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Abstract—In this paper, the problem of designing linear pre-
coders for fixed multiple-input-multiple-output (MIMO) receivers
is considered. Two different design criteria are considered. In the
first, the transmitted power is minimized subject to signal-to-in-
terference-plus-noise-ratio (SINR) constraints. In the second, the
worst case SINR is maximized subject to a power constraint. It
is shown that both problems can be solved using standard conic
optimization packages. In addition, conditions are developed for
the optimal precoder for both of these problems, and two simple
fixed-point iterations are proposed to find the solutions that satisfy
these conditions. The relation to the well-known uplink–downlink
duality in the context of joint transmit beamforming and power
control is also explored. The proposed precoder design is general,
and as a special case, it solves the transmit rank-one beamforming
problem. Simulation results in a multiuser system show that the re-
sulting precoders can significantly outperform existing linear pre-
coders.

Index Terms—Linear precoding, multiple-input-multiple-
output (MIMO) systems, optimization methods.

I. INTRODUCTION

MULTIPLE-INPUT-MULTIPLE-OUTPUT (MIMO) sys-
tems arise in many modern communication channels,

such as multiple-user communication [1], and multiple-antenna
channels [2]. It is well known that the use of multiple antennas
promises substantial capacity gains when compared with tradi-
tional single-antenna systems. In order to exploit these gains, the
system must deal with the distortion caused by the channel and
the interference. The conventional way to deal with these dis-
tortions is receiver optimization. Recently, the quest for better
performance with lower complexity led researchers to also op-
timize the transmitter [3]–[11], and even to jointly optimize the
transmitter and receiver [12]–[20]. This, as well as new results
and algorithms in convex optimization theory [21], have signif-
icantly improved state of the art communication systems.
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Fig. 1. Block diagram of a precoder for a fixed MIMO receiver.

In this paper, we explore the design of a centralized precoder
given fixed linear MIMO transmitter, channel, and receiver (see
Fig. 1). We define a precoder as a linear transformation on the
transmitted symbols. If the precoded symbols are sent as is to the
channel, then the precoder is the transmitter itself. However, in
general, the precoded symbols may be transformed again before
the channel. We refer to this transformation as the transmitter,
and we assume that it is a fixed design parameter. The output of
the transmitter is then sent over a fixed MIMO channel (or chan-
nels) and is received using a fixed linear receiver (or receivers).

There are many applications in which the transmitter and the
receivers are fixed and the designer must resort to precoding. For
example, consider the downlink channel of a multiuser system.
In code-division multiplex-access (CDMA) systems, the trans-
mitter is constrained to spreading using standardized signatures
that cannot be altered. In addition, the receivers on the mobile
hand sets are usually restricted to simple low computational
complexity algorithms, e.g., matched filters (MFs), which are
not necessarily optimal. Another example with growing interest
is when the base station transmits using multiple antennas to
multiple users using single-receive antennas. Each user has ac-
cess only to its received signal and cannot cooperate with the
other users. Thus, receive processing is practically impossible
and the system must resort to precoding.

One of the first results on optimizing a precoder for a fixed
linear MIMO model is due to [3] in the context of CDMA
systems. Specifically, a precoder that applied a linear transfor-
mation on the transmitted symbols prior to the spreading was
derived. This precoder inverted the channel at the transmitter
side and is usually referred to as the transmit zero-forcing (ZF)
precoder. The main drawback of the transmit ZF precoder is
its degraded performance in low signal-to-noise-ratio (SNR)
since inverting the channel increases the noise power. This
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motivated the design of transmit MF precoders and transmit
rakes, which perform better in low SNR. In addition, transmit
minimum mean-squared error (MMSE)1 precoders that tried to
compensate for the performance in the different SNR regions
were derived [5]–[10].

Other precoders using different kinds of optimization criteria
were also derived. Variants of the previous precoders were dis-
cussed in [22]–[27]. Linear precoders based on an approximate
maximum-likelihood approach and maximum asymptotic mul-
tiuser efficiency with different power constraints were derived
in [28]. A linear precoding technique based on a decomposition
approach was proposed in [29], and a linear precoder design for
nonlinear maximum-likelihood (ML) receivers was discussed
in [30]. Among the nonlinear precoders are the Tomlinson Ha-
rashima precoder (THP) [31], the “Dirty Paper” precoder [32],
and the vector perturbation precoder [9]. Another nonlinear pre-
coder that optimizes the transmitted symbols vector itself was
derived in [33].

The problem of precoder design is highly related to other
problems in the literature. In this paper, we consider the design
of linear precoders for fixed linear receivers. A related problem
is the problem of jointly optimizing the precoder/transmitter and
the receiver, which has been treated, e.g., in [12]–[20]. The de-
sign of the optimal signatures (which can be considered as a
linear precoding scheme) for matched MMSE receivers was dis-
cussed in [34] and [35], whereas signature design for matched
decision feedback receivers was explored in [36]. One of the
interesting properties of these joint designs is that maximizing
the signal-to-interference-plus-noise ratios (SINRs) is related to
minimizing the MSE [16]. Thus, although different criteria have
been explored, most of the research was dedicated to variants of
the MMSE criterion.

Another related problem is the joint design of rank-one
transmit beamforming design and optimal power control
[37]–[39]. This problem is equivalent to precoding when there
is no transmitter, i.e., the precoder itself is the transmitter. At
first glance, it seems that the precoding problem can be solved
by addressing the transmit beamforming problem and then
compensating for the fixed transmitter. Unfortunately, this is
not possible when the transmitter is rank deficient and cannot
be inverted. In this aspect,2 our problem is more general. Unlike
the previous references regarding precoding, which usually
dealt with the MSE criterion and its variants, the beamforming
community has successfully managed to optimize SINR-based
criteria, which are more related to practical performance mea-
sures, such as bit error rate (BER) and capacity. This problem
is mathematically more difficult than MSE optimization. It
was solved using an interesting duality between downlink
and uplink beamforming [40], [41]. The uplink beamforming
problem has been solved before in [42] and [43]. Using the
duality, the downlink SINR problem can be handled as well
[38], [44]. Recently, a nonlinear THP version of these papers
was presented in [45].

1The name transmit MMSE is borrowed from the terminology of receiver de-
sign. These receivers do not minimize the mean-squared-error (MSE) between
the received vector and the symbol vector. On the contrary, the transmit ZF min-
imizes it [3].

