
whose difference coarray is D. Given a sensor n ∈ G, de-
fine G−n = G \ {n} and denote the corresponding difference
coarray by D−n. The sensor located at n ∈ G is said to be
essential [22] if D−n 
= D. The sensor n is inessetinal if it is
not essential.

Definition 10 (Maximally Economic): A sensor array G is
said to be maximally economic if all of its sensors are essential.
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Lemma 1: [22] Consider a sensor array G whose weight
function is wG . If n1, n2 ∈ G and wG(n1 − n2) = 1, then n1

and n2 are both essential with respect to G.
Lemma 1 indicates that a sensor n1 ∈ G is essential if there

exists n2 ∈ G such that wG(n1 − n2) = 1. Note, however, that
the converse may not be true, i.e., the lack of such n2 does not
automatically imply that n1 is inessential.

Given Lemma 1, a sufficient but not necessary condition for
an array G to be maximally economic can be defined as follows

∀n1 ∈ G, ∃n2 ∈ G : wG(n1 − n2) = 1. (C1)

This condition, however, requires to test the essentialness of
each sensor, leading to heavy calculations for large arrays. The
result of the next theorem avoids this computational burden by
guaranteeing that fractal arrays satisfy condition (C1) when the
generator fulfills it.

Theorem 5: Let Fr be the fractal array generated from G
whose difference coarray is hole-free. Then, F satisfies condition
(C1) if G satisfies it.

Proof: First, observe that F0 = {0}, hence, w0(0− 0) = 1
and F0 is maximally economic and satisfies condition (C1). For
r ≥ 1 we prove the theorem by induction.
� Base (k = 1): In this case, F1 = G, therefore, F1 is maxi-

mally economic by satisfying condition (C1).
� Assumption (k = r): Fr is maximally economic by satis-

fying condition (C1).
� Step (k = r + 1): Both G and Fr are maximally economic

by satisfying condition (C1). Hence, it holds that

∀l1 ∈ G, ∃l2 ∈ G : wG(l1 − l2) = 1,

∀n1 ∈ Fr, ∃n2 ∈ Fr : wr(n1 − n2) = 1.

Consider an arbitrary m1 ∈ Fr+1. By the array defini-
tion, there exist n1 ∈ Fr and l1 ∈ G such that m1 =
n1 + l1M

r. Moreover, since G and Fr are maximally
economic by satisfying condition (C1), there exist n2 ∈ Fr

and l2 ∈ G such that

wG(l1 − l2) = 1, wr(n1 − n2) = 1.

Define m = m1 −m2 where m2 = n2 + l2M
r. Since

m2 ∈ Fr+1, we have that m ∈ Dr+1 and wr+1(m) > 0.
We next prove that wr+1(m) = 1. Following the proof of
Theorem 4 we write wr+1(m) as

wr+1(m) =
∑
l∈D

wG(l)wr(m− l ·Mr).

According to Theorem 1, Dr is hole-free and

Dr =

[
−Mr − 1

2
,
Mr − 1

2

]
.

This implies thatwr(n) = 0, for anyn /∈ [−Mr−1
2 , Mr−1

2 ].
Hence, for l ∈ D we have that wr(m− lMr) > 0 if

−Mr − 1

2
≤ m− lMr ≤ Mr − 1

2
,

i.e., when l satisfies

−Mr − 1

2
≤ n1 − n2 + (l1 − l2)M

r − lMr ≤ Mr − 1

2
.

From the latter we conclude that wr(m− lMr) > 0 when
l = l1 − l2 and zero otherwise. This leads to

wr+1(m) = wG(l1 − l2)wr(n1 − n2) = 1 · 1 = 1.

Therefore, m1 is essential. Finally, since m1 was chosen
arbitrarily, all sensors in Fr+1 are essential, i.e., Fr+1

fulfills condition (C1) and it is maximally economic. �
From Theorem 5, Cantor arrays are maximally economic

since their generator G = [0 1] is maximally economic and ex-
hibits a hole-free difference coarray. Hence, Theorem 5 extends
the result of the economy of Cantor arrays presented in [22].

