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Abstract—The rapid developing area of compressed sensing sug-
gests that a sparse vector lying in a high dimensional space can be
accurately and efficiently recovered from only a small set of non-
adaptive linear measurements, under appropriate conditions on
the measurement matrix. The vector model has been extended both
theoretically and practically to a finite set of sparse vectors sharing
a common sparsity pattern. In this paper, we treat a broader frame-
work in which the goal is to recover a possibly infinite set of jointly
sparse vectors. Extending existing algorithms to this model is dif-
ficult due to the infinite structure of the sparse vector set. Instead,
we prove that the entire infinite set of sparse vectors can be recov-
ered by solving a single, reduced-size finite-dimensional problem,
corresponding to recovery of a finite set of sparse vectors. We then
show that the problem can be further reduced to the basic model of
a single sparse vector by randomly combining the measurements.
Our approach is exact for both countable and uncountable sets,
as it does not rely on discretization or heuristic techniques. To ef-
ficiently find the single sparse vector produced by the last reduc-
tion step, we suggest an empirical boosting strategy that improves
the recovery ability of any given suboptimal method for recovering
a sparse vector. Numerical experiments on random data demon-
strate that, when applied to infinite sets, our strategy outperforms
discretization techniques in terms of both run time and empir-
ical recovery rate. In the finite model, our boosting algorithm has
fast run time and much higher recovery rate than known popular
methods.

Index Terms—Basis pursuit, compressed sensing, multiple mea-
surement vectors (MMVs), sparse representation.

1. INTRODUCTION

ANY signals of interest often have sparse representa-
M tions, meaning that the signal is well approximated by
only a few nonzero coefficients in a specific basis. The traditional
strategy to exploit this sparsity is to first acquire the signal in a
high-dimensional space and then apply a compression method in
order to capture the dominant part of the signal in the appropriate
basis. Familiar formats like MP3 (for audio signals) and JPEG
(for images) implement this approach. The research area of com-
pressed sensing (CS) challenges this strategy by suggesting that
a compact representation can be acquired directly.
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The fundamentals of CS were founded in the works of
Donoho [1] and Candés et al. [2]. In the basic model, referred
to as a single measurement vector (SMV), the signal is a dis-
crete vector x of high dimension. The sensing process yields
a measurement vector y that is formed by inner products with
a set of sensing vectors. The key observation is that y can be
relatively short and still contain the entire information about x
as long as x is sparsely represented in some basis, or simply
when x itself contains only a few nonzero entries. An important
problem in this context is whether the vector x producing y is
unique [3]. Another well-studied issue is the practical recovery
of x from the compressed data y, which is known to be NP-hard
in general. Many suboptimal methods have been proposed for
this problem [1], [2], [4], [5], which achieve a high recovery
rate when tested on randomly generated sparse vectors.

The SMV model has been extended to a finite set of jointly
sparse vectors having their nonzeros occurring in a common lo-
cation set. The sensing vectors are applied to each of the sparse
vectors resulting in multiple measurement vectors (MMV). This
model is well suited for problems in magnetoencephalography,
which is a modality for imaging the brain [6]-[8]. It is also
found in array processing [6], [9], nonparametric spectrum anal-
ysis of time series [10], and equalization of sparse communica-
tion channels [11], [12]. The issue of uniqueness in the MMV
problem was addressed in [13] and [14], together with exten-
sions of SMV recovery techniques to MMV.

In this paper, we start from a broader model that consists of
an infinite set of jointly sparse vectors, termed infinite measure-
mentvectors IMV). The set may be countable or uncountable (for
example, when described over a continuous interval). The IMV
modelisbroaderthan MMV and naturally arises inrecovery prob-
lems involving analog signals, such as our earlier work on multi-
band signals [15]. Other potential applications involving analog
signals are: 1) compressed sensing radar, where an IMV model
can replace the discretization of the plane used in [16] and ii)
underwater acoustic sensing, in which the discrete snapshots of
the sampled delay Doppler spread function can be replaced by
a continuous estimate [17]. As we explain further in this paper,
the recovery of the entire infinite set of sparse vectors in IMV
models is highly complicated. Previous attempts to solve prob-
lems involving infinite vector sets use discretization techniques
to approximate the solution [18] or alternatively assume an un-
derlying discrete finite-dimensional signal model [19]. Instead,
we derive a reduced finite-dimensional problem from which the
common nonzero location set can be inferred exactly. This para-
digmrelies on the observation that once the nonzero locations are
identified, the original recovery problem translates into a simple
linear inversion with a closed form solution.
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Fig. 1. The entire flow of this paper consists of (I) a deterministic reduction

from IMV to MMV, (II) a random reduction from MMV to SMV, and (III) a
boosting stage. The ReMBo algorithm is a formal description of the last two
steps.

Our first main contribution is a theoretical result showing that,
for every given IMV problem, there is an explicit MMV coun-
terpart with the same nonzero location set. This reduction to fi-
nite dimensions is achieved without discretization or heuristic
techniques and thus allows in principle an exact recovery of the
entire set of sparse vectors. Thus neither the IMV model nor the
solution is discretized. Once the IMV problem is reduced to an
MMV problem, results developed in that context can be applied.

To further improve the recovery performance, both in terms
of speed and recovery rate, we develop another theoretical re-
sult allowing to identify the nonzero locations of a given MMV
model from a sparse vector of a specific SMV system. As op-
posed to the IMV reduction, our strategy here is to construct
a random SMV problem that merges the set of sparse vectors
using random coefficients. We prove that this reduction pre-
serves the crucial information of the nonzero location set with
probability one.