2On the other hand, the above references deal with beamforming for rank
r > 1 and are therefore more general than precoding.

In the present paper, we integrate the ideas above in the con-
text of MIMO precoding for fixed receivers. The design of most
of the previous precoders is based on minimizing variants of the
common MSE criterion. This criterion is usually computation-
ally attractive and performs quite well. However, as far as the ap-
plications are concerned, the interesting and relevant criteria are
BER and capacity, which are intimately associated with maxi-
mizing SINR [1]. Unlike joint optimization, optimizing the pre-
coder to minimize MSE does not necessarily maximize SINR
when the receiver is fixed. Thus, following the transmit beam-
forming approach, we focus on SINR-based criteria, and, in par-
ticular, try to optimize the worst SINR. We consider two design
strategies: The first maximizes the worst SINR subject to an av-
erage power constraint, and the second minimizes the required
average power subject to a constraint on the worst SINR. We
prove that the proposed precoders have the attractive property
of equal performance among all the subchannels.

Our precoder design is based on the powerful framework of
convex optimization theory [21], which allows for efficient nu-
merical solutions using standard optimization packages [46]. A
brief review of such programs and their standard forms is pro-
vided in Section III. We then cast the precoder design problems
as standard conic optimization packages. Specifically, we show
that the power optimization problem can be formulated as a
second-order cone program (SOCP) [47] or a semidefinite pro-
gram (SDP) [48] [otherwise known as a linear matrix inequal-
ities (LMI) program]. The SINR optimization can also be for-
mulated as a standard conic program known as the generalized
eigenvalue problem (GEVP) [49].

Next, we derive optimality conditions for both of the de-
sign problems by analyzing the Karush–Kuhn–Tucker (KKT)
conditions for conic programs. We derive a simple expres-
sion for the structure of the optimal precoder as a function
of the dual variables. The conditions can be used to verify
whether a proposed solution is optimal. For example, using
these conditions, it is easy to show that the MMSE precoder
proposed in [5]–[7] does not necessarily maximize the worst
SINR, except in the case of a symmetric channel. Another
use for these conditions is as a stopping criteria in previous
iterative optimization algorithms.

Probably the most important use of the optimality conditions
is in deriving new design algorithms. Using the conditions,
we provide a simple fixed-point iteration that is guaranteed to
converge to the solution of the power optimization. As a special
case, this simple iteration can solve the well-known rank-one
beamforming problem. This allows a simple solution to the
problem without the need for special optimization packages.
A similar fixed-point iteration is derived for the SINR opti-
mization problem without a convergence proof. In comparison
to the downlink–uplink duality-based solutions, our simple
fixed-point iterations are considerably more appealing. In
addition, following [39], we derive an alternative approach for
satisfying the optimality conditions in the power optimization
through a dual SDP/LMI program.

One of the advantages of our proposed algorithms is their ro-
bustness to therankof theeffectivechannels.Mostof theprevious
precoders assume a full-rank effective channel. For example, one
cannot decorrelate the channel in [3] if the channel is rank defi-
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cient, as is the case when the number of users is greater than the
spreading factor (or the number of transmit antennas). Our design
algorithms,both theconicsolutionsandthefixed-point iterations,
are indifferent to the rank of the channel, and are therefore appli-
cable to such scenarios as well. In addition, following [34] and
[35], which addressed this problem in the context of optimal se-
quences design for MMSE receivers, we provide an upper bound
for the maximal feasible SINRs in these cases.

An interesting result of our precoders is their performance
in symmetric systems. In this case, our precoders admit simple
closed-form expressions that have already been derived in
[5]–[9] through different considerations and for general chan-
nels. Using our optimality conditions, it is easy to show that
these precoders maximize the worst SINR in symmetric chan-
nels. A realistic example of such systems is a CDMA scheme,
using pseudonoise (PN) sequences as signatures. We analyt-
ically show that the achievable SINRs using these precoders
with MF receivers is identical to those obtained by using
MMSE receivers with no precoders. This result is interesting,
as it allows for each user to use a simple receiver that does not
require neither the knowledge of all the other signatures nor a
matrix inversion. It is important to note that this feature does
not extend to nonsymmetric channels.

The paper is organized as follows. We begin in Section II by
introducing the problem formulation. A brief review of conic
optimization is provided in Section III. The power optimization
problem is explored in Section IV, in which we discuss its feasi-
bility and provide standard conic optimization solutions. In order
to improveourdesignalgorithmsand inorder to gainmore insight
into the problem, we then provide optimality conditions and sug-
gest a simple fixed-point iteration for finding the variables that
satisfy them. Next, in Section V, we follow the same steps for
the SINR optimization problem. A few special cases for which a
closed-form solution exists are explored in Section VI. In Section
VII, we illustrate the use of the aforementioned precoders in the
context of multiple-user communication systems.

The following notation is used. Boldface upper-case letters
denote matrices, boldface lower-case letters denote column vec-
tors, and standard lower-case letters denote scalars. The super-
scripts , and denote the transpose,
the complex conjugate, the Hermitian, the matrix inverse opera-
tors, and the Moore Penrose pseudoinverse, respectively.
denotes the ( th, th) element of the matrix . By , we
denote a diagonal matrix with being the ( th, th) element;
by , we denote stacking the elements of in one long
column vector; by , we denote a zeros vector with a one at the
th element; by , we denote an all ones vector; and by , we de-

note the identity matrix of appropriate size. ,
and denote the trace operator, the real part, the abso-
lute value, the standard Euclidean norm, and the induced row
sum matrix norm, respectively. Finally, denotes that the
matrix is a Hermitian positive semidefinite matrix, and
denotes the Null space operator.

II. PROBLEM FORMULATION

Consider a general, block oriented, MIMO communication
system with a centralized transmitter. At each time instant, a

block of symbols is modulated and transmitted over the chan-
nels. The possibly distorted output is then processed at the re-
ceivers in a linear fashion, as depicted in Fig. 1. Denoting by
the length output of the th receiver, for , we
have that

...
...

... (1)

where the matrices and denote the receiver and
channel associated with the th user, the matrix is the
centralized transmitter, is the length vector of
independent, and unit variance transmitted symbols, and are
the noise vectors. The noise vectors may be correlated, and the
channels are completely arbitrary. The only restriction is that the
transmitter is centralized and has access to all of the transmit
components.