Next, we study the robustness of fractal sparse arrays, starting
with fragility.

Definition 11 (Fragility): Consider a sensor array G. Define
the following sub-array E = {n ∈ G | n is essential w.r.t G}.
The array fragility FG is defined as [23]

FG � |E|
|G| .

The fragility FG quantifies the robustness/sensitivity of the
difference coarray to sensor failures [23].

The fragility of any sparse array with N ≥ 4 sensors satisfies
2
N ≤ FG ≤ 1. For maximally economic sparse arrays E = G,
hence, FG = 1. In contrast, an array such as a ULA and a
RMRA [25] exhibit minimum fragility FG = 2

N .
The theorem below provides a relation between the fragility

of the generator and the fragility of the fractal array created from
it.

Theorem 6: Let Fr be the fractal array generated from G
whose difference coarray D is hole-free. Denote by FG and Fr

the fragility of G and Fr respectively. Then, it holds that

Fr ≤ FG, ∀r ≥ 1,

implying that Fr is at least as robust as G is.
Proof: We prove the theorem by induction.
� Base (k = 1): F1 = G, hence, F1 = FG ≤ FG .
� Assumption (k = r) : The fragility of Fr satisfies Fr ≤
FG .

� Step (k = r + 1): Denote by L the number of elements in
G. Define Er and Ir as the sets of essential and inessential
sensors of Fr respectively. Notice that Er ∩ Ir = ∅, hence,
|Fr| = |Er|+ |Ir|. The fragility of Fr can be written as

Fr =
|Er|
|Fr| =

|Fr| − |Ir|
|Fr| =

Lr − |Ir|
Lr

,

where |Fr| = Lr since G has a hole-free difference coar-
ray. Consider an arbitrary n ∈ Ir and define F

′
r = Fr \

{n}. Denoting by Dr and D
′
r the difference coarrays of Fr

and F
′
r respectively, we have that D

′
r = Dr. In addition,

we define the following fractal extension of F
′
r as

F
′
r+1 = {m+ n |D|r | m ∈ F

′
r, n ∈ G}.

Notice that F
′
r+1 ⊆ Fr+1 and following the proof of Theo-

rem 1, we get that D
′
r+1 = Dr+1. Since the latter is true for

any n ∈ Ir, we have that |Ir+1| ≥ L · |Ir| where Ir+1 is
the set of inessential sensors w.r.t Fr+1. Therefore, it holds
that

Fr+1 =
Lr+1 − |Ir+1|

Lr+1

≤ Lr+1 − L · |Ir|
Lr+1

=
Lr − |Ir|

Lr
= Fr ≤ FG,

completing the proof. �
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Fig. 5. Economy and Robustness. (a) Maximally economic array and (c) RMRA. The fractal extensions for r = 2 of (a) and (c) are (b) and (d) respectively.
The fragility values of arrays (a)-(d) are 1, 1, 1/3, and 1/9.

Theorem 6 suggests a simple way for constructing large
robust arrays. We demonstrate this approach in Fig. 5 using
fractal extensions of several MRAs and RMRAs, exemplifying
a maximally economic fractal array versus a robust fractal array.

As can be expected, the increase in the array robustness as
the array order r grows is at the expense of sensor redundancy,
leading to lower DOF with respect to the number of physical
sensors. Thus, the array order r should be kept small, in the
range 2-4 which is typically adequate for creating sufficiently
large arrays. Moreover, the generator should be carefully chosen
according to the quality and cost of the sensing device. For
example, when the total budget or hardware constraints dictate
the use of sensors susceptible to failures, the generator must be
designed to exhibit low fragility while compromising on the size
of the difference coarray with regard to the physical elements.

