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Abstract—Graphical models are a framework for representing
and exploiting prior conditional independence structures within
distributions using graphs. In the Gaussian case, these models
are directly related to the sparsity of the inverse covariance (con-
centration) matrix and allow for improved covariance estimation
with lower computational complexity. We consider concentration
estimation with the mean-squared error (MSE) as the objective,
in a special type of model known as decomposable. This model
includes, for example, the well known banded structure and
other cases encountered in practice. Our first contribution is the
derivation and analysis of the minimum variance unbiased esti-
mator (MVUE) in decomposable graphical models. We provide a
simple closed form solution to the MVUE and compare it with the
classical maximum likelihood estimator (MLE) in terms of per-
formance and complexity. Next, we extend the celebrated Stein’s
unbiased risk estimate (SURE) to graphical models. Using SURE,
we prove that the MSE of the MVUE is always smaller or equal
to that of the biased MLE, and that the MVUE itself is dominated
by other approaches. In addition, we propose the use of SURE as
a constructive mechanism for deriving new covariance estimators.
Similarly to the classical MLE, all of our proposed estimators have
simple closed form solutions but result in a significant reduction
in MSE.

Index Terms—Covariance estimation, graphical models, min-
imum variance unbiased estimation.

I. INTRODUCTION

OVARIANCE estimation in Gaussian distributions is a
C classical and fundamental problem in statistical signal
processing. Many applications, varying from array processing
to functional genomics, rely on accurately estimated covari-
ance matrices [1], [2]. Recent interest in inference in high
dimensional settings using small sample sizes has caused the
topic to rise to prominence once again. A natural approach in
these settings is to incorporate additional prior knowledge in
the form of structure and/or sparsity in order to ensure stable
estimation. Gaussian graphical models provide a method of
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representing conditional independence structure among the
different variables using graphs. An important property of the
Gaussian distribution is that conditional independence among
groups of variables is associated with sparsity in the inverse
covariance. Due to the sparsity, these models allow for efficient
implementation of statistical inference algorithms, e.g., belief
propagation [3], [4], and the iterative proportional scaling
technique [5], [6].

Over the past years, statistical graphical models have been
successfully applied to speech recognition [7], [8], image pro-
cessing [9], [10], sensor networks [11], computer networks [12],
and other fields in signal processing. Efficient Bayesian infer-
ence in Gaussian graphical models is well established [13]-[15].
The problem of estimation of deterministic parameters have re-
ceived less attention, but see the recent works on inverse covari-
ance structure in the context of state-of-the-art array processing
[16], [17].

Estimation of deterministic parameters in Gaussian graphical
models is basically covariance estimation since the Gaussian
distribution is completely parameterized by second order sta-
tistics. The most common approach to covariance estimation is
maximum likelihood. When no prior information is available,
this method yields the sample covariance matrix. It is asymptot-
ically unbiased and efficient but does not minimize the mean-
squared error (MSE) in general. Indeed, depending on the per-
formance measure, better estimators can be obtained through
regularization, shrinkage, empirical Bayes and other methods
[18]-[24].

Covariance estimation in Gaussian graphical models involves
estimation of the unknown covariance based on the observed re-
alizations and prior knowledge of the conditional independence
structure within the distribution [5], [6], [25], [26]. The prior
information allows for better performance with lower computa-
tional complexity. Decomposable graphical models, also known
as chordal or triangulated, satisfy a special structure which leads
to a simple closed form expression for the maximum likelihood
estimate (MLE). These models include many practical signal
processing structures such as the banded concentration matrix
and its variants [16], [23], [24], [27] as well as multiscale struc-
tures [9], [10].

Covariance selection is a related topic which addresses the
joint problem of covariance estimation and graphical model
selection. This setting is suitable to many modern applications
in which the conditional independence structure is unknown
and must be learned from the observations. Numerous selec-
tion methods have been recently considered for both arbitrary
graphical models [28]-[31] and decomposable models [32],
[33]. Clearly, these methods are intertwined with covariance
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estimation. For example, the latter is a key component of greedy
stepwise selection algorithms.

