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Understanding the dynamics and variability of protein circuitry requires accurate measurements
in living cells as well as theoretical models. To address this, we employed one of the best-studied
protein circuits in human cells, the negative feedback loop between the tumor suppressor p53 and
the oncogene Mdm2. We measured the dynamics of fluorescently tagged p53 and Mdm2 over several
days in individual living cells. We found that isogenic cells in the same environment behaved in
highly variable ways following DNA-damaging gamma irradiation: some cells showed undamped
oscillations for at least 3 days (more than 10 peaks). The amplitude of the oscillations was much
more variable than the period. Sister cells continued to oscillate in a correlated way after cell
division, but lost correlation after about 11h on average. Other cells showed low-frequency
fluctuations that did not resemble oscillations. We also analyzed different families of mathematical
models of the system, including a novel checkpoint mechanism. The models point to the possible
source of the variability in the oscillations: low-frequency noise in protein production rates, rather
than noise in other parameters such as degradation rates. This study provides a view of the extensive
variability of the behavior of a protein circuit in living human cells, both from cell to cell and in the

same cell over time.
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Introduction

A goal of systems biology is to understand the design
principles that govern dynamics of protein regulatory circuits
(Hartwell et al, 1999). It is especially important to investigate
network motifs, regulatory patterns that recur in various
biological networks (Milo et al, 2002; Alon, 2003, 2006).
Understanding the dynamical features of a specific network
motif may help us to understand diverse biological systems
in which this motif appears (Lee et al, 2002; Shen-Orr
et al, 2002; Mangan and Alon, 2003; Kalir and Alon, 2004;
Odom et al, 2004; Boyer et al, 2005; Ma’ayan et al, 2005;
Mangan et al, 2006). For this purpose, it is important to study
the best-characterized systems using dynamic measurements
in living cells.

To understand protein circuits, it is important to study the
impact of the stochastic nature of biological reactions on the
behavior of the circuit (Novick and Weiner, 1957; Spudich and
Koshland, 1976; McAdams and Arkin, 1997, 1999; Becskei and
Serrano, 2000; Thattai and van Oudenaarden, 2001; Elowitz
et al, 2002; Hasty et al, 2002; Ozbudak et al, 2002; Blake et al,
2003; Isaacs et al, 2003; Paulsson, 2004; Raser and O’Shea,
2004, 2005; Becskei et al, 2005; Blake and Collins, 2005;
Colman-Lerner et al, 2005; Golding et al, 2005; Kaern et al,
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2005; Sachs et al, 2005; Weinberger et al, 2005; Volfson et al,
2006). For this purpose, it is essential to study individual cells
and to measure the cell-cell variations in the biological
response, rather than averaging over cell populations. Most
studies of stochastic behavior to date have been in micro-
organisms. It would therefore be of interest to measure the
behavior and variability of a protein circuit over long times
in individual human cells.

Here, we study the dynamics and variability of one of the
network motifs that recurs across organisms: a negative
feedback loop, which is composed of interactions on two
different timescales—a slow positive transcriptional arm and
a fast negative protein-protein interaction arm (Lahav et al,
2004; Yeger-Lotem et al, 2004; Ma’ayan et al, 2005). We study
this network motif within one of the best-characterized
systems in human cells, the negative feedback loop between
p53 and Mdm2 (Kubbutat and Vousden, 1998; Prives, 1998;
Larkin and Jackson, 1999; Prives and Hall, 1999; Vogelstein
etal, 2000; Ryan et al, 2001; Vousden and Lu, 2002; Oren, 2003;
Meek, 2004; Bond et al, 2005; Harris and Levine, 2005).

In the p53 system, p53 transcriptionally activates mdm2.
Mdmz2, in turn, negatively regulates p53 by both inhibiting
its activity as a transcription factor and by enhancing its
degradation rate (Barak et al, 1993; Wu et al, 1993; Haupt et al,
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1997; Kubbutat et al, 1997; Piette et al, 1997; Momand et al,
2000). The concentration of p53 increases in response to stress
signals, such as DNA damage. The main mechanism for this
increase is stabilization of p53 due to reduced interaction with
Mdm2. Following stress signals, p53 activates transcription of
several hundred genes that are involved in growth arrest,
apoptosis, senescence, and DNA repair. It is important to note
that many additional proteins interact with p53 and Mdmz2, so
that the negative feedback loop motif is embedded inside a
network of additional interactions, many of which are not fully
characterized (Harris and Levine, 2005).