D. Mutual Coupling

In Section II-A we presented the signal model under the
assumption that the elements do not interfere with each other.
However, in practice, any sensor output is influenced by its
adjacent sensors. This phenomena, called mutual coupling, has
an adverse effect on the beampattern, degrading the performance
of correlation-based estimators.

To address the effect of mutul coupling, we modify the signal
model (1) as follows:

x =
K∑
i=1

siCa(θi) +w = CAs+w, (7)

where C is a mutual coupling matrix derived from electromag-
netics [20], [49]. Assuming an N -element array G, we consider
a reduced coupling model [49], [53] where C is an N ×N
symmetric Toeplitz matrix given by

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ci . . . cq 0 . . . 0

ci 1
. . .

...
...

. . .
. . . 0

cq
. . . cq

0
. . .

. . .
...

...
. . .

. . . ci

0 . . . 0 cq . . . ci 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

and c|n−m| ∈ C represents the coupling coefficient of a pair of
sensors n,m ∈ G. The coefficients depend only on the element
separation, leading to a coupling matrix with constant diagonals.
Furthermore, they satisfy c0 = 1 and |cj | < |ci| for any i, j ∈
D such that |i| < |j| where D is the difference coarray of G.
The coupling limit, represented by q, implies that for i > q the
coefficient ci can be neglected (|ci| ≈ 0). Note that q is a function
of the number of sensors and the sensor separation distance. Here
we assume that q < max(G) [20], [49].

When C is diagonal, the sensors are not coupled with each
other. Therefore, the energy of the off-diagonal components of
C are used to quantify the mutual coupling as defined below.

Definition 12 (Coupling Leakage [20]): Consider a sensor
array G with a mutual coupling matrixC. We define the coupling
leakage as

L � ||C− diag(C)||F
||C||F

where || · ||F denotes the Frobenius norm and diag(C) is a
matrix constructed by taking C and zeroing the off-diagonal
elements.

Note that 0 ≤ L ≤ 1 and the smallerL is, the lower the mutual
coupling. Under mild conditions, the proposed fractal arrays and
their generators have the same coupling leakage, as shown in the
following theorem.

Theorem 7: Let Fr be the fractal array generated from G.
Denote by LG and Lr the coupling leakage of G and Fr respec-
tively. Assuming the coupling limit q satisfies q < max(G) and
q +max(G) < |U |, it holds that

Lr = LG.

Proof: First, for any N ×N matrix Q we have that

||In ⊗Q||F =
√
n ||Q||F , diag(In ⊗Q) = In ⊗ diag(Q),

where ⊗ represents the Kronecker product and In is the n× n
identity matrix for some n ∈ N.

Under the assumptions q < max(G) and q +max(G) <
|U |, the fractal array Fr consists of |G|r−1 non-overlapping
replicas of G where each pair of copies are separated by more
than q. Therefore, sensors from different replicas do not interfere
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Fig. 6. Mutual Coupling. (a) A nested array followed by (b) its fractal extension for r = 2, (c) a super nested array and (d) its fractal extension for r = 2. The
coupling leakage of (a) and (b) is 0.3159, whereas (c) and (d) achieve a lower value of 0.2676.

with each other. This induces a block diagonal coupling matrix

Cr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C 0 . . . . . . 0

0
. . .

. . .
...

...
. . . C

. . .
...

...
. . .

. . . 0

0 . . . . . . 0 C

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (9)

where C and Cr are the coupling matrices of G and Fr respec-
tively. This relation can be expressed analytically as

