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Abstract—In this paper, we study the tradeoffs among
three main criteria for adaptive beamformer design: max-
imal signal-to-interference-plus-noise ratio (MSINR), minimal
mean-squared error (MMSE), and minimal least-squares error
(MLSE). When the power and steering vector of the signal-of-in-
terest (SOI) are exactly known, there are beamformers that can
simultaneously meet the MMSE and MSINR criteria. However,
this is no longer true when the exact knowledge of the steering
vector is unavailable. To account for steering vector errors, a
meaningful approach, which we adopt in this paper, is to model
the actual steering vector as random. In this setting, we show
that the MMSE and MSINR criteria cannot be simultaneously
attained. Therefore, using convex analysis tools, we study the
achievable region in the MSE-SINR plane and propose an adap-
tive beamformer that can attain the frontier of operating points
on the boundary of this region, providing an optimal performance
tradeoff between SINR and MSE. In contrast, we show that even
in the presence of steering-vector uncertainties, the MLSE and
MSINR criteria are simultaneously achievable, and develop an
adaptive beamformer which is optimal under both these criteria.

Index Terms—Adaptive beamforming, least-squares beam-
former, MSE-SINR tradeoff, random steering vector errors.

I. INTRODUCTION

DAPTIVE beamforming has found numerous applications

in radar, sonar, wireless communications, biomedical en-
gineering, and other fields [1]-[4]. In many scenarios such as
in radar and sonar, the main criterion for beamformer design is
to maximize the output signal-to-interference-plus-noise ratio
(SINR). The resulting beamformer is referred to as the maximal
SINR (MSINR) method [1]. However, maximizing the SINR
does not necessarily guarantee an acceptably good estimate of
the signal [5]. For example, in an estimation context, where our
goal is to design a beamformer to estimate the signal-of-interest
(SOI) waveform, it is more important to minimize the signal es-
timation error rather than maximize the SINR. In such cases,
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minimal mean-squared error (MMSE) beamforming is of great
interest [4], [5]. In contrast to the MSINR approach, the com-
putation of the MMSE beamformer requires exact knowledge
of the signal power. If the SOI steering vector is exactly known,
then the MMSE beamformer also maximizes the output SINR
[5].

In practical scenarios, due to different imperfections such
as signal pointing errors, array calibration errors, and environ-
mental nonstationarities, there may be a mismatch between
the actual and presumed steering vectors [7]-[13]. Therefore,
many authors have addressed the problem of robust beam-
former design based on different steering vector mismatch
models [8]-[13]. For example, in [8]-[11], worst-case robust
beamformer designs have been proposed where the mismatch
effect is taken into account by treating the actual SOI steering
vector as a deterministic vector located inside a multidimen-
sional sphere. An alternative approach, which we adopt in this
paper, is to treat the SOI steering vector as random with some
known distribution [12]-[14]. In what follows, we assume that
the actual steering vector is Gaussian with known mean and
covariance matrix. This provides a general framework that
can accommodate many practical cases of interest [13]. As we
will show below, in this case the MMSE beamformer does not
maximize the output SINR, so that the MMSE and MSINR
criteria cannot be simultaneously achieved.

To characterize the tradeoffs between the MSE and SINR cri-
teria, we consider the MSE-SINR plane, and use the fact that
any beamformer is associated with a certain point in this plane.
Clearly, good beamformers should yield small MSE and large
SINR achieving a proper MSE-SINR tradeoff. Here, we propose
a new class of beamformers that provide optimal MSE-SINR
tradeoff by minimizing the MSE subject to a certain given SINR
constraint. We refer to the resulting methods as OPTO (OPtimal
TradeOff) beamformers. Each of these beamformers is Pareto
optimal [15], [16] in the sense that there is no other approach
which yields both smaller MSE and larger SINR. In terms of the
MSE-SINR plane, the points corresponding to the OPTO class
of methods form an optimal tradeoff curve which is the frontier
that divides the MSE-SINR plane into two parts that contain
achievable and non-achievable points, respectively.

The knowledge about the optimal tradeoff between the SINR
and MSE can be important in practical applications where the
objective is to optimize a combination of these two criteria. Such
a beamformer can be easily obtained using the optimal tradeoff
curve.