Our final contribution treats the practical aspect of using
a suboptimal technique to find the sparse vector of an SMV
problem. While examining popular SMV recovery techniques,
we observed that the recovery ability depends on the exact
nonzero values and not only on their locations. Based on this
observation, we argue that it is beneficial to draw several real-
izations of the merged measurement vector, by using different
random combinations, until a sparse vector is identified. These
iterations are referred to as the boost step of our method, since,
empirically, each iteration improves the overall recovery rate
of the nonzero location set. We formulate a generic algorithm,
referred to as ReMBo, for the reduction of MMV and boosting.
The performance of ReMBo depends on the embedded SMV
technique.

The results presented in this paper provide a complete flow
between the recovery problem of different models. Fig. 1 depicts
this framework, which can be initiated from a given IMV system
or an arbitrary MMV problem. Numerical experiments demon-
strate the performance advantage of methods derived from the
ReMBo algorithm over familiar MMV techniques in terms of
empirical recovery rate and run time. In addition, we present
a simulation emphasizing the advantage of the IMV reduction
over a discretization technique.

The outline of this paper is as follows. The IMV model is in-
troduced in Section II, where we also discuss conditions for a
unique solution. The deterministic reduction method of IMV to
MMV and the random reduction of MMV to SMV are devel-
oped in Sections III and I'V, respectively. The description of the
ReMBo algorithm follows in Section V. Numerical experiments
are provided in Section VI.
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II. INFINITE-MEASUREMENT-VECTORS MODEL

Let A be a given m X n matrix with m < n and consider the
parametric linear system

y(\) = Ax(A), A€A )

where A is some known set. Our goal is to recover the unknown
vector set x(A) = {x(A)}aea, referred to as the solution set,
from the measurements y(A) = {y(A\)} xea. The cardinality of
A is arbitrary including both finite (single or multiple element)
sets and infinite sets (countable or uncountable). For example,
A can be the index of a discrete set or, alternatively, a variable
over a continuous interval.

Clearly, the recovery problem is not well defined unless
there is a unique solution set x(A) for each y(A). However,
the system of (1) does not possess a unique solution in general,
since for every A, (1) contains fewer equations than unknowns.
Specifically, each y(A) is a vector of length m, while the
corresponding x(A) is of length n > m. Therefore, in order to
guarantee a unique solution, additional priors on x(A) must be
given. Throughout this paper, we assume a joint sparsity prior,
which constrains each x(\) to have only a few nonzero entries
and in addition requires that all the vectors in x(A) share a
common nonzero location set. The system of (1) is termed IMV
when A is infinite and the joint sparsity prior is assumed. In the
sequel, this prior is formally described and is used to derive a
sufficient condition for the uniqueness of the IMV solution set.

A. SMV Model

We start by describing notation and a uniqueness result for the
special case of a single element set A, in which (1) is abbreviated
as y = Ax. This corresponds to the well-studied SMV model.

A vector x is called K -sparse if it contains no more than K
nonzero entries. For a given vector x, the support function

1(x) = {k|x; # 0} @)
describes the locations of the nonzero entries, where x;, stands
for the kth entry of x. Thus, a K-sparse vector x conforms
with a support size |I(x)| < K. A sufficient condition for the
uniqueness of a K -sparse solution can be stated in terms of the
Kruskal-rank of a matrix, which was first used in the seminal
work of Kruskal [20].

Definition 1: The Kruskal rank of A, denoted o(A), is the
maximal number ¢ such that every set of ¢ columns of A is
linearly independent.

Theorem 1: 1f the vector X is a K -sparse solution of y = Ax
and 0(A) > 2K, then X is the unique K-sparse solution.

Theorem 1 and its proof are given in [3] and [14] with a
slightly different notation of Spark(A) instead of the Kruskal
rank.

B. Uniqueness in IMV Models

The joint sparsity prior becomes relevant when A contains
more than a single element. By abuse of notation, we define the
support function of a vector set as the union over the support of
each vector. Specifically

T(x(A)=J T(x(\)
AEA
={1<k<n|xg(Ao)#0, for some \geA}. (3)
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TABLE I
SPARSITY MODELS AND PRIORS

Model | A Cardinality Linear System K -sparsity prior
SMV 1 y = Ax [I(X)] < K
MMV d Y = AX I(X)| <K
IMV Infinite y(A) = Ax(A) | [I(x(A)| < K

For brevity, a jointly sparse solution set x(A) with |I(x(A))| <
K is also called K-sparse. A K -sparse vector set x(A) implies
two properties: I) each x(\) is a K-sparse vector and II) the
nonzero entries of x(\) are confined to a fixed location set of
size no more than K. The system of (1) is called MMV in the
literature when the joint sparsity prior holds over a finite set of
sparse vectors [13], [14]. Similarly, we refer to the system of
(1) as IMV when A is an infinite set and x(A) is jointly sparse.
Table I summarizes the models derived from (1) for different
cardinalities of the set A. The abbreviations used for the linear
systems of MMV and IMV are clear from the context. Evidently,
the joint sparsity prior is what distinguishes MMV and IMV
models from being a set of independent SMV systems.

The first property of the joint sparsity prior implies that
o(A) > 2K is sufficient to guarantee the uniqueness of a
K -sparse solution set X(A), since we can consider the SMV
problem y(A\) = Ax(A) for each A separately. Exploiting
the joint sparsity, we expect that a value of o(A) less than
2K would suffice to ensure uniqueness. Extending uniqueness
results regarding MMV [13], [14] leads to the following propo-
sition.

Proposition 1: If x(A) is a K -sparse solution of (1) and

o(A) > 2K — (dim (span(y(A))) - 1) (4

then X(A) is the unique K -sparse solution.

