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Recovering Signals From Lowpass Data
Yonina C. Eldar, Senior Member, IEEE, and Volker Pohl

Abstract—The problem of recovering a signal from its low fre-
quency components occurs often in practical applications due to
the lowpass behavior of many physical systems. Here, we study
in detail conditions under which a signal can be determined from
its low-frequency content. We focus on signals in shift-invariant
spaces generated by multiple generators. For these signals, we de-
rive necessary conditions on the cutoff frequency of the lowpass
filter as well as necessary and sufficient conditions on the genera-
tors such that signal recovery is possible. When the lowpass con-
tent is not sufficient to determine the signal, we propose appro-
priate pre-processing that can improve the reconstruction ability.
In particular, we show that modulating the signal with one or more
mixing functions prior to lowpass filtering, can ensure the recovery
of the signal in many cases, and reduces the necessary bandwidth
of the filter.

Index Terms—Lowpass signals, sampling, shift-invariant spaces.

I. INTRODUCTION

L OWPASS filters are prevalent in biological, physical and
engineering systems. In many scenarios, we do not have

access to the entire frequency content of a signal we wish to
process, but only to its low frequencies. For example, it is well
known that parts of the visual system exhibit lowpass nature:
the neurons of the outer retina have strong response to low fre-
quency stimuli, due to the relatively slow response of the pho-
toreceptors. Similar behavior is observed also in the cons and
rods [1]. Another example is the lowpass nature of free space
wave propagation [2]. This limits the resolution of optical image
reconstruction to half the wave length. Many engineering sys-
tems introduce lowpass filtering as well. One reason is to allow
subsequent sampling and digital signal processing at a low rate.

Clearly if we have no prior knowledge on the original signal,
and we are given a lowpassed version of it, then we cannot re-
cover the missing frequency content. However, if we have prior
knowledge on the signal structure then it may be possible to in-
terpolate it from the given data. As an example, consider a signal

that lies in a shift-invariant (SI) space generated by a function
, so that for some . Even if is not
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bandlimited, it can be recovered from the output of a lowpass
filter with cutoff frequency as long as the Fourier trans-
form of the generator is not zero for all [3],
[4].

The goal of this paper is to study in more detail under what
conditions a signal can be recovered from its low-frequency
content. Our focus is on signals that lie in SI spaces, generated
by multiple generators [5]–[7]. Following a detailed problem
formulation in Section II, we begin in Section III by deriving a
necessary condition on the cutoff frequency of the low pass filter
(LPF) and sufficient conditions on the generators such that can
be recovered from its lowpassed version. As expected, there are
scenarios in which recovery is not possible. For example, if the
bandwidth of the LPF is too small, or if one of the generators is
zero over a certain frequency interval and all of its shifts with
period , then recovery cannot be obtained. For cases in
which the recovery conditions are satisfied, we provide a con-
crete method to reconstruct from the its lowpass frequency
content in Section IV.

The next question we address is whether we can improve our
ability to determine the signal by appropriate preprocessing,
in scenarios where the recovery conditions are not satisfied.
In Section V we show that pre-processing with linear time-
invariant (LTI) filters does not help, even if we allow for a bank
of LTI filters. As an alternative, in Section VI we consider pre-
processing by modulation. Specifically, the signal is modu-
lated by multiplying it with a periodic mixing function prior
to lowpass filtering. We then derive conditions on the mixing
function to ensure perfect recovery. As we show, a larger class
of signals can be recovered this way. Moreover, by applying
a bank of mixing functions, the necessary cutoff frequency in
each channel may be reduced. In Section VII, we briefly discuss
how our results apply to sampling sparse signals in SI spaces at
rates lower than Nyquist. These ideas rely on the recently de-
veloped framework for analog compressed sensing [8]–[11]. In
our setting, they translate to reducing the LPF bandwidth, or the
number of modulators. Finally, Section VIII summarizes and
points out some open problems.