Models of negative feedback loops, such as between p53 and
Mdm?2, suggest that they can generate an oscillatory behavior
with a time delay between the two proteins (Lev Bar-Or et al,
2000; Mihalas et al, 2000; Hoffmann et al, 2002; Tiana et al,
2002; Michael and Oren, 2003; Monk, 2003; Tyson et al, 2003;
Nelson et al, 2004; Tyson, 2004; Ciliberto et al, 2005; Ma et al,
2005). For different parameters of the feedback loop, the
dynamics can show either a monotonic response, damped
oscillations, or undamped (sustained) oscillations in which
each peak has the same amplitude as the previous peak
(Lahav, 2004). The stronger the interactions between the
proteins, the more oscillatory the dynamics. Other parameters,
such as high basal degradation rates of the proteins, tend to
damp out the oscillations. Most models of the p53 network
used deterministic equations, and thus did not consider the
cell-cell variability in the dynamics.

Experimental studies have shown that p53 and Mdm2
undergo oscillatory behavior following DNA damage caused
by gamma irradiation. These oscillations appeared to be
damped in assays that measure averages over population
of cells (Lev Bar-Or et al, 2000). In a previous study, we
developed a system for following p53 and Mdm2 dynamics in
individual living cells. This system used an MCF7 breast
cancer cell line stably transfected with p53 fused to cyan
fluorescent protein (CFP), and Mdm2 fused to yellow
fluorescent protein (YFP). The p53-CFP fusion protein was
active in causing apoptosis and transactivating downstream
targets. The concentrations and dynamics of both fluores-
cently tagged proteins were found in Western blots to reliably
reproduce the concentration and dynamics of the endogenous
p53 and Mdm2 expressed by these cells (Lahav et al, 2004).
In our previous study, individual cell measurements using
fluorescent microscopy were limited to 16 h following gamma
irradiation. During this 16 h period, we observed up to two
undamped peaks of p53-CFP concentration following gamma
irradiation (Lahav et al, 2004). The peak amplitude and timing
did not depend on the dose of irradiation. The mean number of
peaks appeared to increase with irradiation dose, in the sense
that the probability for two peaks in the 16h experiment
increased with dose, whereas the probability for no oscillation
peaks decreased with dose.

Here, we experimentally investigate p53 and Mdm2
dynamics in individual living breast cancer (MCF7) cells for
much longer times than in our previous study. In a large
fraction of cells, we find sustained undamped oscillations
of p53-CFP and Mdm2-YFP, which lasted for at least ~3 days
following gamma irradiation. We also extend our previous
study by examining the noise in the response. We find that the
oscillation pattern was highly variable between isogenic cells,
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but this variation had distinct properties: the oscillation
amplitudes fluctuated widely, yet the oscillation frequency
was much less variable. In addition to cells that oscillated,
other cells showed a dynamic fluctuation of protein levels that
did not resemble sustained oscillations. The prolonged
experiments indicate that the fraction of oscillating cells
increases with irradiation dose.

We also present a theoretical analysis of the negative
feedback loop in the p53 system. We extend previous
theoretical studies by investigating several families of models,
and by studying the effect of stochasticity in the model
reactions. We find that several distinct model families can
capture the experimentally observed oscillations, and suggest
‘consensus parameters’ for in vivo degradation and production
rates in this system. To capture the variability in the dynamics,
we find that one must explicitly add long-wavelength noise to
different model parameters. The analysis indicates that the
observed characteristic variation in the oscillations stems from
fluctuations in the protein production rates, rather than from
fluctuations in other parameters. Essentially, the negative
feedback loop amplifies slowly varying noise in the protein
production rates at frequencies near the resonance frequency
of the feedback loop.

Results

Prolonged time-lapse movies show undamped
oscillations over days

We used an MCF7 cell line clone stably transfected with
p53-CFP and Mdm2-YFP (Lahav et al, 2004). The results we
describe were obtained from isogenic cells, grown from a
single parental cell (Lahav et al, 2004). Western blots indicate
that the concentration of exogenous p53-CFP and Mdmz2-YFP
protein in our cell line is comparable to the endogenous p53
and Mdm2 protein concentration (Lahav et al, 2004). Hence,
these proteins are not strongly overexpressed in the present
system.