Cr = Ir̃ ⊗C,

where r̃ � |G|r−1. Hence, the coupling leakage of Fr is

Lr � ||Cr − diag(Cr)||F
||Cr||F

=
||Ir̃ ⊗C− diag(Ir̃ ⊗C)||F

||Ir̃ ⊗C||F
=

||Ir̃ ⊗C− Ir̃ ⊗ diag(C)||F
||Ir̃ ⊗C||F

=
||Ir̃ ⊗ (C− diag(C))||F

||Ir̃ ⊗C||F

=

√
r̃√
r̃

||C− diag(C)||F
||C||F

= LG,

completing the proof. �
Unlike previous works, e.g., [49], that assume the coupling

limit satisfies q < N for an N element ULA, here, we require
q < max(G) which is a weaker condition, since the number
of sensors satisfies N ≤ max(G) for non-uniform arrays. Fur-
thermore, 2 ·max(G) < |U | for most of the known sparse
geometries such as coprime arrays and nested arrays, and in
particular for any array whose difference coarray is hole free.
Therefore, given that q < max(G), the majority of existing
sparse arrays meet the second assumption in Theorem 7 of
q +max(G) < |U |.

The result of Theorem 7 can be used to easily design large
sparse arrays with predetermined coupling leakage. To demon-
strate this, we use super-nested arrays and present their frac-
tal extension in Fig. 6. The coupling coefficients are chosen
as c1 = 0.3ejπ/3 and ci =

c1
i e

−j(i−1)π/8 for 2 ≤ i ≤ q where
q = max(G)− 1.

E. Multi-Generators

Thus far, we have shown the benefits of sparse fractal arrays.
However, a possible drawback of the proposed arrays is the
exponential growth of the number of sensors with the array order.
To circumvent this limitation, we extend (5) to the following
array definition

M0 � {0},Mr+1 �
⋃

n∈Gr+1

(
Mr + n

r∏
i=0

|Ui|
)
,

r ∈ {0, 1, , . . . , R− 1}, (10)

where {Gr}Rr=1 are given generator arrays for a fixed R > 0.
To the best of our knowledge, the use of multiple generators
has not been investigated before. In this scheme, a different
generator is used at each iteration and the translation factor is
determined by the difference coarrays of the generators from pre-
vious iterations. When all the generators are identical, the array
(10) reduces to (5), thus it generalizes the latter. Furthermore,
it allows the number of sensors to be any composite number,
not necessarily a perfect power, which grows gradually with the
array order. However, these advantages come at the expense
of designing multiple arrays, as each one of the generators
may impact the resultant array. Moreover, depending on the
chosen generators, the arrays created recursively may not exhibit
self-similarity, i.e., they might not be fractal in practice.

In the following we present extensions of Theorem 1 and
Theorem 2 for the array configuration (10). Theorem 8 describes
the conditions for which the resultant fractal arrays have hole-
free difference arrays, while Theorem 9 relates to the size of
the difference coarray and the number of DOF. The theorems
presented before in regard to other properties, can be generalized
in a similar fashion.

Theorem 8: Let R be a fixed positive integer and consider a
series of generators {Gi}Ri=1 and their corresponding difference
coarrays {DGi

}Ri=1. We assume DGi
is hole-free for any 1 ≤

i ≤ R. Let Fr be the fractal array created according to (10) with
{Gi}Ri=1 for some fixed r ≤ R. The, the difference coarray Dr

of Mr is hole-free and we have

Dr =

[
−Mr − 1

2
,
Mr − 1

2

]
,

where Mr =
∏r

i=1 |DGi
| for all 1 ≤ r ≤ R.

Proof: See Appendix A. �
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Fig. 7. Multi-Generators. (a) Super nested array, (b) nested array, (c) the fractal composition of (a) and (b), (d) the fractal composition of (b) and (a), (e) RMRA,
(f) maximally economic array, (g) the fractal composition of (e) and (f), (h) the fractal composition of (f) and (a). The coupling leakage of (a)–(d) is 0.3016, 0.3159,
0.3016, and 0.3168 respectively. The fragility of (e)–(d) is 1/3, 1, 1/3, and 1/3 respectively.