Modulation architectures have been previously incorporated
into different sampling schemes. In [12], modulation was uti-
lized to obtain high-rate sigma–delta converters. More recently,
modulation has been used in order to sample sparse high band-
width signals at low rates [13], [14]. Our specific choice of
periodic functions is rooted in [14] in which a similar bank
of modulators was proposed for sampling multiband signals at
sub-Nyquist rates. Here, our focus is on signals in general SI
spaces and our goal is to develop a broad framework that en-
ables pre-processing such as to ensure perfect reconstruction.
We treat signals that lie in a predefined subspace, in contrast to
the union of subspaces assumption used in the context of sparse
signal models [15]. Our results may be used in practical systems
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Fig. 1. Lowpass filtering of ����.

that involve lowpass filtering to preprocess the signal so that all
its content can be recovered from the received low-frequency
signal (without requiring a sparse signal model).

II. PROBLEM FORMULATION

A. Notations

We use the following notation throughout: , , and
denote the -dimensional Euclidean space, the space of square
integrable functions on the real line, and the space of square
summable sequences, respectively. All these spaces are Hilbert
spaces with the usual inner products. We write for the Fourier
transform of a function :

The Paley–Wiener space of functions in that are bandlimited
to will be denoted by

and is the orthogonal projection onto
. Clearly, is a bounded linear operator on . We

will also need the Paley–Wiener space of functions whose
inverse Fourier transform is supported on a compact interval,
i.e.,

For any , the shift (or translation) operator
is defined by .

If is a set of functions in with an arbitrary index
set , then denotes the closed linear sub-
space of spanned by .

B. Problem Formulation

We consider the problem of recovering a signal ,
from its low-frequency content. Specifically, suppose that is
filtered by a LPF with cut off frequency , as in Fig. 1. We
would like to answer the following questions:

• What signals can be recovered from the output of the
LPF?

• Can we perform preprocessing of prior to filtering to
ensure that can be recovered from ?

Filtering a signal with a LPF with cutoff frequency
corresponds to a projection of onto the Paley–Wiener

space . Therefore, we can write .
Note, that we assume here that the output , is

analog. Since is a lowpass signal, an equivalent formulation

Fig. 2. Sampling of ���� after lowpass filtering.

is to sample with period lower than the Nyquist
period to obtain the sequence of samples . The
problem is then to recover , from the samples

, as in Fig. 2. Since uniquely determines
, the two formulations are equivalent. For concreteness, we

focus here on the problem in which we are given ,
directly. Thus, our emphasis is not on the sampling rate, but
rather on the information content in the lowpass regime, re-
gardless of the sampling rate to follow.

Clearly, if is bandlimited to , then it can be
recovered from . However, we will assume here that is a gen-
eral SI signal, not necessarily bandlimited. These signals have
the property that if lies in a given SI space, then so do all
its shifts by integer multiples of some
given . Bandlimited signals are a special class of SI signals.
Indeed, if is bandlimited then so are all its shifts ,
for a given . In fact, bandlimited signals have an even stronger
property that all their shifts by any number are ban-
dlimited. Throughout, we assume that lies in a generally com-
plex SI space with multiple generators.

Let be a given set of functions in and
let be a given real number. Then the shift-invariant space
defined by is formally defined as [5]–[7]

The functions are referred to as the generators of .
Thus, every function can be written as

(1)

where for each , is an arbitrary sequence
in . Examples of such SI spaces include multiband signals [16]
and spline functions [3], [17]. Expansions of the type (1) are also
encountered in communication systems, when the analog signal
is produced by pulse amplitude modulation.

In order to guarantee a unique and stable representation of
any signal in by coefficients , the generators
are typically chosen to form a Riesz basis for . This means
that there exist constants and such that

(2)

where . Condition (2) implies
that any has a unique and stable representation
in terms of the sequences . In particular, it guaran-
tees that these sequences can be recovered from by
means of a linear bounded operator.
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By taking Fourier transforms in (2) it can be shown that the
generators form a Riesz basis1 if and only if [6]

(3)

Here is called the Grammian of the generators
, and is the matrix

...
...