We obtained time-lapse fluorescence microscopy movies
of these cells for extended periods of time after exposure to
gamma irradiation (Figure 1A and movie SM1 in Supplemen-
tary information). Overall, we collected time courses from
over 1000 individual cells in different experiments with
different doses of gamma irradiation. Most of the time-lapse
movies were performed in an incubator environment with
controlled humidity, temperature, and CO,, providing condi-
tions that allow growth over several days. Every 10-20 min,
images of the cells in fluorescence and phase illumination
were captured. Cells divided vigorously in the movies without
gamma irradiation for at least 3 days. Gamma irradiation
caused cells to enter growth arrest. We found that p53-CFP and
Mdm2-YFP fluorescence was brightly visible when the
proteins were in the cell nucleus (Figure 1A and Supplemen-
tary Figure S1). For each cell, we obtained a time-dependent
signal equal to the mean fluorescence intensity of p53-CFP and
Mdm2-YFP in the nucleus (Figures 1 and 2 and Supplementary
Figure S2).

Nuclear levels of p53-CFP and Mdm2-YFP were found to
oscillate continuously following gamma irradiation in a large
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Figure 1  Prolonged oscillations in the nuclear levels of fluorescently tagged p53 and Mdm2 in individual MCF7, U280, cells following gamma irradiation. (A) Time-
lapse fluorescence images of one cell over 29 h after 5 Gy of gamma irradiation. Nuclear p53-CFP and Mdm2-YFP are imaged in green and red, respectively. Time is
indicated in hours. (B) Normalized nuclear fluorescence levels of p53-CFP (green) and Mdm2-YFP (red) following gamma irradiation. Top left: the cell shown in panel A.
Other panels: five cells from one field of view, after exposure to 2.5 Gy gamma irradiation.

Normalized nuclear fluorescence (a.u.)

© 2006 EMBO and Nature Publishing Group Molecular Systems Biology 2006 msb4100068-E3



Oscillations and variability in the p53 system
N Geva-Zatorsky et a/

5 Gy
1
El
30
[
o
c
1 W /\/\/\/\/\—\/\/\f
1]
<l
o
>
=0
o
[T
>-
£ VJ\M\NW\
£
©
=
s 0
% 0 18 36 54 0 18 36 54
2 5Gy \/\A/\
1
. W
0 18 36 0 18 36 0 18 36
Time after gamma irradiation (h)
B 1 {10 Gy
S0
8 1
[}
2 N/\J\/\/\(\
<
o
=
o 0
Lo
g RVAAVAAVEN
5 /\/\/\/\’\/\/\
kel
3 /\/\/\’\/\/\J\r\/
]
< 0o 18 36 0 18 36 0 18 36
Bl r\j\/\/\
0
0 18 36 0 18 36 0 18 36
Time after gamma irradiation (h)
C 35
a8
= L
§x 87
Se3
ZT D
SS9
F] 0
D
@
Q
€
=1
e
>
(@]

12 18 24 30 36
Time after 10 Gy gamma irradiation (h)

Figure 2 Nuclear Mdm2-YFP fluorescence in MCF7 cells, U280. (A, B)
Oscillations in Mdm2-YFP levels after exposure to 5Gy (A) and 10 Gy (B) of
gamma irradiation. The bottom three panels in (A) and (B) are non-oscillatory
cells. (C) Mdm2-YFP dynamics without gamma irradiation. (D) Timing of the
nuclear Mdm2-YFP peaks: the horizontal lines show the normalized Mdm2-YFP
dynamics over time for 37 cells with ~ 5.5-h oscillations. Blue hues indicate low
fluorescence levels and yellow-reddish colors indicate high fluorescence levels.
Dotted vertical lines are a guide to the eye, indicating 6-h intervals.
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number of cells. In most of these cells, these oscillations lasted
for the entire movie duration (Figures 1 and 2).

We analyzed the characteristic oscillation frequency in each
cell using Fourier analysis (Supplementary Figure S3) and
pitch detection, a method commonly used for determining
principal frequencies in noisy non-stationary signals in the
context of speech recognition (see Materials and methods).
In long movies, we found that about 60% of the cells exposed
to a pulse of 10Gy gamma irradiation showed sustained
Mdm2-YFP oscillations, with a period of 5.54+1.5h
(Figure 3).