The notation span(y(A)) is used for the subspace of min-
imal dimension containing the entire vector set y(A). Note that
span(y(A)) is guaranteed to have finite dimension since y(\)
has finite length. For jointly sparse solution sets, Proposition 1
indeed claims that the required Kruskal rank of A can be gen-
erally lower than 2K of Theorem 1.

Proof: The solution set X(A) is K-sparse, which implies
that dim(span(X(A))) < K. It follows from the linear system
of (1) that the dimension of the subspace span(y(A)) cannot
be higher than span(X(A)), i.e., r = dim{span(y(A))} <
K. From (4), we get that 0(A) > K. Consequently, for each
y(A) = 0, the corresponding unique K -sparse vector is x(\) =
0, as the null space of A cannot contain other K -sparse vectors.
Therefore, without loss of generality, we can prove the claim for
a measurement set y(A) with » > 1, which does not contain
Zero vectors. ~

Forr > 1, there exists a finite set A = {\;}|_, C A such that

the vector set y(A) is linearly independent. Since A is a finite
set, y(A) = Ax(A) is an MMV system. According to [13] and
[14], the corresponding solution set X(A) is unique under the
condition (4). Since y(A) does not contain zero vectors, every
vector y(\) belongs to some subset of r linearly independent
vectors. The argument above implies the uniqueness of the cor-
responding subset of X(A), and consequently the uniqueness of
the entire solution set. u

Note that (1) can be viewed as a sampling process, where
X(A) is the signal, A the sampling operator, and y(A) the gen-
erated set of samples. In this context, the design of the sampling

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 10, OCTOBER 2008

operator requires to determine the number of rows in A such that
the samples match a unique signal. However, (4) cannot be used
for this task since the value of dim(span(y(A))) is not known a
priori. In other words, if a matrix A needs to be designed such
that uniqueness is guaranteed for every K -sparse solution set,
including those with dim{span(y(A))} = 1, then the condition
(4) is reduced to o(A) < 2K of Theorem 1.

In the remainder of this paper, we assume that (1) has a unique
solution. In the next sections, we develop the main contributions
of our work, which address the recovery of the unique K -sparse
solution set x(A).

III. DIMENSION REDUCTION FOR INFINITE A

A. Optimization Viewpoint

Before discussing the IMV model, we review the optimiza-
tion viewpoint for the SMV and MMV problems.

If x is the unique K -sparse solution of the SMV problem
y = Ax, then it is also the unique sparsest solution. Therefore,
recovery of X can be formulated as an optimization problem [1]

X = argmin ||x]|¢, 8.t. Yy = Ax 5)
X

where the pseudonorm ¢ counts the number of nonzero entries
in x. In our notation, the objective can be replaced by |I(x)].
Since (5) is known to be NP-hard [1], [2], several alternatives
have been proposed in the literature. Donoho [1] and Candes
et al. [2] rigorously analyze the basis pursuit technique, which
uses the /1 norm instead of the 4 in (5), resulting in a tractable
convex program. Various greedy techniques to approximate the
sparsest solution have also been studied thoroughly [4]-[6]. Em-
pirically, all these methods show a high recovery rate of the
unique sparsest solution when tested on random data. Analo-
gously, it was shown that the combinatorial problem

X = argn%én [I(X)] s.t. Y = AX (6)

recovers the unique K -sparse solution matrix of an MMV
system [14]. This optimization problem is also NP-hard and
can be tackled with similar efficient suboptimal techniques
[13], [14].

Extending the optimization viewpoint to the IMV model leads
to the equivalent problem

X(4) = arg min |7 (x(1))

st.y(\) = Ax(\), VA€eA. @)
Note that in (7), there are infinitely many unknowns x(A) and
infinitely many equations. In contrast to the finite formulation of
both (5) and (6), a program of the type of (7) was not analyzed
in the optimization literature. The most relevant programming
structures are semi-infinite programming [21] and generalized
semi-infinite programming [22]. However, these formulations
allow only for infinite constraints while the optimization vari-
able is finite. This inherent intricacy of (7) remains even if the
objective is relaxed by known strategies. To overcome this diffi-
culty, we suggest to transform (7) into one of the forms known in
the literature. Specifically, we show that the joint sparsity prior
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allows to convert (7) into a problem of the form of (6), in which
both the variable and the constraint set are finite.

A straightforward approach to reduce (7) to a finite-dimen-
sional problem is to choose a finite grid A C A and then solve
only for X(A). This yields an MMV system corresponding to the
optimization problem (6). In turn, this program can be relaxed
by any of the known CS techniques. The final step is to approx-
imate x(A) by interpolating the partial solution set %(A). How-
ever, a discretization approach typically results in an approxima-
tion x(A) that is different from the unique solution X(A). More-
over, x(A) typically does not satisfy (1) between the grid points,
that is, for A ¢ A. This drawback of discretization happens even
if a brute-force method is used to optimally find the solution set
X(A) on the grid A. Furthermore, the density of the grid directly
impacts the complexity of discretization techniques. For these
reasons, we avoid discretization and instead propose an exact
method that transforms the infinite structure of (7) into a single
MMYV system without losing any information. A numerical ex-
periment illustrating the difference between our exact method

and discretization is provided in Section VI-C.

B. Paradigm

In order to solve (7) exactly, we split the problem into
two subproblems. One is aimed at finding the support set
S = I(xX(A)), while the other reconstructs X(A) from the data
y(A) and the knowledge of S. The reason for this separation is
that once S is known, the linear relation of (1) can be inverted
exactly.

To see this, let A g denote the matrix containing the subset of
the columns of A whose indexes belong to .S. Since the solution
set X(A) is K-sparse, we have that |S| < K. In addition, from
Proposition 1, o(A) > K. Therefore, Ag consists of linearly
independent columns, implying that

(As)'As =1 ®)

where (As)" = (AFAs)*AY is the Moore-Penrose pseu-
doinverse of Ag and Agl denotes the conjugate transpose of
As.