Our problem formulation assumes a single stream per MIMO
dimension, i.e., the length of is equal to the length of . How-
ever, these streams can be dedicated to a single user or to mul-
tiple users. Three specific examples for which this model holds
are given below.

• Point-to-point multiple antenna system—A single user,
point-to-point communication system using multiple
receive and transmit antennas is a special case of (1)
with .

• CDMA system—The downlink channel of a CDMA
system with users is a special case of (1) with ,
where is a signature matrix whose columns are the
signatures of each of the users, and are
row vectors representing the linear receive filters of each
of the users.

• Transmit beamforming—A multiuser system in which
transmit antennas signal to users each using a single re-
ceive antenna is a special case of (1) with . Here,

is a beamforming matrix whose columns are the an-
tenna weights of each of the users, are row vec-
tors that represent the paths from the transmit antennas to
the th receive antenna, and are arbitrary scalars.

In the sequel, we will assume that the transmitter , the
channels and the receivers are fixed and cannot be
altered due to budget restrictions, standardization, or physical
problems. Given this fixed structure, we will try to improve the
performance by introducing a linear precoder. The precoder, de-
noted by , linearly transforms the original symbol vector prior
to the transmission so that the outputs of the receiver are now
given by

...
...

...

(2)

For ease of representation, we will use the following notation:

(3)
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where and the rest of the variables are defined
in (2).

Our goal is to improve the system performance by optimally
designing the precoder. The system performance is usually
quantified by its quality of service (QoS) and the resources it
uses. The most common QoS metrics are BER and capacity,
both of which are highly related to the output SINRs, and in
particular to the worst SINR. In our model, the output SINR of
the th subchannel is defined as

SINR (4)

for , where . Another range
of criteria deal with the use of system resources, e.g., peak-to-
average ratio, or maximal transmitted power. The most common
resource measure is average transmitted power, which is defined
as

(5)

It is easy to see that the SINR metric and average power metric
conflict. One cannot maximize the SINRs while also minimizing
the power, and vice versa. Depending on the application, the de-
signer must decide which criteria is stricter. We therefore con-
sider one of the following two complementary strategies. The
first optimization strategy seeks to minimize the average trans-
mitted power subject to QoS constraints. This criterion is inter-
esting from a system-level perspective. Given the required QoS,
the system tries to satisfy it with minimum transmitted power
[17], [38], as follows:

s.t. (6)

where is the given worst SINR constraint.
The second strategy is maximizing the minimal SINR subject

to a power constraint [16], [44]. This problem formulation is in-
teresting when the power constraint is a strict system restriction
that cannot be relaxed. In this case, the problem can be formu-
lated as

s.t.
(7)

where is the given power constraint.
Note that although we are optimizing the minimum SINR

in both problems, it is easy to see that at the optimal solution
of both problems all users will attain equal SINRs (see also
[38]). In other words, the above design criteria both promise
fairness among all the substreams. This is an important prop-
erty in MIMO communication systems. In systems where some
streams demand different QoS, e.g., systems with voice and data
streams, the designer can replace each SINR in the optimiza-
tions with SINR , where are constant weights that denote
the importance of the substreams. This will ensure weighted
fairness among the streams.

One of the main observations of our work is that both op-
timization problems (6) and (7) can be solved using standard
conic optimization algorithms. Therefore, in the next section,
we review these algorithms.

III. REVIEW OF CONIC OPTIMIZATION

In recent years, there has been considerable progress and de-
velopment of efficient algorithms for solving a variety of opti-
mization problems. In order to use these algorithms, one must
reformulate the problem into a standard form that the algorithms
are capable of dealing with. In this section, we will briefly re-
view the three formulations that we use in the paper: SOCP, SDP,
and GEVP programming.

The most widely researched field in optimization is convex
optimization. A convex program is a program with a convex ob-
jective function and convex constraints. It is well known that in
such programs a local minimum is also a global minimum. The
most common convex program is probably the linear program
(LP) [21], i.e., an optimization with a linear objection func-
tion and linear (affine) constraints. Recent advances in convex
optimization generalize the results and algorithms of LPs to
more complicated convex programs. Special attention is given
to conic programs, i.e., LPs with generalized inequalities. The
two standard conic programs are SOCP and SDP optimization.
The standard form of an SOCP is [47]

SOCP
s.t.

(8)

where the optimization variable is the vector of length and
, and for are the data parameters

of appropriate sizes. The notation denotes the following
generalized inequality:

(9)

The standard form of an SDP is [48]

SDP
s.t.

(10)

where is a Hermitian matrix that
depends affinely on . The data parameters are the Hermitian
matrices for . The notation denotes the pos-
itive semidefinite generalized inequality. A simple case of an
SDP is an SOCP. For example, each of SOC constraints in (8)
can be written as an LMI [21], as follows:

(11)

A common optimization package designed to solve SOCP and
SDP is SEDUMI [46].

Although most of the research in the field of optimization
concerns convex programs, due to their importance, some cases
of nonconvex problems have also been investigated. Among
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them is the GEVP [49], which is not convex but can still be ef-
ficiently solved. Its standard form is

GEVP
s.t.

(12)

where is a real-valued optimization variable and
and

are Hermitian matrices that depend affinely
on . The data parameters are the Hermitian matrices
and for . The name of the GEVP arises from
its resemblance to the well-known problem of minimizing the
maximal generalized eigenvalue of the pencil , i.e., min-
imizing the largest such that . It is easy to show
that this problem can be expressed as

s.t.
(13)

which is, of course, a simple SDP. The GEVP generalizes this
program to the case where and also depend on the opti-
mization variables.

IV. POWER OPTIMIZATION

In this section, we consider the power optimization subject to
SINR constraints, i.e., the problem of (6). We begin in Section
IV-A by discussing its feasibility and then provide a few alterna-
tive approaches for its solution. In particular, in Section IV-B,
we derive a solution to the problem that is based on standard
SOCP or SDP optimization packages. Next, in Section IV-C,
we develop optimality conditions for this problem and use them
to derive two alternative solutions. For completeness, in Section
IV-D, we discuss the uplink–downlink duality in the context of
the power optimization.