The design of OPTO beamformers requires the SOI power to
be known. However, in practical scenarios the power may not be
known precisely. One approach in this case can be to use some
estimate of the signal power instead of its true value. The per-
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formance of the resulting MMSE beamformer will then depend
on the accuracy of the power estimate. Alternatively, to circum-
vent the need for power estimation, we may use the minimal
least-squares error (MLSE) beamformer [5], [6]. The MLSE
strategy is based on minimizing the least-squares error (LSE)
of the array observations, and does not require any knowledge
of the signal power. Interestingly, we show that even when the
steering vector is random, the MLSE and MSINR criteria can be
simultaneously achieved. We then develop a new beamformer
that is optimal under both of these criteria.

The rest of our paper is organized as follows. The system
model and some necessary background on adaptive beam-
forming are presented in Section II. Section III studies the per-
formance tradeoffs among different beamforming approaches.
Simulations are presented in Section IV and conclusions are
drawn in Section V.

II. BACKGROUND

Consider an M -sensor antenna array whose M X 1 observa-
tion vector at time ¢ can be modelled as

y(t) = s(t)a+i(t) + v(#) ey

where a is the SOl steering vector, s(t) is the SOI waveform, and
i(t) and v (t) are the interference and noise vectors, respectively.
In the sequel, we will omit the dependence of ¢ for notational
simplicity.

In many practical applications, it is difficult to obtain infor-
mation about the actual steering vector, for example because of
pointing errors, imperfect array calibration, and environmental
nonstationarities. The problem of robust beamformer design
when only partial information about the actual steering vector
is available has been studied extensively [7]-[13]. In this paper,
we consider the scenario where the SOI steering vector is
complex Gaussian distributed [12], [13] with mean m and
covariance matrix C, that is, a ~ CA/(m, C). The mean m
corresponds to the perturbation-free steering vector, while the
covariance matrix C captures potential uncertainties in this
vector. We assume that m and C are both known and that
m # 0.

The output of a narrow-band beamformer is given by

s=wly )

where § is the estimated signal waveform, w is the M x 1 weight
vector, and (-)# stands for the Hermitian transpose. Several dif-
ferent strategies have been proposed to design the beamforming
weights w.

The goal of the MSINR beamformer is to maximize the
output SINR. In the case of a random steering vector, the output
SINR is given by

o’wHR,w

3)

2 H_|2
SINR:Ea{ %, |wal }—
\i%

Riy.w/) WwWHR W

. A . .
where o2 denotes the signal power, R;,,, = E{(i+Vv)(i+v)?}
is the interference-plus-noise covariance matrix, and

R, 2 E.{aaf’} = C + mm?® is the correlation matrix
of the steering vector. We assume that R;,, > 0 so that R;,,
is invertible. Throughout the paper, E,{-} denotes the statistical
expectation with respect to the random vector a, whereas E{-}
stands for the statistical expectation with respect to the random
noise, interference, and signal waveform. Maximizing (3) with
respect to w, the weight vector of the MSINR approach can be
written as [1]

wysivg = oP {R},Ra} “4)

where « is an arbitrary nonzero scalar and P{-} stands for
the principal eigenvector of a matrix. A common approach
to choose « is to use the minimum variance distortionless
response (MVDR) formulation of the MSINR problem

min WHRi+nW st. wiR,w=1. @)
According to (5), the scalar « in (4) is given by

. I . -1/2
o= (P{RZLRS"RPRELRY) . ©
The maximal output SINR of the MSINR beamformer can be
expressed as
2 -1
SINR, = 02 Amax {RH"RG} 7

where Apax{-} stands for the maximal eigenvalue of a matrix.

As mentioned in the introduction, maximizing the output
SINR does not necessarily lead to a good estimate of the signal
waveform. When it is more important to minimize the wave-
form estimation error than maximize the SINR, the MMSE
beamformer can be used instead of the MSINR technique. The
MSE of the signal waveform estimation for one realization of
the steering vector a is given by

E{|5-s|*} :E{|WH(as—|—i—|—n) - s|2}
=021 - wHa|2 +wlR, ,w. )
Taking the expectation of (8) with respect to a yields
MSE =E.{c2|l - wa|> + w'R;y, w}
=w? (Ritn + 02R,)W — 2Re{o2w’m} + o2 (9)

where Re{-} denotes the real part. The weight vector of the
MMSE beamformer can be obtained by minimizing (9), re-
sulting in [5]
-1
wymse = 02 (Rign + 02R,) m. (10)
Substituting (10) back into (9), we obtain that the minimal MSE
can be expressed as
MSE, = 02 — o*m” (Rin + 0?R,) m.  (11)
From (10), it is evident that the exact knowledge of the signal

power is required in the MMSE beamformer. However, in prac-
tice this knowledge may be difficult to obtain. In such cases, the
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MLSE approach can be applied instead of the MMSE technique.
The weighted LSE for a single array snapshot can be written as