Using S, the system of (1) can be written as

y(A) = Asx®(\), AeA )

where the superscript x°()\) is the vector that consists of the
entries of x(\) in the locations S. Multiplying (9) by (A s)" on
the left gives

x5(\) = (Ag)'y(\), AeA.

In addition, it follows from the definition of the support set
I(x(A)) that

(10)

x;i(\) =0, VigS \eA. (11)

Therefore (10) and (11) allow for exact recovery of X(A) once
the finite set S is correctly identified.
C. Method

The essential part of our method is the first subproblem that
recovers S from the measurement sety (A ). Our key observation
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is that every finite collection of vectors spanning the subspace
span(y(A)) contains sufficient information to recover S exactly,
as incorporated in the following theorem.

Theorem 2: Suppose (1) has a unique K -sparse solution set
X(A) with S = I(X(A)) and that the matrix A, «,, satisfies (4).
Let V be a matrix of m rows such that the column span of V is
equal to span(y(A)). Then, the linear system

V =AU (12)
has a unique K-sparse solution U and I(U) = S.

Proof: Let r = dim(span(y(A))) and construct an m X r
matrix Y by taking some set of r linearly independent vec-
tors from y(A). Similarly, construct the matrix X of size n X r
by taking the corresponding r vectors from x(A). The proof is
based on observing the linear system

Y = AX. (13)
We first prove that X is the unique K -sparse solution matrix of
(13) and that I(X) = S. Based on this result, the matrix U is
constructed, proving the theorem.

It is easy to see that I(X) C S, since the columns of X are
a subset of X(A). This means that X is a K-sparse solution set
of (13). Moreover, X is also the unique K -sparse solution of
(13) according to Proposition 1. To conclude the claim on X, it
remains to prove that k € S implies k& € I(X), as the opposite
direction was already proved. If & € S, then for some Ay € A,
the kth entry of the vector x(\g) is nonzero. Now, if x(\g) is one
of the columns of X, then the claim follows trivially. Therefore,
assume that x(\o) is not a column of X. We next exploit the
following lemma.

Lemma 1 [15]: For every two matrices A, P, if |[(P)| <
o(A), then rank(P) = rank(AP).

Clearly, Lemma 1 ensures that rank(X) = r. In addition,
it follows from the same lemma that dim{span(X(A))} = r.
Thus, x(\g) must be a (nontrivial) linear combination of the
columns of X. Since the kth entry of x(\¢) is nonzero, it implies
that at least one column of X has a nonzero value in its kth entry,
which means k& € 1(X).

Summarizing the first step of the proof, we have that every
r linearly independent columns of y(A) form an MMV model
(13) having a unique K -sparse solution matrix X, such that
I(X) = S. As the column span of V is equal to the column span
of Y, we have that rank(V) = r. Since V and Y have the same
rank and Y also has full column rank, we get that V. = YR
for a unique matrix R of r linearly independent rows. This im-
mediately implies that U = XR is a solution matrix for (12).
Moreover, U is K -sparse, as each of its columns is a linear com-
bination of the columns of X. Proposition 1 implies the unique-
ness of U among the K -sparse solution matrices of (12).

It remains to prove that (U) = I(X). To simplify notation,
we write X* for the ith row of X. Now, U? = X*‘R, for every
1 < i < n. Thus, if X* is a zero row, then so is U*. However,
for a nonzero row X', the corresponding row U* cannot be zero
since the rows of R are linearly independent. [ |

The advantage of Theorem 2 is that it allows to avoid the
infinite structure of (7) and to concentrate on finding the finite
set S by solving the single MMV system of (12). The additional
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' Findaframe fory(A) I ' Reconstruct the set § = I(x(A)) |
y(A) |1 : Vg — - | s
_r H - H olve MMV V = AU for_ .
—> : Q= .’)\GA y(N)y(A)7dA Q=VV : . sparsest solution matrix U 5=1I(U) :
| | |
o Proposition 2____ ____ : L _________Theorem2 ______|
Fig. 2. Fundamental stages for the recovery of the nonzero location set S' using only one finite-dimensional problem.

requirement of Theorem 2 is to construct a matrix V having a
column span equal to span(y(A)) (i.e., the columns of V are
a frame for span(y(A))). The following proposition suggests a
procedure for creating a matrix V with this property. To this
end, we assume that x(A) is piece-wise continuous in A. This
regularity hypothesis, which is valid for typical applications,
allows to avoid zero-measure effects when treating continuous
signals.
Proposition 2: If the integral
Q= / y(A)y" (A)dA (14)

AEA

exists, then every matrix V satisfying Q = VVH has a column
span equal to span(y(A)).

The existence of the integral in (14) translates into a finite
energy requirement. Specifically, for countable A, the integral
exists if the sequence {y(\;)};—, is energy bounded in the /5
sense for every 1 < k < m. For uncountable A, y; () can
be viewed as a function of A, which is required to be integrable
and of bounded energy in the L, sense for every 1 < k < m.
Note that the matrix Q of (14) is positive semi-definite and thus
a decomposition Q = vvH always exists. In particular, the
columns of V can be chosen as the eigenvectors of Q multiplied
by the square-root of the corresponding eigenvalues.

Proof: For finite A, the claim follows immediately from
the fact that every two matrices M, N with MM = NN
have the same column space. Therefore, it remains to extend
this property to infinite A.