A. Feasibility

The first important property of any optimization problem is
its feasibility (admissibility), i.e., whether a solution exists. In
other words, we need to verify whether for a given there exists
a such that

(14)

Since we have assumed that the noise variances are positive, the
SINRs are strictly lower than the signal-to-interference ratios
(SIRs), as follows:

(15)

for . By scaling to for large enough ,
the difference between the SIRs and the SINRs can be made in-
significant. Therefore, for the sake of examining the feasibility,
the interesting metrics are the SIRs. A condition for feasibility
is provided in the following proposition.

Proposition 1: There exists a such that

(16)

only if

(17)

Proof: In order to prove the proposition, we must upper
bound the minimal SIR, as follows:

(18)

where , and we have used
the monotonicity of in . Due to
monotonicity, we can bound by bounding its argument.
Thus, we now develop a bound on the minimum . Let
have a singular value decomposition (SVD) ,
where and are semi-unitary matrices, is an
diagonal matrix, and rank . Then

(19)

where and are the th columns of and , respec-
tively. For every , we can bound (19) by applying
the Cauchy–Schwarz inequality to the vectors and

(20)

Since , we conclude that

(21)

Thus, the minimum is bounded by

(22)

Substituting (22) into (18) yields the required result.
If the effective channel is full rank, then the condition re-

sults in , i.e., any SIR is feasible. This is easily verified
as the condition in (14) can be satisfied by choosing
for large enough . This choice of precoder inverts the
channel and eliminates all interference.

Unfortunately, when the effective channel is rank deficient,
the interference cannot be eliminated, and there is an upper
bound on the maximal SIRs. Similar conditions were provided
in [34] in the context of optimal signature design using MMSE
receivers (which is a special case of a MIMO system) and, in
[17], in the context of joint transmit and receive processing. In
this literature, it was shown that the condition of Proposition 1 is
necessary and sufficient for feasibility using MMSE receivers.
In our case, the receivers are fixed, and therefore the condition
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is only necessary. In general, we cannot always attain the bound
when the receiver is fixed. Two simple examples for channels
in which the bound cannot be achieved are a diagonal with

rank diagonal zeros, or a channel with two identical
rows. In both of these examples, it is easy to see that, no matter
what the precoder is, we will not attain the bound.

Nonetheless, experimenting with arbitrary channels shows
that in almost all practical channels the bound can be achieved
even for a fixed suboptimal receiver. For example, consider a
rank channel with the normalized null vector

. Except for the case in which for some
, the bound can always be attained by choosing

(23)

where is a matrix with unit diagonal elements and
for the nondiagonal elements. This is easily

shown by considering the following chain:

(24)

where we have used and the fact that
. Substituting the above into the SIRs yields the

maximal SIRs in rank channels, as follows:

(25)

B. Conic Optimization Solution

We now show that the problem of (6) can be represented
as a standard conic optimization program. Thus, using off-the-
shelf optimization packages, we can numerically verify its feasi-
bility and find its optimal solution. In order to use the standard
forms of the conic programs, we must cast our problem con-
straints using the standard notations described in Section III.

Using a real-valued slack variable , the program can be
rewritten as

s.t.
(26)

The argument of the program is defined up to a diag-
onal phase scaling on the right, i.e., if is optimal, then

, where for are arbitrary phases,
is also optimal. This is easy to verify, as the phases do not
change the objective nor the constraints. Therefore, we can
restrict ourselves to precoders in which for

, i.e., each has a nonnegative real part and a zero
imaginary part. Taking this into account, we now recast the
SINR constraints in standard form. Rearranging the constraints
and using matrix notations, the constraints yield

(27)

Since for , we can take the square
root of , resulting in

(28)

which can be written as the SOCs

(29)

Similarly, the power constraint in (26) can be reformulated
using the operator as , which is
equivalent to the SOC

(30)

Using (29) and (30), and denoting , the program (6)
can be cast in the standard SOCP form [47], as follows:

s.t.
(31)

Thus, it can be efficiently solved using any standard SOCP
package [46]. Such a solver can also numerically determine the
feasibility of the optimization problem. A similar approach was
taken in [39] in the context of transmit beamforming.

As explained in Section III, each SOC constraint can be re-
placed with an SDP constraint using (11). Thus, the problem can
also be expressed as a standard SDP, as follows:

s.t. (32)

where

(33)

for , and

(34)

However, solving SOCPs via SDP is not very efficient. Inte-
rior point methods that solve SOCP directly have a much better
worst case complexity than their SDP counterparts [47].

It is important to note that the above formulations are general
and do not depend on the rank of the channel. Thus, these solu-
tions are also appropriate for rank-deficient channels.

C. Optimality Conditions

In this section, we will derive the KKT optimality conditions
for the power optimization. These conditions provide more in-
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sight into the solution. In particular, we derive a simple struc-
ture for the optimal solution based on the Lagrange dual vari-
ables. Given this structure, we propose two alternative methods
for finding the dual variables. In Section IV-C-1), we derive a
simple fixed-point iteration that converges to these variables.
The computational complexity of this approach is lower than
that of the conic solution. Moreover, this solution does not re-
quire any external conic package, which is not always available.
Alternatively, in Section IV-C-2), we propose a dual SDP pro-
gram, whose optimal arguments are the necessary variables. The
main results are summarized in the following theorem.

Theorem 1: Consider the power optimization program of
(6). Define the dual variables for and denote

and . If there exist
such that

(35)

holds, then the program is strictly feasible. Moreover, if the con-
dition in (35) holds, then the optimal is of the form

(36)

where are the positive weights that allocate the power be-
tween the users, as follows:

(37)

(38)

for . This structure of is unique within the
range of . At this optimal solution, all the constraints are
active, i.e., there are equal SINRs for all the subchannels. The
optimal objective value is

(39)

Proof: The proof consists of two parts. First, we show that
if (35) holds, then the problem is strictly feasible. Next, as-
suming it is strictly feasible, we will use the KKT optimality
conditions to show that the proposed solution is necessary and
sufficient.

We begin by proving that if (35) holds, then the proposed so-
lution in (36)–(38) is feasible. First, let us prove that this solu-
tion exists, i.e., that the matrix in (37) is
invertible and that the argument of the squared root is nonnega-
tive. The matrix is invertible since the maximal eigenvalue of
is less than , as follows:

(40)

(41)

(42)

(43)

(44)

(45)

(46)

where the inequality in (40) stems from the fact that any in-
duced matrix norm upper bounds the maximal eigenvalue of the
matrix. The equality in (41) is the definition of the row-sum-
induced matrix norm. The inequality in (44) stems from ne-
glecting the nonpositive terms in (43), and the equality in (45)
is due to (35). We still need to prove that the inequality is strict,
but this can be proven as follows. Assume that the inequality
is not strict, i.e., there exists an such that the second element
in (43) is zero, i.e., , and there-
fore . However, since

, this a contradiction to (35), and therefore the inequality
in (44) must be strict.