... (4)

where for any two generators the function is given
by

(5)

Note that the functions are -periodic. Therefore,
condition (3) is equivalent to for every
arbitrary real number . We will need in particular the case

, for which the entries of the matrix are

(6)

III. RECOVERY CONDITIONS

The first question we address is whether we can recover
of the form (1) from the output of a LPF

with cutoff frequency , assuming that the generators sat-
isfy (3). We further assume that the generators are not bandlim-
ited to , namely they have energy outside the frequency
interval . We provide conditions on and on the
bandwidth of the LPF such that can be recovered from . As
we show, even if the generators are not bandlimited, can
often be determined from .

First we note that in order to recover from the low-
pass signal it is sufficient to recover the sequences

, because the generators are assumed
to be known. The output of the LPF can be written as

where denotes the lowpass filtered generator
, and the sum on the right-hand side converges in since

is bounded. Therefore, we immediately have the fol-
lowing observation: The sequences ,
can be recovered from if forms a Riesz basis for .
This is equivalent to the following statement.

1Here and in the sequel, when we say that a set of generators � form (or
generate) a basis, we mean that the basis functions are �� ����� �� � � � � �
� � ��.

Proposition 1: Let be a set generators,
and let , be the lowpass filtered
generators where is the bandwidth of the LPF. Then the
signal can be recovered from the observations

if the Grammian satisfies (3) for some
.

Example 1: We consider the case of one generator

(7)

for some . The Fourier transform of this generator is
which becomes zero at

for all . We assume that is not an integer.
Then one can easily see that this choice satisfies (3), i.e., there
exists such that

(8)

for all . The lower bound follows from the
assumption that is not an integer, so that all the functions
in the above sum have no common zero in . The
upper bound follows from:

using that for all
and all .

Assume now that the LPF has cutoff frequency .
Then the Fourier transform of the filtered generator

will satisfy a relation like (8) only if , i.e., only
if has no zero in . In cases where the
cutoff frequency has to be larger in order to allow a recovery
of the original signal. One easily sees that the cutoff frequency
of the LPF has to lie at least above in order
that will satisfy a relation similar to (8). In this case, the shifts

compensate for the zero of in the sum (8).
Thus, for cutoff frequencies a recovery
of the signal from the LPF signal will be possible.

The previous example illustrates that the question whether
forms a Riesz basis for depends on the given generators

and on the bandwidth of the LPF. The next proposition
derives a necessary condition on the required bandwidth
of the LPF such that can be a Riesz basis for .

Proposition 2: Let be a Riesz basis for
the space and let with . Then
a necessary condition for to be a Riesz basis
for is that .

Proof: We consider the Grammian whose entries
are equal to
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All other terms in the generally infinite sum (cf. (5)) are iden-
tically zero since is bandlimited to . This
Grammian can be written as with

...
...

...
...

(9)
where is the largest integer such that .
Since every is banded to , the first and
the last row of this matrix are identically zero for some

. At these ’s, the matrix has effectively
rows and columns, and it holds that . Since

, the Grammian can have full rank for
every only if , i.e., only if

.
The necessary condition on the bandwidth of the LPF given

in the previous proposition is not generally sufficient. However,
given a bandwidth which satisfies the necessary condi-
tion of Proposition 2, sufficient conditions on the generators
can be derived such that the lowpass filtered generators form
a Riesz basis for , i.e., such that may be recovered
from .

Proposition 3: Let be a Riesz basis for
and let for with
. Denote by the largest integer such that .

If is an odd number, then we define the
matrix by

...
...

...
...

(10)
For even, we define

...
...

...
...

(11)

If there exists a constant such that

(12)

then forms a Riesz basis for .
Moreover, if is an integer, then condition (12) is also

necessary for to be a Riesz basis for .
When , i.e., , the matrix reduces

to of (4), which by definition satisfies (3). However,
since for the calculation of the entries of , we are only
summing over a partial set of the integers, we are no longer
guaranteed that satisfies the lower bound of (3).

The requirements of Proposition 3 imply that . Conse-
quently, the matrix is positive definite
for almost all if and only if has full
column rank for almost all .