Theorem 9: Let R be a fixed positive integer and consider
a series of generators {Gi}Ri=1. We denote by {DGi

}Ri=1 the
corresponding difference coarrays and their central ULAs by
{UGi

}Ri=1. Let Fr be the fractal array created according to
(10) with {Gi}Ri=1 for some fixed r ≤ R. Assuming |UGi

| =
O(|Gi|2) for all 1 ≤ i ≤ r, the difference coarray Dr of Mr

satisfies

|Dr| = O(N2)

for all 1 ≤ r ≤ R, where N ≤∏r
i=1 |G|i is the number of

physical sensors in Mr.
Proof: See Appendix B. �
Theorems 8 and 9 show the generalized arrays (10) fulfill

Criteria 2 and 3. The major benefit of (10) is that it allows to
combine diverse sparse geometries. The generators and their
order need to be designed appropriately, since they affect the
properties of the resultant fractal arrays, as shown in Fig. 7. For
example, it can be verified that the fractal arrays are symmetric
when all the generators are symmetric.

V. NUMERICAL EXPERIMENTS

Here we demonstrate the benefits of the proposed fractal
scheme in designing large sparse arrays with multiple properties.
We provide an analysis of the fractal arrays in comparison to
several well-known sparse arrays mentioned earlier. Throughout
the experiments, we assume that array motion [28], virtual array
interpolation [54] and decoupling methods are not involved.

We consider a representative array design with the following
requirements:

(R1) Symmetric array,
(R2) Contiguous difference coarray (hole-free),
(R3) Large difference coarray,
(R4) Robustness to sensor failures - F ≤ 0.3,
(R5) Mutual coupling - L ≤ 1/3,
(R6) Constrained Aperture - A ≤ 840 d,

whereF is the array fragility,L is the array coupling leakage and
A denotes the size of the physical array aperture. We assume for
simplicity that the element spacing is d = λ

2 = 1. For the cou-
pling coefficients, we first parametrize |c1| and then determine
|c2|, . . ., |cq| where q = 15 assuming that the magnitudes of the
coefficients are inversely proportional to the sensor separation

(
|cj |
|ci| =

i
j ). The phases of the coefficients are drawn uniformly

at random from [−π, π). Note that, in general, we may include
in the design some conditions on the weight function or the
beampattern.

Our task is to construct a large sparse array which fulfills
the above requirements. A direct approach is to choose one out
of the many state-of-the-art sparse configurations shown before
such as MISC and RECA. However, these arrays do not meet the
required specifications. To see this, we provide in Fig. 8 a com-
parison between various known sparse arrays where each point
corresponds to a different array, spatially positioned according
to the array coupling leakage and fragility. As clearly seen, all of
the aforementioned sparse arrays are out of the feasible region
marked in green and determined by (R4)–(R5). Moreover, most
of the discussed arrays exhibit low mutual coupling and high
fragility. The reason for that lies in the fact that the design of these
arrays focuses in redistributing the elements and sparsifying the
array to obtain high DOF and low mutual coupling, which at
the same time reduces their robustness. Hence, the challenge is
to build a symmetric array which is relatively robust to sensor
failures and exhibits low mutual coupling leakage.

To that end, we consider our fractal scheme and first seek a
small generator array which meets the above specifications by
solving the following problem

S = argmin
T

|T | subject to (R1)–(R5), AT ≤ 20 d, (P1)

where AT denotes the physical aperture of the arrays. We seek
an array with the fewest elements to promote economy. Problem
(P1) can be solved by e.g., performing a naive exhaustive search
over all 220 possible arrays. This of course is possible only for
small scale. A solution of problem (P1) is

S = [0 1 2 4 7 10 13 16 18 19 20],

which exhibits fragility of FS = 0.27 and coupling leakage of
LS = 0.3. In addition, we solve (P1) ignoring the symmetry
constraint, leading to the following solution:

G = [0 1 3 5 11 13 17 18 19 20].