Let = dim(span(y(A))) and define a matrix Y,,x, as
in the proof of Theorem 2. The columns of Y are linearly in-
dependent, and thus Y1 is well defined. Define the vector set
d(\) = YT(y(\)), A € A, where each d(\) is a vector of length
r. By construction, the integral

/ dNdENd =YTQ(YHE =DD®  (15)

AEA

exists. The last equality in (15) is due to the positive semi-def-
initeness of the integrand. Substituting into (14), we have that
VV# = (YD)(YD)¥, which implies that the column spans
of V and (YD) are the same. Since the column span of Y equals
to span(y(A)), d(A) contains the columns of the identity ma-
trix of size r x r, and thus D is invertible. In turn, this implies
that span(Y) = span(YD). ]

The computation of the matrix Q depends on the underlying
application. In [15], we considered this approach for the recon-
struction of an analog multiband signal from point-wise sam-
ples. This class of signals is sparsely represented in the fre-
quency domain, as their Fourier transform is restricted to several
disjoint intervals. Imposing a blind constraint, namely, that both

sampling and reconstruction are carried out without knowledge
of the band locations, yields an IMV system that depends on a
continuous frequency parameter. As described in [15], in this
application Q can be computed by evaluating correlations be-
tween the sampling sequences in the time domain. The existence
of the integral in (14) corresponds to the basic requirement that
the point-wise sampling process produces bounded energy sam-
pling sequences.

Fig. 2 summarizes the reduction steps that follow from The-
orem 2 and Proposition 2. The flow of Fig. 2 was first pre-
sented and proved in our earlier work [15]. The version we pro-
vide here has several improvements over the preliminary one of
[15]. First, the flow is now divided into two independent log-
ical stages and the purpose of each step is highlighted. Sec-
ondly, each stage has a standalone proof as opposed to the tech-
nique used in [15] to prove the entire scheme at once. Math-
ematically, this separation allows the removal of a restriction
imposed in [15] on V to have only orthogonal columns. More-
over, each block can be replaced by another set of operations
having an equivalent functionality. In particular, the computa-
tion of the matrix Q of Proposition 2 can be avoided if alterna-
tive methods are employed for the construction of a frame V for
span(y(A)). Other application-dependent regularity hypotheses
on x(A) may also be used with an appropriate calculation of a
frame for span(y(A)).

IV. DIMENSION REDUCTION FOR FINITE A

A. Objective

We now address the finite case of an MMV system

Y = AX (16)

with A an m x n rectangular matrix as before. Following the
convention of Table I, Y is an m X d matrix, and the dimensions
of X are n X d. We assume that a unique K -sparse solution ma-
trix X with no more than K nonidentically zero rows exists. The
unique solution X can be found by the optimization problem (6),
which has known relaxations to tractable techniques. Our goal
in this section is to rely on ideas developed in the context of the
IMV model in order to reduce the dimension of the optimization
variable of (6) before performing any relaxation. Note that the
MMV system (16) is arbitrary and the results developed in the
sequel do not assume a preceding stage of reduction from IMV.

Applying the same paradigm of the infinite scenario, we aim
to recover the support set S = I(X). This set contains the cru-
cial information in the sense that once S is recovered the solu-
tion is obtained by (10), (11), namely, by inverting the relevant
columns of A. An immediate corollary of Theorem 2 is that if
Y does not have full column rank, then (16) can be reduced by
taking an appropriate column subset of Y. However, we wish
to improve on this trivial result. Specifically, we intend to find
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the support set S from a single SMV optimization of the form
(5). Such a reduction method is beneficial as the dimension of
the unknown variable in (5) is n, while in (6) it is nd.

B. Method

Our approach is to randomly merge the columns of Y into a
single vector y. We then show that the set S can be extracted
from the random SMV y = Ax. In order to derive this result
rigorously, we rely on the following definition from probability
and measure theory [23], [24].

Definition 2: A probability distribution P is called absolutely
continuous if every event of measure zero occurs with proba-
bility zero.

A distribution is absolutely continuous if and only if it can
be represented as an integral over an integrable density func-
tion [23], [24]. For example, Gaussian and uniform distributions
have an explicit density function that is integrable and thus both
are absolutely continuous. Conversely, discrete and other sin-
gular distributions are not absolutely continuous. The following
theorem exploits this property to reduce (6) into (5).

Theorem 3: Let X be the unique K -sparse solution matrix of
(16) with 0(A) > 2K In addition, let a be a random vector of
length d with an absolutely continuous distribution and define
the random vectors y = Ya and x = Xa. Consider the random
SMYV system y = Ax. Then:

1) for every realization of a, the vector X is the unique

K -sparse solution of the SMV;

2) I(x) = I(X) with probability one.

Proof: For every realization of a, the vector X is a linear
combination of the jointly K -sparse columns of X, and thus %
is K-sparse. It is easy to see that X satisfies the SMV system
and that Theorem 1 implies its uniqueness among the K -sparse
vectors.

The previous argument implies that I(X) C S for every re-
alization of a, where S = I(X). Therefore, it remains to prove
that I(X) = S with probability one. Expressing this event in
terms of the rows of X gives

Prob {I(x) = S} :Prob{a ¢./\/(Xi), Vi € S}

=1 — Prob {ae UN(X’i)} (17)

i€S

where X¢ denotes the ith row of X and V'(X?) = {v|Xiv =
0} is the null space of that row. Now, for every ¢ € S, the row
X is not identically zero, and thus the dimension of A/(X?) is
d—1.In other words, forevery i € S, N'(X*) has a zero measure
in the underlying sample space of a, which can be either R? or
C?. The union in (17) is over the finite set S and thus also has
zero measure. The absolute continuity of the distribution of a
concludes the proof. [ |

The randomness of a plays a main role in the reduction
method suggested by Theorem 3. In fact, random merging is
a best choice in the sense that for every deterministic linear
merging, there are infinite counterexamples (when X is deter-
ministic unknown) in which the merging process would fail to
preserve the support set S. For example, a simple summation
over the columns of Y may fail if the nonzero values in a single
row of X sum to zero. In contrast, Theorem 3 ensures that for
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every given MMV system and with probability one, the random
reduction yields an SM'V with the same nonzero location set. In
essence, the random reduction maps counterexamples of zero
measure (which may occur) to zero-measure events (which are
unlikely to occur).