Note that Example 1 shows that (12) is not necessary,
in general: With and a cutoff frequency of

, the corresponding form a Riesz basis
for . However, it can easily be verified that (12) is not
satisfied.

Proof: We consider the case of being odd. It has to be
shown that the Grammian satisfies (3). Since ,
the Grammian can be written as with

defined by (9). Next is written as
where is the matrix whose first

and last row coincide with those of and whose other rows
are identically zero. Similarly denotes the matrix whose
first and last row is identically zero and whose remaining rows
coincide with those of . Since for all

and for every , we have that
. Therefore,

(13)

since by the definition of and , we obviously have
that and . Now it follows
from (13) that for every ,

where the last inequality follows from (12). This shows that the
Grammian is lower bounded as in (3). The existence
of an upper bound for is trivial since has finite
dimensions.

Assume now that is an (odd) integer. In this case
and it can easily be verified that the matrix

is identically zero. From (13),
which shows that if the Grammian satisfies (3)

then satisfies (12). This proves that (12) is also necessary
for to be a Riesz basis for .
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The case of even follows from the same arguments but
starting with expression (6) for the entries of the Grammian in-
stead of (5). Therefore, the details are omitted.

Example 2: We consider an example with two generators
which both have the form as in Example 1, with dif-

ferent values for , i.e.,

with Fourier transforms . As in Ex-
ample 1 we assume that are not integers and that

. Under these conditions, the Grammian of
satisfies (3). To see this, we consider the determinant

of for some arbitrary but fixed :

(14)

We know from Example 1, that the first term on the right-hand
side is lower bounded by some constant . Moreover,
the Cauchy–Schwarz inequality shows that the second term on
the right-hand side is always smaller or equal than the first term
with equality only if the two sequences

are linearly dependent. However, since , it is not hard
to verify that these two sequences are linearly independent. Con-
sequently for all which
shows that satisfies the lower bound of (3). That
satisfies also the upper bound in (3) follows from a similar calcu-
lation as in Example 1 using that deceases proportional
to as .

Assume now that the bandwidth of the LPF satisfies
. In this case the matrix of Proposition 3

is given by

and the determinant of becomes

(15)

This expression is similar to (14) and the same arguments show
that for all . Namely, since

are not integers, the functions and
have no common zero such that the first term on the right-

hand side of (15) is lower bounded by some . The
Cauchy–Schwarz inequality implies that the second term is al-
ways smaller than the first one.

We conclude that satisfies the condition of
Proposition 3, so that the signal can be recovered from
its low frequency components .

If for a certain bandwidth of the LPF the generators
satisfy the conditions of Proposition 3, then the signal can be
recovered from . However, if the generators do
not satisfy these conditions, then there exists in principle two
ways to enable recovery of :

• increasing the bandwidth of the LPF;
• preprocess before lowpass filtering, i.e., modify the gen-

erators .
It is clear that for a given set of generators
an increase of the LPF can only increase the “likelihood” that
the matrix of Proposition 3 will have full column rank.
This is because enlarging increases the number i.e., it
adds additional rows to the matrix which can only enlarge the
column rank of . Preprocessing of will be discussed in
detail in Sections V and VI.

IV. RECOVERY ALGORITHM

We now describe a simple method to reconstruct the desired
signal from its low frequency components. This method is
used in later sections to show how preprocessing of the signal
may facilitate its recovery. Throughout this section, we assume
that the bandwidth of the LPF satisfies the necessary con-
dition of Proposition 2, and that the generators satisfy the suffi-
cient condition of Proposition 3.

Taking the Fourier transform of (1), we see that every
can be expressed in the Fourier domain as

(16)

where

is the -periodic discrete time Fourier transform of the se-
quence at frequency . Denoting by the
vector whose th element is equal to and by the
vector whose th element is equal to we can write (16)
in vector form as

The Fourier transform of the LPF output is
bandlimited to , and for all we have

. Therefore,

(17)

For every , (17) describes an equation for
the unknowns . Clearly, one equation is not suffi-
cient to recover the length- vector ; we need at least
equations. However, since according to Proposition 2 the band-
width of the LPF has to be at least , we can
form more equations from the given data by noting that is
periodic with period , while , and consequently , are

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on May 27,2010 at 17:56:21 UTC from IEEE Xplore.  Restrictions apply. 