In this paper, we consider covariance estimation in decom-
posable Gaussian graphical models with the MSE of the inverse
covariance as our objective function. Except for the prior con-
ditional independence structure, we do not assume any further
knowledge on the covariance and treat it as an unknown deter-
ministic parameter. Our main contribution is the derivation of
the minimum variance unbiased estimator (MVUE) of the in-
verse covariance. Similarly to the MLE, the MVUE has a simple
closed form solution which can be efficiently implemented in a
distributed manner. Moreover, it minimizes the MSE among all
unbiased estimators. We also prove that it has smaller MSE than
the biased MLE. The proof is based on an extension of the cele-
brated Stein unbiased risk estimate (SURE) [18], [19], [34]-[37]
to Gaussian graphical models. Using SURE we prove that the
MVUE dominates the MLE in terms of MSE, i.e., its MSE is al-
ways smaller or equal to that of the MLE. In addition, we prove
that the MVUE itself is dominated by other biased estimators.
Next, we propose the use of SURE as a method for hyper-param-
eter tuning in existing covariance estimation approaches, e.g.,
the conjugate prior based methods proposed in [38], [39].

The outline of the paper is as follows. We begin in Section II
defining the notation for decomposable graphical models, pro-
viding a few illustrative applications, and formulating the esti-
mation problem. In Section III, we review the classical MLE ap-
proach and derive the finite-sample MVUE. Next, in Section IV
we consider SURE and its applications to covariance estima-
tion. While our estimators have lower MSE, they require more
samples in order to ensure positive semidefiniteness. This issue
is addressed in Section V. We evaluate the performance of the
different estimators using numerical simulations in Section VI,
and conclude in Section VII.

The following notation is used. Boldface upper case letters
denote matrices, boldface lower case letters denote column vec-
tors, and standard lower case letters denote scalars. We use in-
dices in the subscript [x], or [X],; to denote sub-vectors or
sub-matrices, respectively, and [X](,,,: denotes the sub-matrix
formed by the ath rows in X. Where possible, we omit the
brackets and use x, or X, ; instead. The superscripts (- )T and
(-)~! denote the transpose and matrix inverse, respectively. For
sets a and b, the cardinality is written as |a| and the set difference
operator is denoted by a \ b. The operator Tr- denotes the trace,
and ||X]|| denotes the Frobenius norm of a matrix X, namely
IX]|? = Tr (XTX), and X > 0 means that X is positive defi-
nite. The zero fill-in operator [-]° outputs a conformable matrix
where the argument occupies its appropriate sub-block and the
rest of the matrix has zero valued elements (see [5] for the exact
definition of this operator).

II. COVARIANCE ESTIMATION IN GRAPHICAL MODELS

In this section, we provide an introduction to decomposable
Gaussian graphical models based on [5] along with a few moti-
vating applications for their use in modern statistical signal pro-
cessing. We then formulate the inverse covariance estimation
problem addressed in this paper.
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A. Decomposable Gaussian Graphical Models

Graphical models are intuitive characterizations of condi-
tional independence structures within distributions. An undi-
rected graph G = (V, E) is a set of nodes V = {1,...,|V|}
connected by undirected edges £ = {(i1,71), ... (4, 4|8}
where we use the convention that each node is connected to
itself, ie., (4,4) € Eforalli € V.Letx = [z1,...,2,)7
be a zero mean random vector of length p = |V| whose
elements are indexed by the nodes in V. The vector x satis-
fies the Markov property with respect to G, if for any pair of
nonadjacent nodes the corresponding pair of elements in x are
conditionally independent of the remaining elements, i.e., z;
and z; are conditionally independent of x,. for any {7,j} ¢ E
and r = {V \ 4,5}

plai, x51%,) = plrilx, )p(r[x, ). (1)

Therefore, the joint distribution satisfies the following factoriza-
tion:
p($7, Xr)p(x_ﬂ xr)

p(wi, x5, %) = ES . (2)

In the Gaussian setting, this factorization leads to sparsity in
the concentration (inverse covariance) matrix. The multivariate
Gaussian distribution is defined as

p(x; K) = c[K|F e 5 Kx (3)

where ¢ is a constant, and K > 0 is the concentration matrix. Its
marginal distributions are also jointly Gaussian. For example,
the marginal of the sub-block x,. is

p(x,) = c’|Kr|5e_%xZ'K*x* @

where ¢’ is an appropriate constant and the marginal concentra-
tion matrix is

K, = (K'],.)". ®)

Together with (2) this implies that

K = [Ki]" + [K;,]° - [K.]° ©)
KoK, |

= 7 7

K= =5 ©

where K;,, K;. and K, are the marginal concentrations of
{z;, %, },{zj,x,} and {x,}, respectively, and are defined in a
similar manner to (5). All of the matrices in the right hand side
of (6) have a zero value in the {i, j }th position, and therefore