It is important to note that a significant fraction of the cells
(about 40% in 10 Gy) showed Mdm2-YFP dynamics that did
not resemble sustained oscillations (Figure 2 and Supplemen-
tary Figure S2). These cells showed either no response or
slowly varying fluctuations (Figure 2A and B, bottom panels).
In a few cells, the oscillations stopped or changed frequency
after 1-2 days.

The onset of oscillations in different cells was synchronized
to the DNA damage signal. Cells gradually lost synchrony with
each other owing to the variations in oscillation frequencies
(Figure 2D and Supplementary Figure S2E). In oscillating cells,
Mdm2-YFP peaks followed p53-CFP peaks at a delay of
2+0.5h on average (Figures 1 and 4C).

We evaluated the amplitude and width of each peak in each
oscillating cell, and calculated the average of these properties.
The average amplitude of the oscillations did not appear to
change significantly over time (Figure 4A). Similarly, the mean
peak width did not change considerably throughout the
movies (Figure 4B). In this sense, the oscillations can be
described as undamped.

Peak amplitude is highly variable, whereas peak
timing is more precise

The dynamics of cells from a clone in the same field of view
showed significant cell-cell differences. These differences
were seen between different cells, and also between different
peaks in the same cell. We examined the variability between
peaks in the oscillations (e.g. Figure 1B). We found that the
amplitudes of the individual peaks varied with a coefficient of
variance (standard deviation divided by mean) of about 70%
(Figure 4D). The amplitudes of Mdm2-YFP peaks were not
correlated to the amplitude of the preceding or the subsequent
p53-CFP peaks (correlation coefficient of 0+0.2). In some
cases, Mdm2-YFP peaks occurred without a detectable
preceding p53-CFP peak (Supplementary Figure S4).

In contrast to the large variability in amplitude, the peak
width and p53-Mdm?2 delay of individual peaks were more
constant and varied by only about 30% (Figure 4E and F). The
variation in the oscillation period for each cell (change of pitch
value along the oscillation signal) was less than 20% in most
oscillating cells.

Correlation between sister cells is lost within half
a generation

To further study the variability in the dynamics of each cell, we
examined cells that underwent cell division during the movie.

© 2006 EMBO and Nature Publishing Group
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Figure 3 Pitch (characteristic period) of Mdm2-YFP signals of cells at various gamma irradiation doses. (A) Histogram of the pitch values from movies of cells exposed
to 0, 0.3, 5, and 10 Gy, and from all the movies together. For each movie, the total number of cells is indicated, and the number of oscillating (osc.) cells that had
a detectable pitch. (B) Fraction of cells (out of the total number of cells) with a pitch value of 4-7 h, for different gamma doses. Black line is a guide to the eye.
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Figure 4 Average amplitude, width, and time delay of oscillation peaks and
their variance. (A—C) Average values of the first five p53-CFP (green triangles)
and Mdm2-YFP (red squares) oscillation peaks in 146 cells exposed
to 5Gy of gamma irradiation, shown with their standard errors. (A) Average
oscillation amplitude of each of the first five peaks (peak to trough). (B) Average
width (full-width half-maximum). (C) Average time delay between the p53 peaks
and the consecutive Mdm2 peak. (D—F) The distribution of the individual peak
amplitude, width, and delay divided by the mean value (note log scale). Black
line: Log-normal probability distribution function, with mean=0 and standard
deviation=0.22 (D), 0.13 (E), and 0.11 (F). The coefficient of variation (CV) of the
original (not log) distribution is indicated.

In the first 40 h of the movies, these comprised ~75% of the
non-irradiated cells, ~65% of the cells following 0.3 Gy,
~50% of the cells following 5Gy, and ~10% of the cells
following 10 Gy of gamma irradiation. Six typical examples are
shown in Figure 5A.

We analyzed over 100 sister-cell pairs following cell division
(see Materials and methods). We found that after division, the
dynamics of Mdm2-YFP were correlated between sister cells
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for a few hours. This correlation was reduced by 50% within
about 11 +5h on average (Figure 5B). No significant correla-
tion of the dynamics with the cell cycle was observed in these
cells.