ELDAR AND POHL: RECOVERING SIGNALS FROM LOWPASS DATA 2641

generally not. Specifically, let be an arbi-
trary frequency. For any with an integer
we have that . Therefore, by evaluating
and at frequencies , we can use (17) to
generate more equations. To this end, let be the largest integer
for which . Assume first that for some
integer , so that is odd. We then generate the equations

for and . Since by our
assumption , all the observations

are in the passband regime of the LPF. The above set
of equations may be written as

(18)

where is a length
vector containing all the different observations of the output

, and is the matrix given by (10). When
is an even number,2 we generate additional equations by

(19)
for . Here again all the observations in (19)
are in the passband regime of the LPF. Therefore, (19) can be
written as in (18), where is now given by (11), and the
definition of is changed accordingly.

If the matrix satisfies the sufficient conditions of
Proposition 3, then the unknown vector can be re-
covered from (18) by solving the linear set of equations for
all . In particular, there exists a left inverse

of such that . Finally, the
desired sequences are the Fourier coefficients of
the periodic functions .

V. PREPROCESSING WITH FILTERS

When does not have full column rank for all
and if the bandwidth of the LPF can not be in-

creased, an interesting question is whether we can preprocess
before lowpass filtering in order to ensure that it can be re-

covered from the LPF output. In this and in the next section we
consider two types of preprocessing: using a bank of filters, and
using a bank of mixers (modulators), respectively.

Suppose we allow preprocessing of with a set of filters,
as in Fig. 3. The question is whether we can choose the filters

in the figure so that can be recovered from the outputs
of each of the branches under more mild conditions than those
developed in Section III.

2In subsequent sections, we will only discuss the case where � is odd. The
necessary changes for the case of � being even are obvious.

Fig. 3. Preprocessing of ���� by a bank of � LTI filters.

Let be the length- vectors with th elements given by
. Then we can immediately verify that

(20)

Clearly, cannot be recovered from this set of equations as all
the equations are linearly dependent (they are all multiples of
each other). Thus, although we have equations, only one of
them provides independent information on . We can, as before,
use the periodicity of if is small enough. Following the
same reasoning as in Section IV, assuming that ,
we can create new measurements using the same un-
knowns by considering for different frequencies

. In this case though it is obvious that the prefiltering
does not help, since only one equation can be used from the set
of (20) for each frequency. In other words, all the branches
in Fig. 3 provide the same information. Following the same rea-
soning as in the previous section, the resulting equation is the
same up to multiplication by for one index .
Therefore, the recovery conditions reduce to the same ones as
before, and having branches does not improve our ability to
recover .

VI. PREPROCESSING WITH MIXERS

We now consider a different approach, which as we will see
leads to greater benefit. In this strategy, instead of using filters
in each branch, we use periodic mixing functions . Each se-
quence is assumed to be periodic with period equal to3

. By choosing the mixing functions appropriately, we can in-
crease the class of functions that can be recovered from the low-
pass filtered outputs.

A. Single Channel

Let us begin with the case of a single mixing function, as in
Fig. 4. Since is assumed to be periodic with period , it can
be written as a Fourier series

(21)

3Note, that we can also choose � � ��� for an integer �. However, for
simplicity we restrict attention to the case � � �.
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Fig. 4. Mixing prior to lowpass filtering of ����.

where

(22)

are the Fourier coefficients of . The sum (21) is assumed to
converge in which implies that the sequence is an
element of . The output of the LPF is then
given in the frequency domain4 by

(23)

Using (16) and the fact that is -periodic, (23)
can be written as

(24)

for . Defining

(25)

and denoting by the vector whose th element is , we ex-
press (24) as

(26)

Equation (26) is similar to (17) with replacing . There-
fore, as in the case in which no preprocessing took place (cf.
Section IV), we can create additional equations by evalu-
ating at frequencies as long as .
This yields the system of equations

(27)

where and are defined as in (10) and

...
...