(y —a$)"R ]}, (y — as). (12)

The expectation of (12) with respect to a is given by

LSE =B, {(y—a$)" R}, (y—ad)}
=(y-ms)"R;}, (y-ms)+§*Ir {R; )}, C}. (13)

Differentiating (13) with respect to § and equating the result to
zero, we obtain
p 1 miR-!
§= R; .
mAR ], m+ Tr (R, C} Y

(14)

Thus, the weight vector of the MLSE beamformer can be ex-
pressed in the following general form:

1
mZR; m+Tr {R;}, C} Rit

WMLSE = nm+P u (15)

where u is an arbitrary M X 1 vector, and
Py =I-yy"/yfy

is the orthogonal projector onto the subspace orthogonal to the
snapshot vector y. In Section III, we will show that by a judi-
cious choice of u, the MLSE beamformer can also maximize
the output SINR. Choosing u = 0 results in the standard MLSE
beamformer [5], [6]

1
R m
mHRi_Jrlnm + Tr {R;rlnC} vtn

WMLSE = (16)
Clearly, the MLSE beamformer does not require any knowledge
of the signal power. Substituting (16) back into (13), the min-
imal LSE can be written as

|yHRL_+n |2

LSE, =y R 'y —
Yo Ritnd HRH_nm + Tr {RH_n }

a7

Note that LSE,, does not depend on the choice of u.
If the knowledge of R, is unavailable, then the sample co-
variance matrix

(18)

K |

can be used as an estimate of R;,,, where J is the number of
training snapshots. It is well known that, if the sample covari-
ance matrix R is used instead of R;,, in (5) and if the signal
components are present in the training snapshots, then the per-
formance of the MVDR beamformer can significantly degrade
because of signal self-nulling [7]. Different approaches have
been suggested to combat this performance degradation phe-
nomenon. The diagonal loading (DL) approach [17], [18] is one
of the most traditional techniques of that type. The diagonally
loaded sample covariance matrix can be written as

Ra = R +¢I (19)

where ¢ denotes the DL factor and I is the identity matrix.

In practical cases where the knowledge of R, is unavail-
able, the matrix (19) is commonly used in (4), (10) and (15)
instead of R;4,.

From (4), (10), and (16), it follows that when the exact SOI
steering vector is known (i.e., C = 0), the weight vectors of the
MSINR, MMSE, and MLSE beamforming approaches can be
simplified to

wusivk = @R, m (20)
= 7. R} 21
WMMSE = 7 omPR itn M (21)
1
WMLSE = — e —T RH_nm (22)
1+n

where & is an arbitrary nonzero scalar. In the case of the MVDR
beamformer, @ = 1/(mf R, +1nm) Evidently, in this case the
weight vectors differ only in their scaling factors. Therefore,
when the SOI steering vector and power are exactly known,
the MMSE beamformer should be chosen, since it simultane-
ously minimizes the MSE and maximizes the SINR. If the signal
power is unknown, then the MLSE beamformer can be used be-
cause it optimizes both the MLSE and MSINR criteria. More-
over, comparing (21) with (22), we see that the MLSE beam-
former asymptotically minimizes the MSE (that is, for a high
signal power).

Unfortunately, these conclusions do not hold in the case of
random steering vector, i.e., when C # 0. This case will be
considered in the next section.

III. PERFORMANCE TRADEOFFS

A. MMSE Versus MSINR

We begin by discussing the tradeoff between the MSE and
SINR criteria. Comparing (4) with (10), we see that in gen-
eral the MMSE beamformer is not proportional to the SINR
beamformer, and, therefore, will not in general maximize the
output SINR. As any method is associated with some point in the
MSE-SINR plane, a good approach should yield large SINR and
small MSE. However, these two objectives are typically con-
tradictive to each other, that is, not all points on the plane are
achievable.