We now show that the arguments of the squared roots in (37)
are nonnegative. Using a series expansion for the matrix inver-
sion yields [50]

...
...

... (47)

The elements of are nonnegative. Therefore,
the elements of the sum will also be nonnegative, and we
can take the element wise squared roots and solve for for

.
Thus, we have shown that the solution in (36)–(38) exists.

Plugging this solution into the SINR constraints satisfies all the
constraints with equality. Therefore, the problem is feasible.
Moreover, since for , we can always scale
the solution by and satisfy the constraints with strict
inequalities, i.e., the problem is strictly feasible.

In the next part of the proof, we will show that if (35) holds,
then the solution in (36)–(38) is necessary and sufficient for op-
timality. The power optimization problem can be written as fol-
lows:

s.t.

(48)

The above program is not written in convex form (in order to
write it in convex form, conic inequalities must be used). In
general, the KKT conditions are not sufficient for optimality in
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nonconvex programs. However, in Appendix I, we show that
in this special case, if the program is strictly feasible, then its
KKT conditions are necessary and sufficient for optimality. The
Lagrangian associated with program (48) is

(49)

where are the Lagrange dual variables. As we have
shown in the first part of the proof, if (35) holds, then the
problem is strictly feasible. Therefore, its primal and dual
variables are optimal if and only if the following conditions are
satisfied.

1) Feasibility: The variable is feasible

(50)

for , and the dual variables are dual feasible,
i.e., for .

2) Complementary slackness: For each , either
or

(51)

3) Zero derivative: The derivative of with respect to is
zero, resulting in

(52)

At the optimal solution, all the constraints are active, i.e., (51)
holds with equality for . As proof, note that if one
constraint does not hold with an equality, then we can always
scale the row in associated with it and arrive with a feasible
solution that results in a lower objective value, which is a con-
tradiction.

Another important property of the optimal solution, is that
all the dual variables are strictly positive. As proof, assume the
contrary, i.e., there exists an such that . Then, multi-
plying (52) by on the left and examining the th diagonal
element, we have , which holds if and
only if and , in which case the th
SINR is clearly zero. However, since , this contradicts
the SINR constraints.

In general, the that satisfies (52) is not unique. Nonetheless,
expressing as , where

, and , we can find , which is unique
within the range of . Using , we arrive with
the following necessary and sufficient conditions:

(53)

(54)

where for . As
already explained, if (35) holds, then the solution in (36)–(38)

satisfies (54). In addition, it has the structure of (53) and is there-
fore sufficient. Moreover, it is easy to show that this structure is
also necessary (within the range of ). Plugging from
(53) into (54) yields

(55)

for , where is the matrix defined by (38).
Rewriting in matrix form, we have

...
... (56)

Since for , the unique solution to this
set of equations is given by (37) and (38). Finally, the optimal
objective value in (39) can be easily found using (5) and (52).

For completeness, it should be noted that when the problem is
solvable, there always exist for such that (35)
holds. This can be shown since if we left multiply both sides
of (53) by and examine the diagonal elements, then (35) is a
direct consequence of (53) (which is a necessary condition for
optimality).

Theorem 1 provides a simple strategy for designing the pre-
coder. Given a feasible , all one has to do is find which
satisfy (35). Once these are found, can be derived through
(36)–(38). As we will show in Section VI, in some special cases,
these variables can be derived in closed form. Otherwise, we
now propose two alternative methods for finding these variables.
In Section IV-C-1), we present a simple fixed-point iteration,
and in Section IV-C-2), we propose an SDP dual program.

1) Fixed-Point Iteration for Finding : The structure of
(35) motivates a fixed-point iteration for finding . By rear-
ranging (35), we arrive at the following simple iteration:

(57)
Clearly, the optimal satisfy this fixed point. As we now show,
if is feasible, then the above iteration will converge from
any to a set that satisfies (35). The convergence
proof is based on the standard function approach introduced in
[51], which can be summarized as follows. Consider the fixed-
point iteration

(58)

where . If (58) has a fixed point, and the
functions obey the following properties:

• (positivity) if for all , then for all ;
• (monotonicity) if for all , then

for all ;
• (scalability) if , then for all

then starting in any initial , the iteration will converge to this
unique fixed point. In Appendix II, we show that if the problem
is feasible and for ,
then the functions in (57) satisfy these properties, and the itera-
tion will converge.
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2) Dual Program for Finding : Alternatively, the dual
variables can be found through a dual program. The dual
program is a concave program that optimizes the dual vari-
ables. Due to space limitations, the details of its derivation are
omitted. The resulting program is

s.t.

(59)

This is a simple SDP/LMI program, which can be efficiently
solved by any standard SDP/LMI optimization package. More-
over, it has only optimization variables, in comparison to
optimization variables in the original program, and therefore has
a lower computational complexity. A similar result was obtained
in [39] in the context of beamforming.

D. Interpretation via Uplink–Downlink Duality

In this section, we provide an alternative solution for the
power optimization problem based on the well known up-
link–downlink duality [40], [41]. As explained in the previous
sections, the problem can be solved efficiently without the use
of duality. However, previous attempts for solving the downlink
beamforming problem, which is a special case of precoding
(where ), are based on this approach. Therefore, for
completeness, we now review this method and generalize it to
the case of precoding, i.e., arbitrary . Moreover, the duality
is interesting from an engineering point of view, as it provides
an interesting physical interpretation of the solution.

Recently, an interesting duality was found between downlink
beamforming and another problem called uplink beamforming.
It is usually referred to as downlink (broadcast)–uplink (mul-
tiple access) duality, since one problem typically arises in the
broadcast channel of a downlink system, and the other arises in
the multiple access channel of an uplink system. Fortunately,
the uplink beamforming problem is easier to solve. Using the
duality, the downlink solution can be derived through the up-
link solution. For simplicity, in the sequel, we restrict ourselves
to full-rank channels. Mathematically, the duality can be stated
as follows.