{17} ¢ E. ®

This property is the core of Gaussian graphical models: the con-
centration matrix K has a sparsity pattern which represents the
topology of the conditional independence graph.
Decomposable models (also known as chordal or triangulated
models) are a special type of graphical model in which the con-
ditional independence graphs satisfy an appealing structure. A
decomposable graph can be divided into an ordered sequence
of fully connected subgraphs known as cliques and denoted by

[K];; =0 forall
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C1,...,Ck. These ordered cliques are coupled through sepa-
rators

Sj:<ClUCQU~--UC]'_1)ﬂCj 9
forj = 2,..., K, and satisfy the running intersection property:

for all j > 2 there is a k& < j such that S; C Cj. When these
conditions hold, we can extend the elegant structure in (2) to
cliques and separators

Hi(:l p (XCA- ; Kk)

p(x;K) = - (10)
HkI'{=2p (xsk;K[k])
where
K, = ([Kil]ck,ck)_l
K = (K Ys.s.) (11)

are the marginal concentrations of the cliques and separators.
Similarly, (6) can be extended to

K K
> = 10
K= Z[Kk]o - Z Ky - (12)
k=1 k=2

For later use, we denote the cardinalities by |Cx| = ¢, and

|Sk| = sk, and define the set of decomposable concentration
matrices as

K ={K: K> 0,K satisfies (12)}. (13)

Decomposable graphical models appear in many signal pro-
cessing applications. We now review the following few repre-
sentative examples.

* Diagonal or Block Diagonal: A trivial graphical model is
the diagonal or block diagonal model, in which the cliques
are non-overlapping. For example, the following matrix
has two cliques C; = {1,2} and Cs = {3,4,5}

0 O
O o
0 O

O d (14)
noo| @
o o g

* Two Coupled Blocks: The simplest nontrivial decompos-
able graphical model is the two coupled blocks. For ex-
ample, the following matrix has two cliques C; = {1, 2,3}
and Cy = {3, 4,5} coupled through Sy = {3}:

O oo ®>@@
O oo \\@
oooool| @ (15)
00 o
0o o
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* Multiscale: A common graphical model in image pro-
cessing is based on the multiscale (multiresolution)
framework. Here, the decomposable graph is a tree of
nodes (or cliques) [9], [10]:

000
Do 00

@
o o Dol o o
7

e
O O ONCYORONTS

* Banding: Another frequently used decomposable graphical
model is the L’th order banded structure in which only the
L+ 1 principal diagonals of K have nonzero elements. For
example, the following matrix is banded with L = 2:

(0 O

OO 0O

OO0 O DR ORORO=ORNGY)
00O
O O

and has four cliques C; = {1,2},Cy = {2,3},C5 =
{3,4} and Cy, = {4,5}. It is appropriate whenever the
indices of the multivariate represent physical quantities
such as time or space, and the underlying assumption
is that distant variables are conditionally independent of
closer variables. A special case of this structure is the sta-
tionary autoregressive (AR) model which leads to a banded
Toeplitz matrix. The more general banded graphical model
corresponds to a non-stationary autoregressive process.
It was recently shown that this structure is a good model
for state-of-the-art radar systems [16] (see also [27]). A
natural extension of the Lth banded model is differential
banding in which multiple band lengths are utilized. It is
straightforward to show that the corresponding graph is
still decomposable with cliques of different cardinalities.
This form was empirically validated to be a reasonable
model in call center management in operations research
[39].

* Arrow (Star): Another common decomposable model takes
the form of an arrow motif in the concentration matrix.
This structure is appropriate when there is a single common
global sub-block and numerous local sub-blocks which are
conditionally independent given the global variables. For
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example, the following concentration matrix specifies an
arrow graphical model:

0OooOo0)
O ORI

O 0o o0ooof
O

with cliques Cy = {1,2},Cy = {1,3},C3 = {1,4} and
Cy = {1,5}. A typical signal processing application is a
wireless network in which the global node is the access
point and the local nodes are the terminals. Other applica-
tions of these models are discussed in [40].

B. Problem Formulation

‘We are now ready to state the problem addressed in this paper.
Let x be a length-p zero mean Gaussian random vector, with
concentration matrix K € K as in (13). Given n independent
realizations of x denoted by {x[¢]}"_;, and knowledge of the
conditional independence structure, our goal is to derive an es-
timate K of K with minimum MSE, where the MSE is defined
as

MSE (K) = E{||K - K|’} (19)
Here the norm is the matrix Frobenius norm. The MSE in (19)
is a function of the unknown parameter K and cannot be min-
imized directly. This dependency is the main difficulty in min-
imum MSE estimation of deterministic parameters, in contrast
to the Bayesian framework in which the MSE is a function of
the distribution of K but not of K itself. More details on this
issue can be found in [41] and [42].