To characterize the fundamental tradeoff between SINR
and MSE, we consider the boundary of the achievable points,
namely the points (v, mingeyy MSE) where W is the set of
beamformers for which 1/SINR < ~. This boundary defines
a curve in the MSE-SINR plane which divides this plane into
two parts. All points on one part of the plane are achievable,
while the points on the other part cannot be achieved. Fig. 1
illustrates an example of such a boundary in the MSE-SINR
plane. Here, in order to bring the values of MSE and SINR to
the same order, they are normalized with respect to MSE,, and
SINR,, respectively. For some given ~y, the diamond mark is
associated with the OPTO beamformer, defined below in (23),
while the achievable part of the MSE-SINR plane for this value
of ~ is marked by the shaded area. Two important points are
also shown in Fig. 1. The square mark on the curve corresponds
to the beamformer that achieves the MMSE criterion with the
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Fig. 1. Qualitative example of the optimal tradeoff curve in the MSE-SINR
plane.

largest attainable SINR, while the circle mark represents the
beamformer which has the smallest MSE among all MSINR
beamformers. The meaning of the parameter y; will be clarified
below.

The points on the boundary of the MSE-SINR tradeoff curve
can be found using the OPTO beamformer which minimizes the
MSE subject to some given SINR constraint:

min MSE
b, — <.
s.t SINR = ¥ (23)

Here, SINR and MSE are defined by (3) and (9), respectively,
and vy is some given positive scalar. The OPTO beamformer
is Pareto optimal [15], [16], that is, there is no other approach
which yields both smaller MSE and larger SINR values.

In order to have a feasible optimization problem, v must
satisfy v > 1/SINR,, where SINR,, is given by (7). Substi-
tuting (3) and (9) into (23) and assuming that the signal power
is known, our problem becomes

min w7 (Ri-l—n + UfRa) w

w

— 2Re {angm} + 02

st. w? (Ripn —y02R,) w < 0. 24)

We now develop the solution to (24) for different regions of
v.

Case 1: When v = 1/SINR,, problem (24) is equivalent to
the design of a beamformer that minimizes the MSE under the
maximal (optimal) SINR constraint. The weight vector of such
a beamformer can be represented as w = cP{R,i__‘_ln R}, where
¢ is a nonzero scalar that should be chosen to yield the minimal
MSE. Thus, the optimal ¢ can be computed as

Copt = argmin {WH (RH_n + J?Ra) w
C
—2Re {owam} + Jg}

= arg min {1€1|c|2 — 2Re{tac} + 03} (25)

where

=P {R7}R,} (26)
fl - 'P {RL+TL } ( i+n + O—S2Ra) P {RL_-I-lnRa} (27)
t 20?m P (RL R, ). ©8)

Since t; > 0, we have copy = t5/t1, where (-)* stands for the
complex conjugate and therefore

2 73 {R;LR.}. (29)
Inserting (29) into (9), the MSE can be written as
MSE,; =02 — s :
P {Ri;lnRa} Ritn+02R.)P{R; R}
(30)

If C = 0, then R, = mm* and (30) can be simplified to

(72

MSE, = :
T 14 o?mPR

€1y

which is equivalent to the MSE of the MMSE beamformer. This
is an expected result because if C = 0, then (29) is equivalent
to the weight vector (21) of the MMSE beamformer.

If C # 0, then using (30), we have that

4 | Hn |2
MSE; > min Jg — 7s |v ml
- v v (RL+n + O'SZRa) v

=02 —m” (Ri+n + U,ER,,,)_1 m
=MSE, (32)
where we have taken into account that the function
o2 — otvH m| JvH (Rz-l—n + 02R,)v is minimized by
v « (Riyn + 02R,)'m. Equality in (32) can be achieved if

and only if

(Ritn +0°R,) "' m

P{R; ], Raq} x (33)
which is true only in rather specific cases. In these situations the
SINR and MSE can be jointly optimized. One such case is when
R, is proportional to R4, i.e.

R, = pRisn (34)
where p is a positive scalar. Under this condition we have
R1+’nR = pI, and from (4) it is clear that wyising can be
any M X 1 nonzero vector. Thus, both MSE and SINR can
be simultaneously optimized using the MMSE beamformer.
Another example is when C = kmm? for some k& > 0.