Theorem 2: Consider the uplink program in (60), shown at
the bottom of the page. Program is the dual of the pro-
gram of (6) in the sense that if the optimal arguments
and objective value of are , and , then the optimal
objective value of is also , and its optimal argument is

, where are appropriate scaling coeffi-
cients.

Proof: It is easy to see that each constraint in deals with
one row of and that the objective is not a function of at
all. Therefore, it is clear that each row of will be chosen to
maximize the SINR associated with it. Thus, for fixed , the

Fig. 2. Block diagram of a downlink (broadcast) system. The matrices �
for m = 1; . . . ;M are diagonal matrices with the � s associated with b .

Fig. 3. Block diagram of a uplink (multiple access) system. The matrices�
for m = 1; . . . ;M are diagonal matrices with the � ’s associated with b .
The vector w is the virtual uplink noise vector.

optimal receiver is the well-known scaled MMSE matrix [1]

(61)

which is unique up to a diagonal matrix multiplication on the
left. In addition, similarly to the downlink problem, all the con-
straints of the uplink problem are active (otherwise, one can al-
ways decrease the associated with the passive constraint and
decrease the objective). Thus, at the optimum

(62)

for . Plugging in the optimal and simplifying
the terms results in

(63)

Thus, the optimal ’s of satisfy (35), and by appropriately
choosing , the precoder satisfies also
(36). For example, if the optimal is scaled as in (61), then

. Therefore, according to Theorem 1, this precoder
is optimal for .

This uplink–downlink duality was originally developed for
the special case of . In Theorem 2, we generalize this
result to arbitrary . The importance of this theorem is in
its interesting interpretation of the optimal solution. It provides
a physical interpretation to the positive dual variables
as the virtual normalized power allocation. In order to visualize
this duality, we provide block diagrams of the two dual systems
in Figs. 2 and 3.

s.t. (60)
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Moreover, previous attempts for solving the problem are
based on this duality [38], [42]. As we have shown in the pre-
vious section, the problem can be solved without the duality
using the optimality conditions. However, for completeness, we
now present the duality-based approach as well. This approach
confronts the problem by addressing the problem first and
then adjusting the solution based on Theorem 2. Fortunately,
there is an intuitive iterative solution to program . The problem
can be solved by iteratively solving for each of the parameters,
while keeping the others fixed.

1 repeat
2

3
.

4 until convergence

Line 2 optimizes the receive matrix to maximize the SINRs
for fixed . Line 3 optimizes the power allocation weights
for fixed [51]. In [38], it was shown that the above algorithm
always converges to the optimal solution. It is similar to our
simple fixed-point iteration in (57), except for the fact that in the
above algorithm and are independently optimized at each
iteration, whereas in (57) both are optimized together. Thus, our
simple fixed-point iteration is more appealing.

V. SINR OPTIMIZATION

We now consider the problem of maximizing the worst SINR
subject to a power constraint, i.e., the program of (7). As be-
fore, we begin by examining its feasibility. Fortunately, it is easy
to verify that the program is always feasible, as we can always
scale so that it satisfies the power constraint. In Section V-A,
we discuss the connection between the power optimization and
the SINR optimization and explain how this connection can be
used to solve the SINR optimization. Then, we follow the steps
we took before in the context of the power optimization and re-
peat them in the context of the SINR optimization. In Section
V-B, we formulate the SINR problem as a standard GEVP conic
program; in Section V-C, we provide a fixed point iteration; and
in Section V-D, we discuss its uplink–downlink duality.

A. Connection With Power Optimization

The most interesting property of the SINR optimization
program is its relation to the power optimization program. In
order to mathematically define this relation, we introduce the
following theorem.

Theorem 3: The power optimization problem of (6) and the
SINR optimization problem of (7) are inverse problems:

(64)

(65)

In addition, the optimal objective value of each program is con-
tinuous and strictly monotonic increasing in its input argument

(66)

(67)

Proof: We begin by proving (64) by contradiction. As-
sume the contrary, i.e., and are the optimal value and ar-
gument of , and and are the optimal value and
argument of . If , then this is a contradiction for the
optimality of for , since is feasible for it and provides
a larger objective value . Otherwise, if , then this is a
contradiction for the optimality of for , since ,
and we can always find such that will still be feasible
but will result in a smaller objective.

Next, we prove (66) by contradiction. Assume the contrary,
i.e., and are optimal for , and and are optimal
for . We can always multiply by so that it will
still achieve the SINRs constraints of , with an effective power
constraint . This contradicts the assumption that

was optimal for . The continuity can be verified using similar
arguments to those in Lemma 2 of [52]. The proofs of (65) and
(67) are similar and are therefore omitted.

Using the properties in Theorem 3, we can solve for a
given by iteratively solving for different s. Due to
the inversion property, if , then its solution will be
optimal also for . The strict monotonicity and continuity
guarantees that a simple one-dimensional bisection search will
efficiently find the required . This procedure is summarized
in the following algorithm (see also [43]).

1
2
3 repeat
4
5
6 if
7 then
8 else
9 until
10 return

where MinSINR and MaxSINR define a range of relevant
SINRs for a specific application, and where we have used the
convention that if it is infeasible.

Theoretically, this means that the SINR optimization problem
can be solved through the previous results concerning the power
optimization. Nonetheless, due to its importance and in order to
obtain more efficient numerical solution, we now provide direct
solutions for the SINR optimization through conic optimization,
via the optimality conditions, and through the uplink–downlink
duality.

B. Conic Optimization Solution

The SINR optimization can be cast as a standard GEVP pro-
gram. Using a real-valued slack variable , the problem can be
rewritten as

s.t.
(68)

At first glance, (68) seems similar to (26). However, it turns
out to be considerably more complicated. This is because the
SINR matrix inequalities in (33) are linear in
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or in , but not in both simultaneously. Thus, when is an op-
timization variable and not a parameter, these constraints are no
longer LMIs. In fact, the sets which they define are not convex.3

Nonetheless, we can still express them using generalized ma-
trix inequalities as in (32) and (33). If we rewrite the ’s
in (33) and separate out the terms which are linear, we have

(69)

where and are matrices that depend affinely on
, as follows:

(70)

Using (69), we can express in the standard GEVP form

s.t.

(71)

which can be solved using appropriate software [49].