...
...

Consequently, can be recovered from the given measurements
as long as the matrix has full column rank for all

4Note that a periodic sampling with sampling period � of the signal � con-
stitutes a special case of multiplying � with a periodic sequence [18]. In this
case, the coefficients will have the special form � � � where � is
an arbitrary delay.

. To this end it is necessary that ,
i.e., that .

Due to the mixing of the signal, the coefficient matrix
in (18) is changed to in (27). This new coefficient matrix
is constructed out of the new generators in exactly the
same way as is constructed from the original generators

. Equation (25) shows that the Fourier transform of
each new generator lies in a shift invariant space

spanned by shifts of . The coefficients of the mixing
sequence are then the “coordinates” of in .

We now show that the invertibility condition of is in
general easier to satisfy then the analogous condition on the ma-
trix of (10). To this end, we write as

(28)

where denotes the matrix consisting of columns and

infinitely many rows with . Note that
has the form (10) with , i.e., . The

matrix with rows and infinite columns contains
the Fourier coefficients of the mixing sequence (21)
and is given by

...

...

(29)

Representation (28) follows immediately from the relation
for the entries

of the matrix .
The Grammian of the generators , defined in (4),

may be written as . Therefore, under our
assumption (3) on the generators, has full column rank
for all . The question then is whether we can
choose the sequence , and consequently the func-
tion , so that has full-column rank i.e., such that the
matrix is invertible for all

.
If we choose the mixing sequence then and

for all . Consequently is comprised of
the first rows of , so that . However, by
allowing for general sequences , we have more freedom
in choosing such that the product may have full
column-rank, even if does not.

We next give a simple example which demonstrates that pre-
processing by an appropriate mixing function can enable the re-
covery of the signal.

Example 3: We continue Example 1 with the single generator
given by (7). Here we assume that the parameter satisfies

the relation and that the cutoff frequency of the
lowpass filter is . In this case, recovery of from
its lowpass component is not possible, as discussed
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in Example 1. However, we will show that there exist mixing
functions so that can be recovered from .

One possible mixing function is

whose Fourier coefficients (22) are given by , ,
, and for all . With this choice, the ”new

generator” (25) becomes

Since , the matrix reduces to the scalar
and we have to show that for all

. The upper bound is trivial; for the lower
bound, it is sufficient to show that the real and imaginary part
of have no common zero in . This fact is easily
verified by noticing that the only zeros of the real part of
are at and . Evaluating the imaginary
part of at these zeros gives

which is nonzero under the assumption made on .
The general question whether for a given set

of generators there exists a matrix such
that (28) is invertible for all , or under what
conditions on the generators such a matrix can be found seems
to be an open and nontrivial question. The major difficulty is
that according to (28), we look for a constant (independent of

) matrix such that has full column rank for all
. Moreover, the matrix has to be of the

particular form (29) with a sequence .
The next example characterizes a class of generators for

which a simple (trivial) mixing sequence always exist.
Example 4 (Generators With Compact Support): Consider

the case of a single generator and assume that
, i.e., . Our problem then reduces to finding

a function such that for all
.

We treat the special case of a generator with finite sup-
port of the form for some , i.e., we assume that

for all . This means that its Fourier trans-
form is an element of the Paley–Wiener space and
so are all linear combinations of the shifts . It follows
that .

Let now be arbitrary and let be the or-
dered sequence of real zeros of with . Then a
theorem of Walker [19] states that

Fig. 5. Bank of mixing functions.

Thus, there exists at least one interval of the real line of length
such that has no zeros in this interval. Consequently, if

then there always exists a such that

(30)

This holds in particular for the generator itself.
We conclude that if the support of the generator satisfies

, then there always exists a such that
for all . The

corresponding mixing sequence is given by and
for all .