Due to the difficulty of minimum MSE estimation, it is cus-
tomary to restrict attention to unbiased estimators. For this pur-
pose, the MSE is decomposed into its squared bias and variance
components defined as

MSE(K) = BIAS*(K) + VAR(K) (20)
where
BIAS*(K) = ||[E{K} - K|’
VAR(K) = E{|[K - E{K}||"}. @1

We call K an unbiased estimator if BIAS(K) = 0. Although
the variance may also depend on K, in many cases an estimate
exists that is asymptotically unbiased and minimizes the MSE.

Our choice of MSE of K as a performance measure requires
further elaboration. There are numerous competing metrics
which could have been adopted: MSE of K1 [21]; weighted
norms [43]; Stein’s loss [19], [34]; and others. Each of these
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measures will lead to different estimators. Following [20], [23],
[24], and [39], we focus on the MSE of the inverse covariance
due to the following reasons. Graphical models specify the
structure of the concentration matrix rather than the structure of
the covariance matrix so that the concentration is more intuitive.
Furthermore, the concentration is the natural parameter of the
exponential family of multivariate Gaussian distributions [5].
The concentration matrix is parameterized by the free variables
associated with the cliques, and has zero values elsewhere.
In contrast, the covariance matrix is not a natural parameter
of the exponential family. Since it captures unconditioned
dependency between variables, the covariance matrix generally
has nonzero entries in locations where the entries of the con-
centration matrix are zero, i.e., entries that correspond to links
between cliques. When included in the performance measure,
these nonzero entries mask the behavior of the free variables
within the graphical model. Finally, we remark that several of
the results in this paper, such as the SURE identity, can also be
applied to other performance measures.

III. MAXIMUM LIKELIHOOD AND MINIMUM VARIANCE
UNBIASED ESTIMATION

In this section, we review the classical MLE approach to in-
verse covariance estimation in decomposable Gaussian graph-
ical models and then derive the MVUE estimator.

A. Maximum Likelihood Estimation

We begin with a short review of the sufficient statistics and
the MLE of the concentration matrix in multivariate Gaussian
models. For a more detailed treatment the reader is referred to
[5].

When no prior information is available and the model consists
of single clique C; = {1,...,p}, the model is said to be sat-
urated. In this case, a minimal sufficient statistic for estimating
K is the sample covariance matrix

n

S =" x[ilx"[i].

=1

(22)

When n > p, its distribution is Wishart with n degrees of
freedom and natural parameter K

n—p—1

p(S;K)=W(S;K)=¢"|S|" 2z |K

%ei% Tr {KS}

(23)

where ¢’ is a constant and the support setis S > 0. In graphical
models, it is a priori known that K has zero values outside the
cliques, and the complete sample covariance is no longer nec-
essary. The sub-blocks associated with the cliques, which are
denoted by

Sk = [Slcw.cn s (24)
are sufficient. For convenience, we will also define the sub-
blocks of the separators (which are contained within the cliques)

S[k] = [S]Sk-,sk7

k=2,... K. (25)
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Assuming that n > maxy, ¢i, the marginal distributions of these
sub-matrices are also Wishart distributed

P(Sk; Ki) = W(Sk; Ky)

P (Sp: Kpw) =W (Spys Kpwg) (26)

with the marginal concentration matrices defined in (11). It is
customary to define the incomplete sample covariance S as a
p X p matrix which agrees with S in the clique locations, and has
unspecified values elsewhere. Similarly to (10), the distribution
of this incomplete sample covariance is [26]

Hf’zl p(Sk; Ki)

PSK) = s p(Spg: Ky 7
The MLE of K is defined as!
Knrp = arg maxlog p(S; K) (28)
and has the following closed form solution:
K K 0
KuLe = Z [nS,Zl]O - Z [nS[_kﬂ . (29)

k=1 k=2

This estimator exists with probability one if and only if n >
maxy, cg. Itis positive definite and locally consistent in the sense
that the local and global versions of the cliques agree with each
other

1
=—-S;, k=1
C)”C)\‘ n

[Kiite] K. (30)
Both of these properties suggest that the MLE in a decompos-
able model performs as if the model was block diagonal with
non-overlapping cliques Cj.