C. Fixed-Point Iteration for Finding

The SINR optimization problem can also be solved using the
conditions in Theorem 1. As explained in Theorem 3, and
are inverse problems. Thus, the optimal solution of the SINR
optimization is also optimal for an inverse power optimization
problem, and therefore must satisfy its optimality conditions as
well. Thus, to optimize the SINRs, we need to find
that satisfy (35) and (39). Unfortunately, in this case, is an
optimization variable and not a parameter and has to be found as
well. This can be overcome by adjusting the fixed-point iteration
in (57), as follows:

(72)

and then normalizing the result so that it will satisfy (39):

(73)

If this iteration converges to a fixed point , then it
will satisfy (35) and (39). Numerous numerical simulations with
arbitrary initial points and parameters show a rapid convergence
rate.

3The exact definition of such sets is quasi-convex [21].

D. Interpretation via Uplink–Downlink Duality

Following the success of the uplink–downlink duality in the
power optimization, the duality was recently used to confront
the SINR optimization [44]. The uplink–downlink duality in the
case of the SINR optimization can be stated as follows.

Theorem 4: Consider the uplink program in (74), shown at
the bottom of the page. Program is the dual of the pro-
gram of (7) in the sense that if the optimal arguments
and objective value of are and , then the optimal
objective value of is also , and its optimal argument is

, where are appropriate scaling coeffi-
cients.

Proof: The proof is similar to the other proofs in this paper
and is therefore omitted. A detailed proof in the case of
can be found in [44].

The downlink beamforming SINR optimization problem
was solved using duality in [44]. The algorithm iteratively
optimizes each of the optimization variables while keeping the
others fixed, as follows.

1 repeat
2

3

4 until convergence

where is a matrix with elements
is a length vector with

elements , and is a length
vector with elements . Line 2 optimizes the matrix for

fixed . Line 3 optimizes the weights for fixed based on
[53]. Clearly, this solution is much less appealing than the fixed
point iteration in (72) and (73).

VI. SPECIAL CASES

In this section, we examine a few interesting cases in which
the problems and have simple closed-form solutions.

A. Diagonal Case

The first case is when the matrices and are diagonal.
In this case, it is trivial to satisfy the optimality conditions in
Theorem 1. The resulting precoders are diagonal and can be
considered as simple power allocation strategies.

B. Symmetric Case

The second case is when the matrices and have equal
diagonal elements and equal off-diagonal elements, and the vari-
ances are equal . Due to the symmetry, it is clear
that choosing will satisfy the conditions in

s.t. (74)
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Theorem 1. Therefore, the solution for the SINR optimization
problem is

(75)

(76)

where is a constant that scales the matrix to satisfy the power
constraint. This particular precoder has been previously derived
in [5]–[9] through scaled MMSE considerations. However, it is
easy to verify that in general, i.e., in nonsymmetric channels, it
does not necessarily satisfy the conditions in Theorem 1 and is
therefore suboptimal in this sense. For example, if the channels
are symmetric but the noise variances are not equal, then, in
order to ensure equal SINRs among all the streams, the precoder
in (76) must be diagonally scaled using (37).

VII. APPLICATIONS IN MULTIUSER SYSTEMS

In this section, we present possible applications of the pro-
posed precoders to multiuser systems. Consider a multiuser pre-
coded downlink system. At each symbol’s period, the base sta-
tion transmits using an nonorthogonal signatures matrix

. The maximal average transmitted power is ,
and the cross correlations between the signatures are denoted by

with for all . For simplicity, we as-
sume ideal channels, i.e., , and equal noise variances,
i.e., . Denoting by the output vector of the multiple
user receiver, we have that

(77)

where is one of the standard filters, as follows:

• MF receiver: ;
• ZF receiver: ;
• MMSE receiver: .

We now discuss the performance of these systems with and
without precoding.

A. Equal Power and Equal Cross Correlations

The first interesting result of our precoder is its performance
in an equal power and equal cross correlations multiuser system,
i.e., for all and . As explained in Section
VI-B, our precoder and its SINRs have closed forms in this case.

Proposition 2: Consider the multiuser system in (77). If
is invertible and for all , then the output

SINRs using the precoder along with an MF receiver are
identical to those resulting by using an MMSE receiver without
any precoder and are equal to

(78)

Proof: The SINRs in (78) are obtained by applying the
matrix inversion lemma on (75). In [1], it is shown that the
output SINRs using MMSE receivers are also equivalent to
(78).

Fig. 4. SINR of a symmetric system with equal cross correlations. Due to the
symmetry, all users have equal output SINRs.

Proposition 2 is interesting as it allows for each user to attain
the MMSE performance without the use of an MMSE receiver
which requires the knowledge of all the other signatures and a
matrix inversion. Moreover, when the precoder is used with
ZF or MMSE receivers, the performance improves even more.
In Fig. 4, we plot the output SINRs given by (75) for the three
linear receivers. For comparison, we also plot the output SINRs
that result from similar systems without a precoder [1]. As ex-
pected, using the precoder always improves the output SINR.

B. Nonsymmetric Channel

As a second example, we consider an equal power system
with unequal cross correlations between the users signatures. In
such systems, there is no closed-form expression for the perfor-
mance. Therefore, we resort to Monte Carlo simulations. Fol-
lowing [3], we consider cross correlations ,
and , where each user uses an MF receiver. For com-
parison, we provide results of the decorrelator precoder [3] and
our SINR precoder of (7). Due to the asymmetry, each of the
three users performs differently when using the previous pre-
coders. On the other hand, our precoder has the attractive prop-
erty of equal BERs for all the users. Naturally, the performance
of the best user degrades compared with previous methods. In
Fig. 5, we provide the BERs using each of the precoders. It is
easy to see that the our precoder outperforms that of [3].

C. Rank-Deficient Channels

One of the main advantages of our precoder is its performance
in rank-deficient systems. We now illustrate this property in a
multiuser system with users and length se-
quences. The transmitter uses the optimal sequences of [34], and
the receiver uses conventional matched filters. However, we use
a distorting channel for the first user, i.e., is a Toeplitz
matrix with the first row . Due to this channel, the
sequences are no longer optimal, and a precoder should be used.
The common decorrelating precoder of [3] cannot be derived in
this case as . Therefore, we compare our results to the
precoder of [5]. The worst output SINRs with and without the
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Fig. 5. BERs of a nonsymmetric three-user system with cross correlations
� = 0:8; � = 0:9; � = 0:7.

precoders are presented in Fig. 6. Using our precoder sig-
nificantly increases the SINR compared to a system with no
precoder. Using the precoder, the SINRs asymptotically con-
verge to the bound in (17), i.e., for

. Interestingly, the performance using the precoder
of [5] is even worse than not using a precoder at all. For fairness,
we must note that the SINR of the best user using this precoder
are much higher. However, from a systems prespective, the in-
teresting metric is the performance of the worst user, and in this
sense our precoder is more appealing.