We later use the array G for additional comparison.
Now, we apply our recursive scheme (5) with r = 2 where we

utilize S and G as generators to create the sparse fractal arrays S2
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Fig. 8. Array Comparison. Displaying the tradeoff between coupling leakage and array fragility for various sparse configurations. The area colored in green
marks the feasible region in which the mutual coupling is less than 1/3 and the fragility is below 0.3. For better visualization, we provide an enlargement of the small
enclosed region in the large enclosed frame, connected by dashed lines. We set the array parameters for NA, SNA, ANA variants, and MISC as N1 = 8, N2 = 92,
while for CP, CCP, TCA, CACis, CADis, SECA, and RECA we choose M = 5, N = 92. The description of each array parameter can be found in the respective
manuscripts cited throughout our paper.

and G2 respectively. As proven throughout the paper, the array
construction (5) guarantees that S2 meets requirements (R1)–
(R6) as well as G2 excluding symmetry. This is seen in Fig. 8
where we can observe that both S2 and G2 are located inside
the feasible region. Thus, the fractal design allows us to create
large sparse arrays which demonstrate low mutual coupling and
low fragility simultaneously.

To further study the fractal arrays we analyse their perfor-
mance in DOA estimation, using the coarray MUSIC algorithm,
in comparison with commonly used sparse arrays: nested ar-
rays (NA), super nested arrays (SNA), extended coprime array
(CP) and complementary coprime arrays (CCP). We perform
the comparison in small scale, i.e., small apertures with few
elements, and in large scale while we examine three performance
aspects - mutual coupling, robustness to sensor failures and
sensitivity to noise. To evaluate the latter we use increasing
levels of signal-to-noise ratio (SNR), while for mutual coupling
we rely on the model described earlier with increasing values
of |c1|. To test robustness to sensor failures, we assume each
sensor fails independently with probability p and we assess
performance as a function of p. For the small scale scenario, we
consider K = 20 sources with unit-amplitudes and normalized
DOA θ̄i � sin(θi)/2 ∈ [−0.5, 0.5] equally spaced in the range
[−0.45, 0.45]. In addition, we set the array parameters of NA
and SNA as N1 = N2 = 4 [20], whereas the parameters of CP
and CPP [32] are M = 3, N = 4. We use a similar setup for the
large scale scenario but assumeK = 400unit-amplitude sources
with normalized DOA equally-distributed in the aforementioned
range. The parameters of NA and SNA are N1 = 8, N2 = 92
while for CP and CPP we use M = 5, N = 92. A summary
of the properties of the arrays tested is given in Table I. The
number of snapshots is 1000 for all cases. We assess each array
by applying coarray MUSIC to compute the estimated source di-

rections ˆ̄θi and calculating the root-mean squared error RMSE=

TABLE I
ARRAY PROPERTIES

(
∑K

i=1(θ̄i − ˆ̄θi)
2/K)1/2 averaged over 500 Monte-Carlo runs.

Note that as p increases more and more sensors malfunction,
compromising the array structure, so that MUSIC might fail
to yield any estimation. Therefore, as in [55], we only collect
and average the instances in which coarray MUSIC was able to
produce an estimation. To implement coarray MUSIC we utilize
the online available code [56] used in, e.g., [20], [55].

The simulation results, shown in Fig. 9, demonstrate that the
optimized arrays S and G are more robust than the other arrays
in all scenarios, achieving the lowest errors. As seen, when the
element coupling is low, S and G lead to small errors which
increase as |c1| increases until high mutual coupling is reached
and their performance is comparable to that obtained by the
other arrays. Moreover, S, G and CCP are less sensitive to noise
than the alternative arrays as they obtain low errors in low SNR
regions and achieve considerably better performance as SNR
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Fig. 9. Experiments. Performance comparison of the arrays described in Section V for the task of DOA estimation in three different scenarios: (left) increasing
mutual coupling, (middle) increasing probability to sensor failure and (right) increasing SNR. The results on the top line were obtained with small scale arrays
while those on the bottom were attained using large scale arrays whose properties are given in Table I. For (a), (b), (d), and (e) we used SNR = 0 dB.

increases. Finally, S, G outperform the other configurations,
including CCP, when the probability for sensor failure exceeds
a certain point, demonstrating the robustness of the optimized
arrays.