However, in the general case it follows from (32) that the
beamformer (29) has a larger MSE than the MMSE technique.
This indicates that typically the optimal MSE and SINR values
cannot be achieved simultaneously. O
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Case 2: We next consider the interval v > v; where 1/, is
the SINR achieved when using the MMSE beamformer of (10).
The parameter -y, is given by

A mH (Rz+n + UgRa) - R'i-l-n (Rz+n + JgRa) - m
om* (Rij, + O'SZRa)_l R, (Ritn + USZRG)_l %5)
Clearly, in this regime the MSE can be minimized since the
constraint in (24) will be satisfied for the MMSE beamformer.
Thus, the optimal beamformer is WyrvsE- O
Case 3: The most interesting case is when 1/SINR,, < v <
7¢. In this regime, the matrix R;4,, — y02R,, in the constraint
(24) is not positive semi-definite, as incorporated in the fol-
lowing proposition.
Proposition 1: Let 1/SINR, < v < <. Then the matrix
Z=R;\, — ’YUERCL is not positive semi-definite.
Proof: To prove the proposition recall from (7) that

SINR, = 02 max{R;}",, Ra}. Therefore

Tt

215 —1/2 —1/2
o?R;PR,R}/? < SINR,I

or
2
O.S

SINR,

Ra j Ri—l—n

and, furthermore, R;,, — (02 /SINR,, )R, has at least one zero
eigenvalue. Since v > 1/SINR, it follows immediately that Z
has at least one negative eigenvalue, completing the proof.

From Proposition 1 it follows that (24) is nonconvex. We
can also conclude that there always exists some w such that
wH (Rt — 702R,)w < 0, so that (24) is strictly feasible.
Therefore, this problem belongs to the class of quadratically
constrained quadratic optimization problems. It is well known
that for this class of problems, even when the constraint is non-
convex, strong duality holds [19]-[21]. The solution to (24) can
thus be obtained via the dual program and the necessary and suf-
ficient optimality conditions that follow from strong duality.

To obtain the dual problem, we first write the Lagrangian
function as

L(w,p) = wh (Ri+n + USQRG) w — 2Re (angm)
+ 02 + pw (Rin — 702R,) W

=wT(p)w — 2Re (02w m) + o2 (36)
where 1 > 0 is the Lagrange multiplier, and
T(4) £ Rin + 0°Ra + o (Rign —70°Ra) . (37

To ensure that the Lagrangian is bounded from below, we must
have that T(p) > 0. The Lagrangian dual function associated
with (24) can then be obtained by minimizing (36), resulting in

g(p) = 0? — o m T (1)m (38)
where () denotes the pseudo-inverse that is used here because
T(u) can be rank-deficient. Finally, the dual problem is ob-

tained by maximizing (38), which can be equivalently written
as [19], [20]

max 6
S,

ot | Tw) oim
o o’mf o2 ¢
w=>0.

=0

(39)

This is a convex semi-definite programming (SDP) problem that
can be solved using modern convex optimization tools [22].

Using the optimality conditions for this class of problems
[20], it follows that if p is a solution of (39), then w is optimal
for (24) if and only if

T(p)w = ogm (40)
[LWH (Ri+n — 'yafRa) w=0 41
W (Riyn —v02R,) w <0. (42)

Once we solve the dual program, we can explicitly compute
T(u). If T(u) > 0, then it follows from (40) that

w :U?T_l(u)m
=03 (Rign+0iRa+p (Ri+n_’}’0'52Ra))_l m. (43)

Comparing the weight vectors (10) and (43), it can be seen that
their structure is similar. In particular, (43) has an additional
term u(Rit, — v02R,) with respect to (10). This extra term
depends on the variables i and « and reflects the effect of taking
into account both the SINR and MSE criteria in our beamformer
design.

An interesting special case of (43) results when C = dI,
where d > 0. In this case, (413) can be rewritten as