B. Multiple Channels

In the single channel case, it was necessary that the cutoff
frequency of the LPF is at least times larger than the
bandwidth of the desired signal in order to be able to recover
the signal. We will now show that using several channels can
reduce the cutoff frequency of the filter in each channel,
from which the original signal is still recoverable.

Suppose that we have channels, where each channel
uses a different mixing sequence, as in Fig. 5. Since ,
we expect to be able to reduce the cutoff in each channel. We
therefore consider the case in which . The output

of the th channel in the frequency domain is then
equal to

where is the vector with th element

and are the Fourier coefficients associated with the
th sequence . Defining by the vector with th element

we conclude that
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where is the matrix whose entry in the th row and th
column is . Now, all we need is to choose
the sequences such that has full column
rank. More specifically, as before we can write

(31)

where is a matrix with rows and infinitely many columns
whose th row is given by the coefficient sequence , i.e.,

...

By our assumption has full column rank and so it re-
mains to choose such that is invertible for every

.
It should be noted that we used the same notation as in the

previous subsection although the definition of the particular ma-
trices and vectors differ slightly in both cases. Nevertheless,
the formal approach is very similar. In the previous subsection,
we observed the output signal in different frequency channels

whereas in this subsection the channels
are characterized by different mixing sequences.5

As in the previous subsection, the general question whether
for a given system of generators there al-
ways exists an appropriate system of mixing sequences

such that has full column rank for all fre-
quencies seems to be nontrivial. The formal difficulty lies in
the fact that we look for a constant (independent of ) matrix
such that (31) has full column rank for each .
However, compared with the previous section, where only one
mixing sequence was applied, the problem of finding an appro-
priate matrix becomes simpler: In the former case has
to have the special (diagonal) form (29), whereas here its entries
can be chosen (almost) arbitrarily. The sequences only
have to be in .

A special choice of periodic functions that are easy to im-
plement in practice are binary sequences. This example was
studied in [14] in the context of sparse multiband sampling.
More specifically, , are chosen to attain the values

over intervals of length where is a given integer.
Formally,

(32)

with , and for every .
In this case, we have

5In the first case, we perform “frequency multiplexing” whereas the second
case resembles “code multiplexing”.

Evaluating the integral gives

where , and denotes the discrete Fourier
transform (DFT) of the sequence . Note that
is -periodic so that .

With these mixing sequences, the infinite matrix can be
written as

(33)

where is a matrix with columns and rows, whose th row
is given by the sequence , is the Fourier
matrix, and is a matrix with rows and infinitely many
columns consisting of block diagonal matrices of size
whose diagonal values are given by the sequence de-
fined by and for

. Applying these binary mixing sequences, the problem is
now to find a finite matrix with values in
such that has full column rank for every

.
The next example shows how to select in the case of ban-

dlimited generators.
Example 5 (Bandlimited Generators): We consider the

case where each generator is bandlimited to the interval
for some , and . In

this case, is essentially an matrix (all
other entries are identically zero). This matrix is invertible for
every according to assumption (3).

We now apply different mixing sequences
having the special structure (32), and choose . Ac-
cording to (31) and (33) the matrix then becomes

(34)

where and are matrices of size . The matrix
may be considered as the product of the invertible

matrix with an diagonal matrix
consisting of the central diagonal matrix of , i.e.,

Since this diagonal matrix is invertible also is in-
vertible for every . Therefore, using the fact
that the Fourier matrix is invertible, is invertible for
each if the values of the mixing
sequences are chosen such that is invertible. This can be
achieved by choosing as a Hadamard matrix of order . It is
known that Hadamard matrices exists at least for all orders up
to 667 [20].

In the previous example, was an invertible
matrix for all . According to Proposition 3
recovery of the signal is therefore possible if the bandwidth
of the LPF is larger than . However, the example shows
that pre-processing of by applying the binary sequences in

channels allows recovery of the signal already from its
signal components in the frequency range .

For simplicity of the exposition, we assumed throughout this
subsection that the bandwidth of the lowpass filter is
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equal to the signal bandwidth and that the number of
channels is at least equal to the number of generators .
However, it is clear from the first subsection that in cases where

, recovery of the signal may still be possible if the band-
width of the LPF is increased.