In general, the MLE is a biased estimator and does not mini-
mize the MSE. One of the main motivations for the MLE is that
asymptotically in n it is an MVUE. Therefore, we now address
the finite sample MVUE in decomposable graphical models. In-
terestingly, we will show that the MVUE does not behave as
if the model was block diagonal and improves performance by
taking into account the coupling between the cliques. We will
also prove that it dominates the MLE, specifically its MSE is
smaller for all possible values of K.

B. Minimum Variance Unbiased Estimation

For finite sample size, the MVUE is provided in the following
theorem.

Theorem [: The minimum variance unbiased estimator
(MVUE) of K € K given the incomplete sample covariance
matrix S is

K K
. 140 419
KI\'IVUE:Z [(n—Ck_l)Sk 1] — Z [(n_Sk_l)S[k]l] .

k=1 k=2
(€29
It exists when the local sample covariances are all invertible,

i.e., with probability one if n > maxy cg.

IAn  alternative  but definition is

arg maxkex log p(S; K).

equivalent K MLE =
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Proof: Using the inverse moments of the marginal Wishart
distribution, the linearity of the expectation, and the identity in
(12), it is easy to verify that the estimator is unbiased. It is a func-
tion of the minimal sufficient statistic (the incomplete sample
covariance), and is therefore the MVUE. A different construc-
tive proof based on the general MVUE for exponential family
distributions is provided in Appendix I. |

Theorem 1 specifies the MVUE of K in decomposable graph-
ical models. The estimator is similar in structure to the MLE in
(29) and it is easy to see that asymptotically in n the two estima-
tors are equivalent. Its computational complexity is exactly the
same as the MLE, and involves the inversion of the local sample
covariances. In the saturated case the MVUE is a scaled ver-
sion of the MLE. In many signal processing applications (e.g.,
principal component analysis) the overall performance is indif-
ferent to a change in scaling of the covariance. In decompos-
able graphical models, the MVUE is not a simple rescaling of
the MLE and it can have improved performance with almost no
additional cost in computational complexity.

Recall that the MLE requires only n > maxy, ¢ samples in
order for it to exist and to be positive definite. This is not true for
the MVUE, which may require more samples to ensure positive
semidefiniteness. For example, consider a simple K = 2 cliques
model. Using the matrix inversion formula for partitioned ma-
trices [44, p. 572], it can be verified that

o 1
[KMlvUE} =

— (32)
S5, mn—p—1

[S] S2,S3+
A necessary condition for positive definiteness with probability
one of Knryvur is [Kyjvuglss,s, = 0 which is equivalent to
n > p + 1. Thus, although n > max, ¢; suffices for existence,
the MVUE lacks this fundamental positive definite property un-

less n > p + 1. Identity (32) may suggest that the MVUE is
locally consistent but it can be verified that this is not true, i.e.,

[Kﬂl\rUE] 7 ésk

(33)
Cy,Ch n—p—1

for k = 1, 2. Evidently, in contrast to the MLE, the MVUE does
not behave as if the model were block diagonal and it accounts
for the coupling between the cliques.

The MVUE minimizes the MSE over the class of unbiased
estimators. This is an important property but it does not ensure
optimality over all estimators, whether biased or unbiased. In
the next section, we prove that the MVUE actually dominates
the biased MLE in terms of MSE performance.

IV. STEIN’S UNBIASED RISK ESTIMATE (SURE)

SURE provides an unbiased approximation of the MSE. The
SURE approach was originally applied to the estimation of a
Gaussian mean parameter [ 18]. It was generalized to the Wishart
distribution in [19], [34], [43] and later extended to estimating
the natural parameters of any exponential family distribution in
[35]-[37]. The following theorem extends these results to de-
composable Gaussian graphical models.

Theorem 2: Let S be an incomplete sample covariance matrix
associated with a decomposable graphical model, and assume
that n > maxy, cx. Let H(S) be a differentiable matrix function
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of S which satisfies the technical conditions in (69) for each of
its elements. Then

BE{Tr {H(S)K}} = E{Tr {H(S)Karvur+2VH(S)}} (34)

where KMVUE is defined in (31), and the differential operator
is a p X p matrix with elements

1é)

3S:, 1=
Vi =14 3a8-. i#j{ijlek (35)
0, else.

Proof: The identity is a special case of the general SURE in
exponential family distributions [37]. The only difference is the
compact representation using decomposable matrix notations
which account for the symmetry and the conditional indepen-
dence. More details are provided in Appendix L. [ |

For later use, we note that the differential operator defined in
(35) can be expressed as

V=2 V'3 Vi)

where V. = [V]c, ¢, and Vi) = [V]s, s, are the ¢, X ¢, and
s X sy differential operators within the saturated cliques and
the saturated separators, respectively.