(14 p)/o2 4+ (1 — py)mH(Riy, +eI)~Im
(Rign +eI)7'm  (44)

where ¢ £ 62d(1 — iy)/(1 + 1). The term eI in (44) can be
interpreted as an adaptive diagonal loading term added to the
covariance matrix R ,,.
Computing the optimal w when T'(11) is not positive definite
is more involved. In this case, (40) can be written as
w = 02T (p)m + Bwy (45)
where the columns of B form a basis for the null-space of T(),
and wo is a (M — rank{T(x)}) x 1 vector. Note that in this
case, we must have p # 0, since, otherwise, if 4 = 0, then
T = Ri4n + afRa is a positive definite matrix. It follows
that (45) is an optimal solution of (24) if and only if (42) is
satisfied with equality which leads to a quadratic equation. The
problem can be easily solved using the method described in [20]
and [21]. O
Quantitative examples of the optimal tradeoff curves are
shown in Fig. 2. In this example, a uniform linear array
(ULA) is assumed with M = 5 sensors spaced half a wave-
length apart. A random SOI steering vector with mean value
m = [1,e7sin0s .. ei(M=1)msin6.]T is assumed where 6, is
the nominal SOI direction-of-arrival (DOA) that is equal to 30°
with respect to the array broadside direction. An exponential
decay model is used for C, i.e., the (I, k)-th element of this
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Fig. 2. Quantitative example of the optimal tradeoff curves in the MSE-SINR
plane.

matrix is given by [C];, = bll=F. 1k = 1,..., M. Here,
0 < b < 1 is a parameter that characterizes the level of the
steering vector uncertainty and is chosen equal to 0.7, 0.8, and
0.85. The interference is modelled as i(¢) = i(¢)a; where i(?)
is a zero mean complex Gaussian interference waveform, and
a; = [1,ed7sinbi ... oi(M=-1)msin8]T i 3 non-random inter-
ference steering vector. The interference DOA is 6; = —30°
with respect to the array broadside direction. The signal and
interference powers o2 and o7 are set to be 10 and 20 dB above
the noise level, respectively.

Fig. 2 displays the optimal tradeoff curves which represent
the frontiers between the achievable and non-achievable re-
gions in the MSE-SINR plane for different values of b. For
each curve, the region above the curve is attainable, while the
region below the curve is non-achievable. The square mark
on each curve corresponds to the MMSE beamformer for
which MSE, is achieved and SINR = ~;. We see that when
v > v, MSE, is always achieved. The circle mark represents
the beamformer (29), which has the smallest MSE among all
MSINR beamformers. Evidently, achieving the MSE-SINR
tradeoff is a more challenging task for larger values of b.

The optimal tradeoff curves appear to be an important tool
to analyze the MSE and SINR tradeoffs because a beamformer
associated with any point on this curve can be obtained from
(43).

Note that in our development so far, we have assumed that of
is exactly known. In practice, o2 can be estimated from the re-
ceived data, for example, using conventional beamforming tech-
niques. However, such estimates may be inaccurate in certain
cases, and this may affect the beamformer design. Therefore, it
is interesting to obtain an alternative performance measure that
does not require any knowledge of the signal power. Such an
approach is discussed in the next section.

B. MLSE Versus MSINR

To circumvent the need for estimating the SOI power, we
consider the MLSE beamformer [5], [6]. In this subsection, we
show that the optimal LSE and SINR, namely LSE, and SINR,,

can be jointly achieved by the MLSE method (15) with a judi-
ciously chosen u. We refer to the resulting approach as the op-
timal MLSE beamformer.

For simplicity, define

(46)
47

Since we have freedom in choosing u in (15), we suggest to se-
lect it such that the resulting beamformer maximizes the output
SINR. Comparing (4) and (15), we find that such an optimal
choice of u should satisfy

ln
—1 _
PR Ra} = —-R

a1 HR;_nm + Tr {RHn }

A H
as = Rl+nm

.m+Pju (48)
where [ is a scalar. Orthogonally projecting both sides of (48)
onto the subspace spanned by y and onto its orthogonal com-
pliment, respectively, we have

BP,P (R, Ra} = —P yR7,m (49)
APy P (R, Ra} = —PLR;nm +Pfu  (50)
where Py, = yy* /yfy. From (49)
g Y Riym 51)
 ayHP {RH_n }
Inserting (51) into (50), we have
1 HR m
1. - i+n
Pyu= o —HP {RH.n }7? {RH_nR } RL+n
(52)
Finally, substituting (51) and (52) back into (15), we obtain
HR m
WMLSE,0 = LA
’ (m#R ' m+Tr {R,C})y#P{R; ,R.}
P {RH_nR } (53)

“ tH)

where the subscript “0” implies that (53) is the weight vector of
the optimal MLSE beamformer.