VIII. CONCLUSION

In this paper, we addressed the problem of designing linear
precoders for fixed MIMO receivers. We considered two com-
plementary design criteria, and proposed several alternative al-
gorithmic solutions for these optimization problems.

It is first observed that in precoder design, maximizing the
worst SINR is advantageous to minimizing MSE. Most of the
previous work regarding precoders is based on optimizing vari-
ants of the MMSE criterion. These ad hoc criteria are usually
computationally attractive and perform quite well. However, the
ever increasing demand for better performance, as well as the
considerable progress in optimization theory, suggests that up-
coming research should focus on design criteria, which are more
related to practical performance measures, such as maximizing
the worst SINR.

Our second important observation is that by using conic
optimization theory and algorithms, the precoder design prob-
lems can be solved in a straight forward manner without using
uplink–downlink duality. This duality is remarkable and has
enabled solutions to problems which were unsolvable before.
Nonetheless, we believe that understanding the precoder design
using first principles, and not as a byproduct of the uplink
problem, is also important. For example, in future work, the
simple optimality conditions may help in analyzing the perfor-
mance of these systems, or in improving the design criteria,
without the need to resort to the virtual uplink problem.

Fig. 6. Worst output SINR in a system with K = 4 and N = 3.

There are many interesting extensions to this paper that
are worth pursuing. The first concerns the extension of our
results to the case of partial channel state information (CSI). In
many practical systems, the transmitter does not have access
to perfect CSI, and needs to resort to noisy channel estimates,
and/or delayed feedback. In this case, robust optimization
algorithms should be applied. Another possible direction is
to consider fixed nonlinear receivers, such as the successive
canceling receiver. It is well known that such receivers outper-
form the linear receivers explored in our paper. Therefore, by
designing the precoder to optimally work with such receivers,
the performance can significantly improve.

APPENDIX I
OPTIMALITY CONDITIONS FOR PROGRAMS

WITH SOC CONSTRAINTS

In this appendix, we derive optimality conditions for opti-
mization programs with SOC constraints. The conditions are
summarized in the following proposition.

Proposition 3: Consider a nonconvex program of the struc-
ture

s.t.
(79)

where is convex in , and and for
are affine functions of . Let us associate the dual

variables for with this program. If the program
is strictly feasible, then the following KKT conditions are nec-
essary and sufficient conditions for optimality of and .

1) Feasibility: The variable is feasible

(80)

and the dual variables are dual feasible for
.

2) Complementary slackness: For each , one of
the following conditions holds:

(81)
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3) Zero derivative: The derivative of the Lagrangian of (79)
with respect to is zero

(82)

Proof: For simplicity, we will only deal with real-valued
variables and functions. The extension to complex values is
straightforward. The KKT conditions are necessary for opti-
mality of any optimization problem [21]. If the program in (79)
was in convex form, then the conditions were also sufficient
for optimality. Unfortunately, the program is not expressed in
convex form, and therefore we must prove the sufficiency. Let
us begin by rewriting (79) in convex form

s.t. (83)

If (83) is strictly feasible, then the following conic KKT condi-
tions are necessary and sufficient for optimality [21].

1) Feasibility: The primal variable is feasible, and the as-
sociated dual cones are dual feasible:

(84)

2) Complementary slackness:

(85)

3) Zero derivative: The derivative of the Lagrangian4 of (83)
with respect to is zero

(86)

We now show that the conditions in (80)–(82) are sufficient
for satisfying the conditions in (84)–(86). Let us choose

(87)

Plugging the dual variables from (87) into the conic KKT condi-
tions reveals that conditions (84) and (85) hold due to (80) and
(81). Similarly, using (87), the conditions in (82) and (86) are
identical, as follows:

(88)

4The Lagrangian is formulated by subtracting the product of the dual cones
with the primal cones. The products are subtracted instead of added (as in regular
convex programming) because the SOC is defined as a “greater than or equal”
generalized inequality and not as a “less than or equal” generalized inequality
[21].

APPENDIX II
PROPERTIES OF

Consider the functions

(89)

In this appendix, we will prove some properties of . For
simplicity and due to space limitations, we will only deal with
real-valued variables and functions. The proofs rely on the fol-
lowing proposition.

Proposition 4: If and is in the range of ,
then

(90)

with equality if and only if .
Proof: First note that if is in the range of , then

s.t.
(91)

As proof, let us derive the Lagrangian of (91)

(92)

Equating the derivative with respect to to zero yields

(93)

Clearly, the solution to this condition is
and , where is any vector in the null space
of .

Using (91), we need to prove that

(94)

Let us denote the optimal argument of by and the
optimal argument of by . In order to prove
the inequality, assume the contrary, i.e., the optimal value of

is less than that of . Then, this is a con-
tradiction to the optimality of , because is feasible for

and results in a smaller objective value.
In order to prove the case of strict inequality, we examine the

case when . Thus, we have
. However, due to the optimality

of , we have . These two condi-
tions hold together if and only if . Plugging
in the optimal yields .
Finally, due to semidefiniteness of , this is possible only if

.
Using Proposition 4 with (which is in the range of

), we prove the following properties.

• Positivity—If for , then
for .

Proof. Observe the following chain:

(95)
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where we have used Proposition 4 with
and . Due to the semidefiniteness, the di-
agonal elements of are nonnegative.
Therefore, if they are finite, then their inverses are strictly
positive, and the property holds.

• Monotonicity—If for , then
for .

Proof. Observe the following chain:

(96)

where we have used Proposition 4 with and
.

• Scalability—If , then for
.

Proof. Observe the following chain:

(97)

where we have used Proposition 4 with and
. The inequality is non strict, i.e.,

holds with equality if and only if
. Multiplying by on the left, yields

. Therefore, , and
due to the symmetry of , we also have

. In addition, due to the semidefiniteness, this
means that and

. Therefore, ,
and . Consequently, the problem is
infeasible.
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