In the following subsections, we apply SURE to derive and
analyze the MSE performance of several estimators.

(36)

A. MVUE Dominates MLE

Our first application of Theorem 2 is to prove that the MLE
is inadmissible and dominated by the MVUE.

Theorem 3: The MVUE in (31) dominates the MLE in (29)
in terms of MSE

E{|[Kyvue — K|?} < E{|Kwee — K[’} 37)
for all K in the set K defined in (13).
Proof: The difference in MSEs is
§ = B{|[Kavue — K|} — E{||Kuee — K|*}
= E{|Kuvuell® — IKuel® — 2 Tr {HK}}
= E{—|H||?> - 4 Tr {VH}} (38)

where we applied Theorem 2 with

H = Kuvue — Kure
K

=- Z(Ck—l-

k=1

K
" (s 1) [ [k]} ] (39)
k=2

Therefore, in order to prove that § <
that

0 it is sufficient to show

Tr {VH} > 0. (40)
From [19, (5.4)jii]

1 1
Tr {ViS;'} = —5 Tr {s;°} - 5Tﬁ {s;'}
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1 B 1
T (VS } = =3 ™ {sf} -3 {sid}- @n
Therefore
1 X
Tr {VH} = 53 (er+ 1) [Tr {87} + T {S1}]
k=1

K
- %kzzz(Sk +1) [Tr {s[—k]?} T2 {s[—k]lH
i Tr {S;Q} —Tr {S[_k]z}
k=2

+? {81} - {Spl }] > 0

v

1
(s +1)

(42)
where we have used ¢, > s, fork = 2,..., K and
-1 -1
T{sp > o sy} k=2 K @)
-2 —2
T {Sp? > T {SpE), k=2 K. @4
The last two inequalities follow from Appendix II. [ |

B. MVUE is Inadmissible

We now use SURE to prove that the MVUE is inadmissible
since its MSE can be improved upon by another biased esti-
mator.

Theorem 4: The estimator

Kpr = Kyvog — ————1 45
BE MVUE ~ s (45)
dominates the MVUE in (31) in terms of MSE
~ 2 “ 2
E{HKBE—KH }SE{HKMVUE—KH } (46)

for all K in the set K defined in (13).
Proof: The difference in MSEs is

(R

2Tr {KMVUE} K
Tr {S} Tr? {S} Tr {S}
E{ P41 {v ! I}} 47)
= o e T
Tr? {S} Tr {S}
where we applied Theorem 2 with H = 1/( Tr {S})I. Using
the identity
p
Tr = _ 4
Vo) - Z e e @
we have that
3p
=F{——5—7<0 49
{ TrZ{S}} - @)
completing the proof. ]
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Theorem 4 proves the inadmissibility of the MLE and MVUE
in any decomposable graphical model. This contribution ex-
tends the results in [40], [45], [46]. The specific form of KBE
is not of great importance and has been chosen for simplicity.
It is based on a similar Efron—Morris type estimator derived for
saturated models in [20].

Finally, it is worth mentioning that Theorem 4 is an example
of the well known Stein’s phenomenon in which the simulta-
neous estimation of multiple unrelated parameters can be more
accurate than estimating them separately. Indeed, the simplest
case of decomposable models is the diagonal (or block diagonal)
inverse covariance matrix in which Sy, are statistically indepen-
dent of each other and depend on different parameters. Theorem
4 establishes that inverse covariance estimation can be improved
by global shrinkage.

C. SURE-Based Parameter Tuning

The main application of SURE in signal processing is param-
eter tuning [36], [47], [48]. Thus, we now illustrate how auto-
matic parameter tuning in decomposable graphical models can
utilize SURE.

Consider a class of estimators parameterized by one or more
variables. For simplicity, we restrict ourselves to a special class
of estimators with one design parameter

K K
[(n—cr—1—d)S;"] o
k=1 k=2

. 0
K= [(n—sk—l—d)S[kﬂ

(50)
parameterized by d. Given this class of estimators, we would
like to find the value d which minimizes the MSE

min £{|[ K, — K|} (51)
or excluding constant terms
min E{||K4|?> — 2 Tr {K4K}}. (52)

Solving (52) is impossible as the expectation and the second
term in the objective depend on K, which is unknown. Instead,
we propose to use the SURE result in Theorem 2 and replace
the unknown MSE with its unbiased estimate

m}n 1K4]|? — 2 Tr {KsKnvue + 2VK 4} (53)

Substitution of Kd from (50) and excluding constant terms
yields
min d*|D||* + 4d Tr {VD} (54)

where
(55)

Finally, solving for d results in

Tr {VD}

d=—
D]
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_225:1 Tr {Vkslzl} - ZkK:2 Tr {V[k]S[;]l}

DI (6)

where the derivatives are defined in (41).