Comparing (53) and (4), we see that in the random signal
case the optimal MLSE beamformer is a particular choice of the
MSINR beamformer and, therefore, in addition to minimizing
LSE this approach also maximizes SINR. In fact, (53) re-scales
the weight vector of the MSINR beamformer by a properly
chosen time-varying factor that corresponds to the minimal
LSE. Note that the scalar coefficient # in (51) depends on
the array observation y and, therefore, this coefficient should
be updated every new snapshot. However, as the computa-
tion of [ requires only two vector multiplications, such an
update can be easily computed. Interestingly, if C = 0, then
P{R;,R.} « R;,m and (53) becomes equivalent to the
conventional MVDR method.

Fig. 3 displays the LSE-SINR tradeoff curve illustrating
improvements in SINR achieved by the optimal MLSE beam-
former with respect to the standard one (corresponding to
u = 0). In this figure, we assume a covariance matrix C with
[Clir = 3.5 % 0.91=k: 1 k= 1,..., M. All other parameters
are the same as in Fig. 2. It can be seen from Fig. 3 that the
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Fig. 3. Performance gain of the optimal MLSE beamformer over the standard
MLSE beamformer.

optimal values of SINR and LSE are jointly achievable and
quite a dramatic SINR improvement can be obtained when
using the optimal MLSE beamformer with appropriate choice
of u.

C. Applications of Sensitivity Theory

As shown in Section III-A, in the general case, the MMSE and
MSINR criteria cannot be simultaneously attained. The perfor-
mance tradeoff between these two criteria can be qualitatively
characterized by means of the sensitivity theory of constrained
optimization [19].

Denote the objective and the constraint functions of (24) as

g(w) 2w (R, +0°R,)w—2Re{o?wm} +0? (54)

H
AW Riy,w

h(w (55)

T o2wHR,w
respectively. Using these simplified notations, (24) can be com-
pactly written as
inf {q(w)[h(w) < 0} . (56)
Let us introduce a new variable v as a perturbation to the con-
straint function of (24), that is, h(w) < v. Correspondingly, we
denote the optimal value of the perturbed optimization problem
as po(v), that is
po(v) = inf {g(w)|h(w) < v}. (57)
Clearly, the optimal value of the unperturbed problem (24) is
Po(0). Denoting the optimal solution for y in the dual problem
(39) as p,, from the properties of the Lagrange dual function in
(38), we have
9(to) < q(W) + poh(w). (58)
As the strong duality property holds for the optimization
problem (24) and its dual problem (that is, the optimal duality

gap is zero), we have po(0) = g(po) < q(wW) 4+ poh(w) <
q(W) + pov, which implies that g(w) > p,(0) — pov. Hence

Po(V) 2> po(0) = pov. (59)
From (59), we can see that if the value of the Lagrange multi-
plier u, is large, then the optimal value p,(») is more sensitive
to negative perturbations v of the constraint function. Thus, the
performance tradeoff represents a more challenging problem in
this particular region of the MSE-SINR plane than in other re-
gions where (i, is small.
We now discuss three particular examples to support the latter
conclusion.
Example 1: R, x R;i, so that R +1nRa = pl. The dual
problem can be written as
4 HRp-1
maxé s.t. 6 <o — o,m R, m ,
. L+ 02p+p(l—ypo?)

p > 0.
(60)

From (60), it can be seen that, if v > 1/SINR,, = 1/(po?), then
1o = 0. This agrees with our analysis in Section III-A, where it
has been shown that SINR,, and MSE, can be jointly achieved
in this particular case.

Example 2: C = 0. From the dual problem (39)

6 <ol—oimt
- [Rign+oimm” +p (Riy, —yoimm®)] “'m
otm™ R;_lnm

1+02mP R, m+p (1—o2ym/ R/, m)

2
Os

. (61)

Thus, if v > 1/SINR, = 1/(¢?m¥ R}, m), then y1, = 0.
This is in agreement with our result that SINR,, and MSE, can
be jointly attained in this setting.

Example 3: ~ > ~,. In this region of -y, we have u, = 0 and
MSE, is achievable.

In the general case, the analysis of the dual problem (39)
reveals that, if v — 1/SINR,, then maximizing ¢ leads to
to — o0o. Thus, the performance tradeoff is more difficult to
achieve in this particular region. This observation will be con-

firmed by numerical simulations in the next section.