While we showed that S and G are superior to other inves-
tigated arrays, our actual goal is to show this performance is
maintained when we scale up the arrays to create S2 and G2.
To that end, we examine the results on the bottom of Fig. 9.
We observe that the fractal arrays yield low errors when the
mutual coupling is low, while in high coupling regions their
performance is slightly degraded yet comparable to that of
the other arrays. As clearly seen, both S2 and G2 surpass the
alternative arrays for different probabilities of failure and in
different SNR regimes, leading to considerably lower errors.
Above a probability of failure of p = 0.2, the fractal arrays lead
to acceptable errors while for the other arrays MUSIC failed
to produce DOA estimations. These results coincide with the
properties given in Table I where we see that while all arrays
exhibit relatively low coupling leakage, our fractal arrays are
dramatically more robust than the other arrays.

These experiments prove the effectiveness and simplicity
of the proposed approach for constructing large sparse ar-
rays while considering diverse specifications. We can con-
tinue and enlarge our generators further to create sparse frac-
tal arrays with thousands of elements, as shown in Table I,
which are expected to be required by applications such as
massive MIMO and ultrasound imaging in the forthcoming
years.

VI. CONCLUSION

The design of large sparse arrays poses a major challenge.
Various sparse geometries have been proposed over the last
decades. However, most of these designs focus on certain aspects

of the array while ignoring or being indifferent to other important
properties. Incorporating all desired design criteria leads to com-
binatorial problems which currently cannot be solved efficiently
in large scale.

In this paper, we introduce a fractal scheme in which we
use a sparse array as a generator and we expand it recursively
according to its difference coarray. We proved that for an ap-
propriate choice of the generator, the proposed design creates
sparse fractal arrays with increased degrees of freedom, i.e.,
large difference coarrays. Thus, we can extend any known
sparse configuration to an arbitrarily large array. Moreover, we
presented a detailed analysis of the fractal arrays with respect
to several important array characteristics. The analysis showed
that fractal arrays inherit from their generators properties such
as symmetry, array economy, mutual coupling and robustness
to sensor failures. The array weight function and beampattern
can also be easily derived from the generator. In addition, we
presented a generalized fractal scheme that allows to combine
different sparse geometries in which the number of sensors can
grow moderately with the array order.

Finally, we perform numerical experiments to demonstrate
the practicality of the proposed fractal scheme. We outline
a representative design plan which requires the array to be
symmetric and robust to sensor failures while exhibiting low
mutual coupling. As shown, most popular sparse configurations
do not meet these requirements as they were designed to achieve
high DOF which increases their fragility at the same time. We
then constructed fractal arrays using our design scheme which
display low coupling leakage and low fragility simultaneously.
We evaluate the performance of our fractal arrays in comparison
with several common sparse arrays, showing their superiority in
various scenarios. Thus, this work provides a simple and scalable
fractal approach for designing large scale sparse arrays with
multiple properties.
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APPENDIX A
PROOF OF THEOREM 8

We prove the theorem by induction.
� Base (k = 1): In this case M1 = G1. Hence, D1 = DG1

and it can be written as

D1 = D =

[
−M − 1

2
,
M − 1

2

]
,

where M = |DG1
| since we assume that DG1

is hole-free.
� Assumption (k = r): Dr is a hole-free array given by

Dr =

[
−Mr − 1

2
,
Mr − 1

2

]
,

where Mr =
∏r

i=1 |DGi
|.

� Step (k = r + 1): The difference coarray DGr+1
of Gr+1

is assumed to be hole-free, hence,

DGr+1
=

[
−
∣∣DGr+1

∣∣− 1

2
,

∣∣DGr+1

∣∣− 1

2

]
.