The result of Theorem 3 resembles a result of [25], in which
the authors suggested merging the columns of Y using an or-
dinary summation. The nonzero locations were then estimated
using a one-step greedy algorithm (OSGA). It was shown that
if the entries of X are random, drawn independently from a
Gaussian distribution, then the set S can be recovered by OSGA
with probability approaching one as long as d — oo, that is,
when the number of columns in each of the matrices Y, X is
taken to infinity. In contrast, our method does not assume a sto-
chastic prior on the solution set X. Moreover, Theorem 3 holds
with probability one for arbitrary finite and fixed values of d.

V. THE ReMBo ALGORITHM

Theorem 3 paves the way to a new class of MMV techniques
based on reduction to an SMV. In this approach, the measure-
ment matrix Y is first transformed into a single vector y by
drawing a realization of a from some absolutely continuous dis-
tribution. Then, an SMV problem of the type (5) is solved in
order to find the support set S. Finally, the recovery of X is car-
ried out by inverting the matrix A g as in (10) and (11).

Since (5) is NP-hard, it is not solved explicitly in practice. In-
stead, many efficient suboptimal techniques have been proposed
in the literature that are designed to be tractable but no longer
guarantee a recovery of the unique sparsest solution. Interest-
ingly, we have discovered that repeating the reduction process
of the previous section with different realizations of a is advan-
tageous due to the following empirical behavior of these sub-
optimal methods. Consider two K -sparse vectors X, X having
the same nonzero locations but with different values. Denote
by S an SMV algorithm, which is used to recover X, x from
the measurement vectors AX, Ax, respectively. Empirically, we
observed that S may recover one of the vectors X, X while failing
to recover the other, even though their nonzero locations are the
same. As far as we are aware, this behavior was not studied thor-
oughly yet in the literature. In fact, Monte Carlo simulations that
are typically conducted in the evaluation of CS techniques may
imply a converse conclusion. For example, Candes et al. [2] ana-
lyzed the basis pursuit method for SMV when A is a row subset
of the discrete-time Fourier matrix. A footnote in the simula-
tion section points out that the observed behavior seems to be
independent of the exact distribution of which the nonzero en-
tries are drawn from. This remark was also validated by other
papers that conducted similar experiments. The conjecture that
Monte Carlo simulations are insensitive to distribution of the
nonzero values appears to be true. Nevertheless, it is beneficial
for a given SMV system to apply S on both measurement vec-
tors AX, Ax. Once the crucial information of the nonzero lo-
cations is recovered, the final step of inverting A g leads to the
correct solution of both X, X.

The ReMBo algorithm, outlined in Algorithm 1, makes use
of the reduction method and also capitalizes on the empirical
behavior discussed above. In steps 4-7, the MMV system is re-
duced into an SMV and solved using a given SMV technique S.
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These steps produce a suboptimal solution X, which is examined
in step 8. If X is not sparse enough or is not well aligned with
the measurements; then the reduction steps are repeated with
another draw of the random vector a. We term these additional
iterations the boosting step of the algorithm. Theorem 3 ensures
that each of the different SMV systems of step 6 has a sparse
solution that preserves the required support set S with proba-
bility one. The iterations improve the chances to recover S by
changing the nonzero values of the sparse solutions. Note that
if the number of iterations exceeds the predetermined parameter
Maxlters, then the algorithm is terminated. The content of the
flag variable indicates whether X represents a valid solution. If
flag = false, then we may solve the MMV system by any other
method.

Algorithm 1 ReMBo (Reduce MMV and Boost)

Input: Y, A
Control Parameters: K, ¢, Maxlters, S, P
Output: X, é’, flag
1: Set iter = 1
2: Set flag = false
3: while (iter < Maxlters) and (flag is false) do
4: Draw a random vector a of length d according to P
5. vy = Ya

6: Solve y = Ax using SMV technique S and denote the
solution by x

7. 8 = I(%)
8: if (|S| < K) and (|ly — A%||2 < ¢) then
9: flag = true

10: else

11: flag = flase

12: end if

13:  Construct X using S and (10), (11)
14: iter = iter +1

15: end while
16: return X, S‘, flag

In general, CS techniques can be clustered into two groups.
Those of the first group search for the sparsest feasible solution.
The other group contains approximation methods that fix the
sparsity to a user-defined value and determine a solution in this
set that is best aligned with the data. For example, basis pursuit
[26] belongs to the first group, while matching pursuit [27] with
a fixed number of iterations belongs to the second group. The
ReMBo algorithm can be tuned to prefer either feasibility or
sparsity according to user preference by selecting appropriate
values for the parameters K, e. However, it is recommended to
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avoid an approximation technique of the second group when
constraining only K to a desired value. The reason is that such
a method makes the condition of step 8 always true, and thus no
boosting will occur.

We now compare the behavior of ReMBo with standard
MMV methods in terms of computational complexity and
recovery rate. Clearly, the complexity of SMV is lower due to
the reduced number of unknowns. The reduction itself consists
of one matrix multiplication, which in practice is a negligible
portion of the overall run time in typical CS techniques. Per-
formance of different algorithms can also be evaluated by
measuring the empirical recovery rate in a set of random tests
[1], [2], [13], [14]. As shown in the following section, for some
parameter choices, a single reduction iteration achieves an
overall recovery rate that is higher than applying a direct MMV
technique. For other parameter selections, one iteration is not
sufficient and boosting is required to increase the recovery rate
of ReMBo beyond that of a standard MMV. The results indicate
that ReMBo-based algorithms are comparably fast even when
boosting is employed.