IV. SIMULATIONS

Since the MLSE and MSINR criteria are simultaneously
achievable, we only need to study the tradeoffs between the
MMSE and MSINR criteria. In our simulations, a ULA with
M = 5 antenna elements spaced half a wavelength apart is as-
sumed. Throughout the examples, we use a random SOI steering
vector with mean m = [1,e/75n0 ... i(M—Dmsint. )T apq
s = 30°. The interference is modelled as i(¢) = i(t)a; where
i(t) is zero mean complex Gaussian and a; is a non-random
(plane-wave) interference steering vector with 6; = —30°.

In each example, the results are averaged over 10* indepen-
dent simulation runs. In each simulation run, the actual SOI
steering vector a is generated as a complex circular Gaussian
distributed random vector with mean m and covariance matrix
C with [C]; x = bl""*; 1,k = 1,..., M. The MSE of the signal
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Fig. 4. MSE-SINR tradeoff for INR = 15 dB and SNR = 20 dB with
exactly known R ;,,.

waveform estimation and the output SINR in each run are aver-
aged over L = 10* data realizations and computed as

L
MSE = % 3 [wHy(t) - s(t)| (62)
t=1
L H 2
SINR, = Zt=1 |W as(t)| (63)

Yo W Q1) + v()]’
respectively. Throughout all our examples, we assume that o2
is exactly known.
In the first example, R, is assumed to be available without
the signal component, i.e., it is computed as

Rii, = o?a;all + %1 (64)

where 07 and o2 denote the interference and noise powers, re-
spectively. We simulate a scenario where the interference-to-
noise ratio (INR) is 15 dB and the signal-to-noise ratio (SNR)
is 20 dB in a single antenna element, respectively. Fig. 4 com-
pares the theoretical and simulated MSE-SINR tradeoff curves
forb = 0.7, b = 0.8, and b = 0.85. The theoretical MSEs
and SINRs are calculated using (9) and (3), while the simulated
points are obtained using the proposed beamformer (24) with
different values of ~.

In the second example, we consider a scenario where INR >
SNR and take INR = 20 dB and SNR = 10 dB in a single
antenna element. For these parameters, Fig. 5 displays similar
curves, as shown in Fig. 4.

From Figs. 4 and 5, it can be seen that the numerical and
theoretical results coincide, and that the curves in the MSE-
SINR plane describe the optimal tradeoff between the MMSE
and MSINR criteria. It is also evident from both figures, that
achieving the MSE-SINR tradeoff is a more challenging task
for larger values of b. Comparing Fig. 4 with Fig. 5, we observe
that the shape of the tradeoff curves also depends on the partic-
ular scenario parameters, for example, the relationship between
SNR and INR.

In the third example, we assume that the exact knowledge
of R4, is unavailable. Instead we use the diagonally loaded
sample covariance matrix Rdl with J = 1000 and £ = 1003.

35 T T ;
: —— Optimal Tradeoff Curve (b=0.85)

: — — — Optimal Tradeoff Curve (b=0.8)
K]~ EEEE . == Optimal Tradeoff Curve (b=0.7)
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MSE/MSEo

1 1.05 1.1
SINRo/SINR

Fig. 5. MSE-SINR tradeoff for INR = 20 dB and SNR = 10 dB with
exactly known R ;,,.
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Fig. 6. MSE-SINR tradeoff for INR = 20 dB, SNR = 0 dB and b = 0.7.
The diagonally loaded sample covariance matrix Ry is used in lieu of the true
covariance matrix R4,

The remaining parameters are chosen as INR = 20 dB and
SNR = 0 dB in a single antenna element, and b = 0.7. The
MSE-SINR tradeoff curve and the beamformer simulation
points are shown in Fig. 6. Despite the fact that the sample
covariance matrix has been used instead of the true one, an
excellent coincidence of the theoretical curves and simulated
points can be seen from this figure.

V. CONCLUSIONS

Three main criteria for adaptive beamformer design have
been discussed assuming a random steering vector. It has been
shown that there is a fundamental tradeoff between the MSE
and SINR criteria. To characterize this tradeoff, the achievable
region in the MSE-SINR plane and a frontier of operating points
on the boundary of this region have been studied. A new class
of convex optimization theory based adaptive beamformers has
been proposed that can attain the aforementioned frontier of
points and, therefore, provide an optimal performance tradeoff
between SINR and MSE. It has also been shown that the MLSE
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and MSINR criteria are simultaneously achievable and a new
adaptive beamformer has been developed that is optimal under
both these criteria.
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