VII. CONNECTION WITH SPARSE ANALOG SIGNALS

In this section we depart from the subspace assumption which
prevailed until now. Instead, we would like to incorporate spar-
sity into the signal model of (1). To this end, we follow the
model proposed in [9] to describe sparsity of analog signals in
SI spaces. Specifically, we assume that only out of the gener-
ators are active, so that at most of the sequences
have positive energy.

In [9], it was shown how such signals can be sampled and re-
constructed from samples at a low rate of . The samples
are obtained by pre-processing the signal with a set of
sampling filters, whose outputs are uniformly sampled at a rate
of . Without the sparsity assumption, at least sampling
filters are needed where generally is much larger than . In
contrast to this setup, here we are constrained to sample at the
output of a LPF with given bandwidth. Thus, we no longer have
the freedom to choose the sampling filters as we wish. Nonethe-
less, by exploiting the sparsity of the signal we expect to be able
to reduce the bandwidth needed to recover of the form (1),
or in turn, to reduce the number of branches needed when using
a bank of modulators.

We have seen that the ability to recover depends on
the left invertibility of the matrix (or ). With ap-
propriate definitions, our problem becomes that of recovering

from the linear set of (18) (with replacing
when preprocessing is used). Our definition of analog

sparsity implies that at most of the Fourier transforms
have nonzero energy. Therefore, the infinite set of vectors

share a joint sparsity pattern
with at most rows that are not zero. This in turn allows us
to recover from fewer measure-
ments. Under appropriate conditions, it is sufficient that
has length , which in general is much smaller than . Thus,
fewer measurements are needed with respect to the full model
(1). The reduction in the number of measurements corresponds
to choosing a smaller bandwidth of the LPF, or reducing the
number of modulators.

In order to recover the sequences in practice, we rely on the
separation idea advocated in [8]: we first determine the sup-
port set, namely the active generators. This can be done by
solving a finite dimensional optimization problem under the
condition that (or ) are fixed in frequency up to
a possible frequency-dependent normalization sequence. Re-
covery is then obtained by applying results regarding infinite
measurement vector (IMV) models to our problem [8]. When

does not satisfy this constraint, we can still convert the
problem to a finite dimensional optimization problem as long as
the sequences are rich [10]. This implies that every finite
set of vectors share the same frequency support. As our focus

here is not on the sparse setting, we do not describe here in de-
tail how recovery is obtained. The interested reader is referred
to [8]–[10] for more details.

The main point we wish to stress is that the ideas developed in
this paper can also be used to treat the scenario of recovering a
sparse SI signal from its lowpass content. The difference is that
we can relax the requirement for invertibility of .
Instead, it is enough that these matrices satisfy the known con-
ditions from the compressed sensing literature. This in turn al-
lows in general reduction of the LPF bandwidth, or the number
of modulators, in comparison with the nonsparse scenario.

VIII. CONCLUSIONS AND OPEN PROBLEMS

This paper studied the possibility of recovering signals in
SI spaces from their low frequency components. We developed
necessary conditions on the minimal bandwidth of the LPF and
sufficient conditions on the generators of the SI space such that
recovery is possible. We also showed that proper pre-processing
may facilitate the recovery, and allow to reduce the necessary
bandwidth. Finally, we discussed how these ideas can be used
to recover sparse SI signals from the output of a LPF.

An important open problem we leave to future work is the
characterization of the class of generators for which the pro-
posed pre-processing scheme can (or cannot) be applied. To this
end, the following question has to be answered. We formulate
it only for the most simple case of one generator (cf. also the
discussion in Example 4).

Problem 1: Let be an arbitrary function with Fourier
transform whose Grammian satisfies (3). Consider the shift-
invariant space spanned by , i.e.,

For which functions does there exist a function
such that for all .

The interesting case is when every function ,
has at least one zero in the interval . Then

the question is whether it is still possible to find a linear combi-
nation of these functions which has no zero in .
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