By definition of the difference coarray, we have

Dr+1 � {k − l : k, l ∈ Mr+1}
= {s+uMr−(t+vMr) : s, t ∈ Mr, u, v ∈ Gr+1}
= {(s−t) + (u−v)Mr : s, t ∈ Mr, u, v ∈ Gr+1}
= {m+ nMr : m ∈ Dr, n ∈ DGr+1

}.
Since DGr+1

is hole-free and Mr = |Dr|, we have that
Dr+1 consists of l = |DGr+1

| consecutive replicas of Dr:

Dr+1 = [Dr Dr . . . Dr]︸ ︷︷ ︸
l times

.

By our assumption Dr is hole-free, implying that Dr+1 is
hole-free and is given by

Dr+1 =

[
−Mr+1 − 1

2
,
Mr+1 − 1

2

]
,

where

Mr+1 � |Dr+1| = |Dr| ·
∣∣DGr+1

∣∣ = Mr ·
∣∣DGr+1

∣∣
=

(
r∏

i=1

|DGi
|
)

· ∣∣DGr+1

∣∣ = r+1∏
i=1

|DGi
| ,

completing the proof.

APPENDIX B
PROOF OF THEOREM 9

Denoting the central ULA of Dr by Ur, we first prove by
induction that [

−Mr − 1

2
,
Mr − 1

2

]
⊆ Ur,

where Mr �
∏r

i=1 |UGi
|. In particular, |Ur| = O(Mr).

� Base (k = 1): In this case M1 = G1. Hence, U1 = UG1

and it can be written as

U1 = U =

[
−M − 1

2
,
M − 1

2

]
,

whereM = |UG1
| since by definition UG1

is hole-free and
symmetric.

� Assumption (k = r): Assume that[
−Mr − 1

2
,
Mr − 1

2

]
⊆ Ur.

� Step (k = r + 1): We define the following sets

Tr �
[
−Mr − 1

2
,
Mr − 1

2

]
,

Yr � {m+ nMr : m ∈ Tr, n ∈ UGr+1
},

Vr � {m+ nMr : m ∈ Ur, n ∈ UGr+1
}.

Notice that Yr can be written in explicit form as

Yr =

[
−Mr+1 − 1

2
,
Mr+1 − 1

2

]
,

where

Mr+1 = |Tr| ·
∣∣UGr+1

∣∣ = Mr ·
∣∣UGr+1

∣∣ = r+1∏
i=1

|UGi
| .

In addition, both Ur and UGr+1
are symmetric and hole-

free arrays where Mr ≤ |Ur|. Therefore, by the construc-
tion of Vr, we have that Ur ⊆ Vr and Vr is symmetric and
hole-free. Similar to proof of Theorem 8, we can express
the difference coarray

Dr+1 = {m+ nMr : m ∈ Dr, n ∈ DGr+1
}.

As Ur ⊆ Dr and UGr+1
⊆ DGr+1

, we get that Vr ⊆ Dr+1.
This suggests that Vr ⊆ Ur+1 since by the definition of the
central ULA, Ur+1 is the longest symmetric hole-free array
in the difference coarray.

By the induction assumption, Tr ⊆ Ur implying that
Yr ⊆ Vr, which in turn leads to

Yr =

[
−Mr+1 − 1

2
,
Mr+1 − 1

2

]
⊆ Ur+1,

since Yr ⊆ Vr ⊆ Ur+1. Thus, we obtain that

|Ur+1| ≥
∣∣∣∣∣
[
−Mr+1 − 1

2
,
Mr+1 − 1

2

] ∣∣∣∣∣ = Mr+1.

Now, since Ur ⊆ Dr we have that

|Dr| ≥ |Ur| ≥ Mr =

r∏
i=1

|UGi
| .

Finally, recall that |UGi
| = O(|Gi|2) for all 1 ≤ i ≤ r andN ≤∏r

i=1 |Gi|, hence, |Dr| = O(Mr) = O(N2) which completes
the proof.
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