Some cells show non-oscillatory fluctuations

We found that a fraction of both irradiated cells and non-
irradiated cells showed Mdm2-YFP signals that had slowly
varying fluctuations that did not resemble oscillations (Figure 2
and Supplementary Figure S2). The fluctuations were rather
slow, with a typical timescales of 8-12h, as determined by
Fourier analysis and pitch-detection methods (Figure 3). The
fluctuations showed at most 2-3 such peaks rather than
sustained oscillations (Figure 2A-C and Supplementary Figure
S2). Similar fluctuations were also observed in p53-CFP (data
not shown). Control cells expressing a YFP fusion protein (YFP
fused to histone H2AZ), showed no such fluctuations (data not
shown).

Fraction of cells with ~5.5-h oscillations increases
with gamma dose

We also measured the dynamics under different doses of
irradiation. When gamma irradiation was applied at 0.3 or
5 Gy, a fraction of the cells displayed oscillations with a period
of about 5.5h, similar to those in the 10 Gy experiment. We
used pitch detection to estimate the fraction of cells whose
characteristic period is 4-7 h. We found that the fraction of
cells that perform Mdm2-YFP oscillations increases with
gamma dosage (Figure 3). For all irradiation doses, the
oscillations in these cells typically showed many peaks and
were undamped. The mean amplitude and period of oscilla-
tions in individual cells did not appear to significantly depend
on irradiation level (Supplementary Figure S5).
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Figure 5 Dynamics of nuclear Mdm2-YFP fluorescence in sister cells. (A) Mdm2-YFP fluorescence intensity dynamics in cells that undergo division during the movie.
Mdm2-YFP fluorescence is shown in black before division, and in blue and green in the two daughter cells. One of the cells in the bottom right panel undergoes a second
division, and the second-generation cells are shown in cyan and purple. The top three panels show cells exposed to 0.3 Gy of gamma irradiation (at time zero), and the
bottom three panels show cells exposed to 5 Gy of gamma irradiation. (B) Average correlation between 112 sister-cell pairs (normalized mean difference in rank, see
Materials and methods) as a function of time following division. Red line: exponential fit, Cc=2"" with t==11h.

Several families of models can generate the
observed oscillations and show consensus
biochemical parameter values

We considered several mathematical models of the p53-Mdm2
feedback loop. Since current knowledge of the system is
incomplete, we analyzed the simplest possible models, aiming
to understand the general properties of model families. Our
motivation was to find a simple model that could capture the
characteristics of the undamped and noisy oscillations that
were found in many of the cells.

We examined six model families (Figure 6A and Table I). All
of the models include the negative feedback loop in which p53,
denoted by x, transcriptionally activates Mdm2 denoted by y.
Active Mdm2 increases the degradation rate of p53.

Three of the models are delay oscillators (I, III and IV)
(Mihalas et al, 2000; Goldbeter, 2002; Tiana et al, 2002; Monk,
2003). The models differ in mathematical details that describe
the delay between x and y and the effects of y on x. Model I
includes an Mdm?2 precursor, denoted by y,, representing, for
example, Mdm2 mRNA, and the action of y on x is described by
first-order kinetics in both x and y. In model IV, the action of y
on x is nonlinear, and described by a saturating Michaelis—
Menten function. In model III, the Mdm2 precursor y, is
replaced by a stiff delay term, which makes the production rate
of Mdm2 depend directly on the concentration of p53 at an
earlier time. A recent model by Ma et al (2005) and Wagner
et al (2005) combines features of models III and IV.

In addition to the three delay oscillators, we also considered
two relaxation oscillators (Il and V) (Wilhelm and Heinrich,
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1995; Murray, 2003; Pomerening et al, 2003; Tyson et al, 2003;
Ciliberto et al, 2005). In these models, the negative feedback
loop is supplemented by a positive feedback loop on p53. This
positive feedback loop might represent in a simplified
manner the action of additional p53 system components,
which have a total upregulating effect on p53 (Harris and
Levine, 2005). This type of model was recently studied by
Ciliberto et al (2005). We considered both linear positive
regulation (model V) and nonlinear regulation based on a
saturating function (model II).