VI. NUMERICAL EXPERIMENTS

In this section, we begin by evaluating the reduction and
boosting approach for MMV systems. The behavior of the
ReMBo algorithm is demonstrated when the produced SMV is
solved using a suboptimal method. Two representative MMV
techniques are derived from Algorithm 1 and compared with
other popular MMV methods. We then present an experiment
that demonstrates the benefits of the IMV reduction flow over
discretization.

A. Evaluating ReMBo

We choose m = 20, n = 30, d = 5 for the dimensions of
(16). The following steps are repeated 500 times for each MMV
technique.

1) A real-valued matrix A of size 20 x 30 is constructed by
drawing each of its entries independently from a Gaussian
distribution with zero mean and variance one.

For each value of 1 < K < 20, we construct a K -sparse
real-valued solution matrix X of size 30 x 5. The
nonzero location set is drawn uniformly at random among
(i?) choices. The nonzero values of Xy are drawn from
a Gaussian distribution in the same way described before.
The MMV method that is being tested is executed in order
to recover each X ;¢ from the measurement data A X x . For
ReMBo-based algorithms, P is an independent identically
distributed uniform distribution in [-1,1]¢.

A correct solution is announced if X ¢ is recovered exactly
up to machine precision.

The empirical recovery rate for each value of K is calculated as
the percentage of correct solutions. We also collected run-time
data in order to qualitatively compare between the time com-
plexity of the tested techniques. Rigorous complexity analysis
and comparison are beyond the scope of this paper. Note that
the selection of real-valued matrices is not mandatory and the
results are also valid for complex values. However, we stick to
the real-valued setting as it reproduces the setup of [13], [14].
In addition, the same empirical recovery rate is noticed when

2)

3)

4)
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TABLE II
SUBOPTIMAL TECHNIQUES
Model | Tag Formal Description Type
BP Basis Pursuit, (5) with objective ||x||1, [11.[2] Convex relaxation
SMV | OMP Orthogonal Matching Pursuit, [13] Greedy
FOCUSS FOcal Underdetermined System Solver with p = 0.8, [6] | Greedy
M-BP(¢1) (6) with objective [[Ry, (X)[1. [14] Convex relaxation
M-BP({s0) (6) with objective [|R¢_ (X)[|1, [5] Convex relaxation
M-OMP MMV version of OMP, [13] Greedy
MMV | M-FOCUSS MMV version of FOCUSS with p = 0.8, [13] Greedy
ReMBo-BP ReMBo with S = BP Convex relaxation
ReMBo-OMP | ReMBo with S = OMP Greedy

(O]
$ 0.8
m .
> .0 M-BP(,)
Co6b i AL M-BP(_)
30 : : :
Q —©— ReMBo-BP[1]
anJ ReMBo-BP
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0 - il ¥ 8 8-0-0:-¢
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K

Fig. 3. Comparison of MMV techniques based on convex relaxations. The
ReMBo algorithms are in solid lines. As expected, the recovery curves of
ReMBo-BP[1] and BP coincide.

the nonzero entries of X - are drawn from a non-Gaussian dis-
tribution (e.g. uniform distribution). This behavior strengthens
the conjecture that Monte Carlo analysis is insensitive to the
specific distribution of the nonzero values.

To simplify the presentation of the results, Table II lists the
methods that are used throughout the experiments.! Short labels
are used to denote each of the techniques. The notation R, (X)
stands for a vector of length n such that its sth entry is equal to
the £, norm of the ith row of X. In the sequel, we denote the
Maxlters parameter of ReMBo-based algorithms in brackets,
for example, ReMBo-BP[1]. A default value of Maxlters =
rank(Y) is used if the brackets are omitted. This selection rep-
resents an intuitive choice, since after rank(Y) iterations, step 5
of Algorithm 1 produces a vector y that is linearly dependent in
the realizations of the previous iterations. This intuition is dis-
cussed later in the results.

Note that there is a difference in deciding on a correct solu-
tion for SMV and MMYV. In the latter, a solution is considered
correct only when all the vectors in the matrix are recovered
successfully, while in SMV a recovery of a single vector is re-
quired. Nevertheless, as both problems amount to recovering the
finite support set, we plot the recovery rate curves of SMV and
MMV techniques on the same scale. An alternative approach
would be to adjust the SMV recovery curve so that it represents
the overall success rate when the SMV technique is applied to
each of the columns separately. Adjusting the results according
to this approach will only intensify the improved recovery rate
of ReMBo-based algorithms.

ITable II contains a partial list of possible techniques for SMV/MMYV which
suffices for our purpose of emphasizing the advantage of the ReMBo algorithm.
Nonetheless, other methods can also be incorporated into ReMBo.

B. Results

In Fig. 3, we compare between MMV techniques based on
convex relaxation of (6). For reference, we also draw the re-
covery rate of BP on a single measurement column. Interest-
ingly, both M-BP(¢;) and M-BP (/) suffer from a decreased
recovery rate with respect to BP. In contrast, the recovery rate of
ReMBo-BP improves on BP due to the boosting effect. In addi-
tion, as revealed from Fig. 7, the average run time of ReMBo-BP
is also lower than that of both M-BP(¢;) and M-BP(¢..). Ev-
idently, in this simulation, M-BP(¢;) and M-BP({.,) do not
offer a practical benefit. Furthermore, M-BP algorithms require
the selection of a row norm. Our reduction method avoids this
ambiguous selection by first transforming to an SMV problem.