Simulation results presented in Section VI show promising
performance gains. While we adopted a particularly simple class
of estimators in (50), it is likely that more advanced estimator
classes can be treated as well. For example, state-of-the-art
methods for covariance estimation in decomposable graphical
models involve the use of Bayesian methods and conjugate
priors [38], [39]. These distributions depend on tuning param-
eters that must be chosen beforehand or estimated from the
available data. Currently, these parameters are chosen through
cross validation, or empirical Bayes methods. It would be
interesting to examine the use of SURE as an alternative.

V. POSITIVE PART ESTIMATORS

In the previous sections we proposed estimators which dom-
inate the MLE in terms of MSE. The conditions guaranteeing
their existence are similar to those of the MLE, however they
may require more samples in order to be positive semidefinite.
For small sample size, we propose to project these estimators
onto the set of decomposable positive semi-definite matrices
in (13). We prove that this projection results in legitimate pos-
itive semidefinite estimators with better or equal MSE perfor-
mance. B

Let K be a given estimator of K. Define K as the projection
of K onto the set K in (13)

K = arg min IK — K|
Kek

(57)

The optimization (57) can be expressed as a semidefinite pro-
gram (SDP). Therefore, the projected estimator K can be ef-
ficiently computed using standard SDP optimization packages,
e.g., [49]. The following theorem states that the projected esti-
mator reduces the error with probability one.

__Theorem 5: Let K be a given estimator of K € X and define
K as its projection in (57). Then

IK - K|? < [K - K|]? (58)
with probability one for all K in the set K in (13).

Proof: The proof is based on the convexity of the set K
in (13) and the classical theorem of projection onto convex sets
(POCS). POCS states that [50]

T {(K-K)"(K-K)} <0 (59)
for every K € K. Adding and subtracting K in the first paren-
thesis yields

K -K|* < Tr {(K-K)"(K-K)}.  (60)
Application of the Cauchy Schwartz inequality results in
IK - K|I* < |K - K[| K - K| (61)
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and therefore

IK - K| < K- K] (62)
Since all of the above inequalities apply to any realization of the
random matrix K, (58) holds with probability one. [ |

When solving (57) is too computationally expensive, we can
relax the constraint set and consider the projection onto the
semidefinite cone

min ||K — K|
K>0

(63)

Similarly to Theorem 5, the semidefinite cone {AI~( = 0} isa
convex set and the solution to (63) dominates K in terms of
MSE. Its main advantage is that it satisfies a simple closed form.
Let
K = UDU” (64)
be the eigenvalue decomposition of K where U is a unitary
matrix and D is a diagonal matrix with the eigenvalues [D];;.
Then, the projected estimator is equal to
K, =UD,U” (65)
where D is a diagonal matrix with the elements [D,]; =
max{[D];;,0}. Due to its similarity to the positive-part
shrinkage estimator in James-Stein regression, we refer to (65)
as the positive-part estimator.

VI. NUMERICAL RESULTS

Here we present results of numerical experiments in order
to illustrate the performance of the above estimators. A stan-
dard benchmark used for testing (inverse) covariance estimation
and covariance selection is the call center data set [23], [29],
[39]. Our goal is to demonstrate estimation precision rather than
model selection accuracy. Therefore, we estimate the true call
center covariance matrix using fixed decomposable models as
proposed and discussed in [39]. Next, we artificially generate
n independent and identically distributed realizations of jointly
Gaussian vectors which follow the true covariance structure. We
repeat this procedure 100 times and report the average perfor-
mance over these independent trials. We use the three decom-
posable graphical models analyzed in [39].

1) Two Coupled Cliques: C; = {1,...,70} and

Cy = {61,...,100}.

2) Banding: A non-stationary autoregressive model with p =
239 and cliques Cy, = {j,...,j+L}forj=1,...,5—p
with an empirically validated bandwidth of L = 20.

3) Differential Banding: An empirically validated and refined
banding model in which the first 58 cliques have a band-
width of L = 14 and in the following cliques the band-
width is equal to L = 4.