Matching pursuit (including its variations) and FOCUSS are
both greedy methods that construct the set S iteratively. These
techniques are typically faster than basis pursuit based methods,
as seen in Fig. 7. In addition, extending the SMV version of
these techniques into MMV is immediate. As opposed to convex
relaxation methods, these approaches demonstrate an improved
recovery rate when a joint sparsity prior is introduced. This
behavior is depicted in Fig. 4. A comparison of these algo-
rithms with ReMBo techniques is shown in Fig. 5. It is seen
that ReMBo-OMP outperforms M-OMP and M-FOCUSS over
the range 1 < K < 13. Specifically, in the intermediate range
10 < K < 13, it reaches a recovery rate that is approximately
10% higher than the maximal recovery rate of the non-ReMBo
techniques. In addition, the run time of the ReMBo-OMP is not
far from the direct greedy approaches, as seen from Fig. 7.

In order to emphasize the impact of iterations, Fig. 6 depicts
the recovery rate of ReMBo-BP and ReMBo-OMP for different
values of Maxlters. The recovery rate at K = 10 is of special
interest as, according to Theorem 3, o(A) > 2K is required?
to ensure that the random instances of SMV preserve the set
S. For example, a single iteration of ReMBo-BP achieves a re-
covery rate of 54%, while two and five iterations improve the
recovery rate to 74% and 91%, respectively. A higher number
of iterations results in a minor improvement conforming with
our intuitive default selection of Maxlters = rank(Y). How-
ever, the condition of K < 10 is only sufficient, and empirical
recovery is allowed to some extent even for K > 10. This be-
havior is common to all the techniques tested here, as shown
in Figs. 3-6. In this range of K > 10, repeating the reduction
process for more than rank(Y') can be beneficial. For example,

2According to [1], [2], a matrix with random entries has a full column rank and
a full Kruskal rank with an overwhelming probability. In our setup, the maximal
value of 0(A) is m = 20. Empirically, it was also noticed that rank(Y) = 5
in all generated measurements.
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ReMBo-BP[20] yields a recovery rate of 56% for K = 14 in-
stead of 25% when allowing only Maxlters = 5.

C. IMYV Reduction Versus Discretization

We now extend the previous setup in order to simulate an IMV
model by letting d = 10000. To discretize the IMV system, g
evenly spaced columns of Y are chosen resulting in an MMV
problem whose sparsest solution is searched, where 1 < g <
200. Since the nonzero values are drawn randomly, interpola-
tion of the missing columns is not useful in this setting. Instead,
we consider an approximation of the nonzero location set S by
taking the support of the solution matrix on the chosen grid. Fi-
nally, the entire solution set is recovered by (10) and (11). In
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Fig.9. Typical structure of the solution set and a grid selection. The grid cannot
be synchronized with the nonzero locations. In this example, discretization tech-
niques fail to reconstruction x2 (), whereas the IMV flow guarantees an exact
recovery of the support set .S.

order to capitalize on the difference between the IMV reduc-
tion flow of Fig. 1 and this discretization technique, we consider
K -sparse solution matrices X g such that each nonzero row of
X has only a few nonzero entries (e.g., up to 150 nonzero
values). For a fair comparison, the M-OMP technique is used
for the recovery of X in both methods.

The empirical recovery rate for several values of g is shown
in Fig. 8. It is evident that a discretization technique of this
type requires a grid of g = 200 to approach a reasonable
recovery rate, which is still below the recovery rate of the
IMV flow. In order to explain the superior performance of
the IMV flow, we plot a typical structure of a solution set in

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on May 27, 2009 at 02:44 from IEEE Xplore. Restrictions apply.



MISHALI AND ELDAR: REDUCE AND BOOST: RECOVERING ARBITRARY SETS OF JOINTLY SPARSE VECTORS 4701

Fig. 9. It is clear that discretization may fail as it does not
capture the entire information of the solution set. In contrast,
our approach preserves the necessary information required
for perfect reconstruction, namely, the nonzero location set.
Furthermore, comparing the average run time of both approaches
reveals that IMV is faster than discretization having a similar
recovery rate. Note that the density of the grid influences
the run time of discretization methods. In the example above
of g = 200, discretization yields an MMV system with 200
columns. The IMV flow does not have this drawback, as it
follows from Lemma 1 that the matrix V can be chosen such
that it consists of no more than K < 20 columns.

VII. CONCLUSIONS

The essence of the reduction theorems developed in this paper
is that the recovery of an arbitrary number of jointly sparse vec-
tors amounts to solving an SMV problem. This result applies to
the finite case of MMV and to the broader model of IMV, which
we introduced here. The key observation used in our develop-
ments is that the nonzero location set is the crucial information
for the exact recovery of the entire solution set. We prove that
this set can be recovered from a low-dimensional problem rather
than directly from the given high-dimensional system.

The explicit recovery problem of sparse vectors is a diffi-
cult combinatorial optimization program. Various methods to
approximate the sparse solution of a given program have been
previously proposed. However, to the best of our knowledge, a
direct simplification of the explicit combinatorial formulation,
in the way described here, was not studied so far. Furthermore,
in a typical CS setting, the sensing process involves randomness
while the reconstruction is deterministic. The reduction method
for MMV shows that randomness can also be beneficial in the
reconstruction stage. In addition, popular recovery techniques
have a fixed performance in terms of run time and recovery rate.
In contrast, the ReMBo algorithm is tunable, as it allows one to
trade the run time by the overall recovery rate. The simulations
conducted on several ReMBo methods demonstrate this ability
and confirm that these methods outperform other known tech-
niques.

An interesting extension of our work is to compressible sig-
nals where the goal is to recover the joint support of the dom-
inant coefficients. Joint sparsity with nonsparse innovations is
another direction in which to extend our results.
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