Throughout the simulations, we compare the performance of
three estimators: the MLE in (29), the MVUE in (31), and the
SURE-based estimator in (50) with d given by (56). For each
realization, we compute the estimators and check their semi-
definiteness. When an estimator is not positive semidefinite, we
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Fig. 3. Differential banding model: significant MSE improvement with respect
to MLE.

resort to its positive-part projection defined in (63). In Figs. 1-3
we present the normalized MSE defined as ||K — K||2/||K||?
as a function of the sample size n.

It is easy to see the significant MSE performance advan-
tage of the MVUE and the SURE based estimators of K as
compared to the MLE. The gain is most significant when the
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number of samples is small. In this regime, the MLE performs
poorly and is actually worse than the zero estimator, i.e., K=0
which ignores the observations altogether, whereas the newly
proposed estimators provide reasonable performance. In small
sample sizes the MVUE and SURE based estimators had to be
adjusted using their positive part variants. Simulation results
(not reported) suggest that the improvement in MSE due to the
positive part adjustment is negligible.

VII. CONCLUSION AND FUTURE WORK

In this paper, we suggested several alternatives to the MLE
for concentration estimation in decomposable graphical models.
We derived the MVUE and further proposed two biased estima-
tors that have lower MSE than the MLE. The suggested estima-
tors have simple closed form solutions and their computational
complexity is similar to the MLE. In addition, we generalized
SURE to decomposable graphical models.

Throughout this work, we assumed that the graphical model
is decomposable and illustrated our results for practical signal
processing examples, e.g., banded and arrow structured concen-
tration matrices. Moreover, any conditional independence graph
can be approximated as decomposable using available graph
theoretical tools. An important challenge for future work is the
extension of our results to non-decomposable graphs.

APPENDIX |
MVUE AND SURE IN THE EXPONENTIAL FAMILY

A natural exponential family is defined as

= k(u)ée?

Its natural parameter is @ and u € U is a complete sufficient
statistic. Under mild technical conditions, the MVUE for esti-
mating @ given u is [35]

Tu—v(0)

f(u;0) (66)

A 5]
Onvivue = ~%a log(k(u)) (67)

and the SURE identity is [35]-[37]

8log(k(U))}
8[u]i

Fihw) -0} = £ {1 | -
— 5 { hwBvuel; -

A )
o, |

The technical conditions for the validity of (67) and (68) are [37,
Th. 2.1]

(68)

U is a finite union of open connected sets;

h(u) is an indefinite integral of %’El(l‘]t) :
e[ |} <=
{25 - ) ) <

if length(6) > 1 (69)
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The distribution of the incomplete sample covariance S in
(27) belongs to the natural exponential family. The variable x is
a vector of the specified elements in the upper triangular part of
S with a scaling of 2 in the off diagonal to account for the sym-
metry. The natural parameter @ is a vector with the nonzero el-
ements in the upper triangular part of K. Therefore, the MVUE
can be derived by plugging (23) into (27)

Zlog Skl

and applying (67) to obtain

log(k (70)

Kavur = 2V log(k(S))
K

K
=2 [ e =18 = D0 [n = s~ DST°

k=1 k=2
(71)

where V is a symmetric matrix version of the derivative in (67)
which accounts for the two factors in the off diagonal elements
(see [19] and [34] for more details on this operator and its ap-
plication to various matrix functions).

Similarly, the decomposable SURE identity in Theorem 2 is a
matrix representation of (68) using a matrix function H(S) and
notations which account for the symmetry factors and take the
derivatives only with respect to the specified elements in S.

APPENDIX II
TECHNICAL INEQUALITIES

For simplicity, we partition the submatrix of the kth clique as

A B
where S(;,) = C is the intersection with the separator.
Proof of (43): Using the partitioned matrix inverse
A B A ~A-'BC™!
B" c¢| ~|-c'BTA! clyz | ¥

where A = A —BC™'BT and Z = C'BTA-'BC .

Therefore

Tr {S;'}=Tr{A "} + Tr {CT'} + Tr {Z} > Tr {C™'}
(74)
where the last inequality is due to the positive semidefiniteness
of Si > 0 and its Schur complement A > 0.
Proof of (44): Using the partitioned matrix inverse once again,
we obtain

Tr {S;?} =Tr {A™?} +2Tr {A™'BC?BTA™"}
+Tr{C™2} +2Tr {C—%ZC—%}

+ Tr {Z?} > Tr {C%}. (75)
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