These models (I-V), although differing in detail, rely on a
single negative feedback loop. The last model (VI) is a novel
checkpoint mechanism, which uses two negative feedback
loops, one direct feedback and one longer loop that impinges
on an upstream regulator of p53. In this model, a protein
downstream of p53 inhibits a signaling protein that is
upstream of p53 (see more details in Supplementary informa-
tion; Banin et al, 1998). For simplicity, this inhibitor is modeled
by y, but it need not be Mdm2 and can also represent a different
protein with similar dynamics. This model predicts that
upstream elements (e.g. phosphorylated ATM) also undergo
oscillatory dynamics (see appendix in Supplementary infor-
mation and Supplementary Figure S9). The model was
inspired by the observation that an upstream regulator of
p53, namely phosphorylated ATM (Bakkenist and Kastan,
2003) that responds to double-stranded DNA breaks (DSBs),
shows a pulse of activity after application of a radiomimetic
drug (NCS) in a set of Western blot experiments measuring
protein dynamics for 6h after damage (Banin et al, 1998;
Stommel and Wahl, 2004).

© 2006 EMBO and Nature Publishing Group
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We numerically solved all six models for a wide range gamma irradiation, that is, oscillations that do not dampen
of parameters. We selected parameter values (Table II) out considerably and have constant inter-peak timing
that best reproduce an effective averaged individual cell (Supplementary Figure S6). Note that this effective individual
measurements of nuclear p53-CFP and Mdm2-YFP following cell dynamics is different from the population-average
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Table I

Definitions
Dynamic variables represent levels
(concentrations) of

x—nuclear p53

Common parameters
Bx—p53 production rate

Yo—Mdm2 precursor

y—nuclear Mdm2

S—active signal
oo—Mdm2 maturation rate

&—time-dependent noise in protein
production rates, {&»=1

o, —Mdm2-dependent p53 degradation rate

Model equations

Model I Model II

X =f(X)§ — teX — Oy YX
)./[) :Byxa — QYo

X =BLE — oeXx — oy yx
)./0 :Byx& — OoYo

y =0oYo — 0yy y =0pYo — 0yY
(x is the time derivative of x)
Bx
B
flx) =< M

?\7"[1+(M71)

Model IV Model V

X =I'x§ — oy yx
Yo :Byxé — QYo

y =0pYo — 0yY

. X
X =P & — oex — ockyx K
Yo =ByxE — aoyo

y =0oYo — 0yy

f,—p53-dependent Mdm2 production rate
o,—Mdm2-independent p53 degradation rate
o,—Mdm2 degradation rate

t—delay in Mdm2 accumulation

X—Xmin
Xmax ~Xmin

Additional parameters

M, Xmax> Xmin—parameters for the
piecewise-linear p53 autoregulation
k—p53 threshold for deg. by Mdm2
ax—saturating p53 degradation rate
I'—linear p53 production rate
as—Mdm2-dependent signal
inactivation rate

Bs—constant activation rate of signal
(when damage is present)
n—cooperativity of signal

Model IIT

% = By — ox — o yx
y=Byx(t - )& — oy

for x>Xmax
for x<Xnin

for  Xmin <X <Xmax
Model VI

s

. S
X :BXS,Z—H& — OyyX

Y =Byx(t —1)& — oy
S :BS — ocsyS

dynamics, which is a damped oscillation (Supplementary
Figure S2E).

Model I cannot produce multiple oscillations similar to those
experimentally observed. The oscillations in models II and III
are very sensitive to parameters. Small changes in some of the
parameters listed in Table II cause these models to show
strongly damped oscillations (Supplementary Figure S8). Such
sensitive (non-robust) circuits might not be expected to
function properly in the noisy cellular context (Savageau,
1976; Barkai and Leibler, 1997; Alon et al, 1999; Eldar et al,
2002; Kitano, 2004).

In contrast, models IV-VI could generate sustained or
weakly damped oscillations (Figure 6B and Supplementary
Figure S6) over a broad range of parameters (Supplementary
Figure S8). Importantly, most of the parameters shared by all
three models showed very similar best-fit values. Thus, these
models may provide estimates of the effective biochemical
parameters such as production rates and degradation
times of p53 and Mdm2. The ‘consensus’ values of the
parameters are shown in Table II. In all three models, the
Mdm2 degradation rate was about o,~1h"', the time for
Mdm2 maturation was about 1/ag~t~1h, and the Mdm2-
independant degradation rate of p53, a,, was negligible.
The models also agreed on the values B, and f,, the rates of
p53 and Mdm2 production.

msbh4100068-E8 Molecular Systems Biology 2006

Increasing the Mdm2 lifetime or its maturation time led,
according to the models, to a lower natural frequency and to
pulses with longer time periods (Supplementary Figure S8).
This might help explain the low-frequency fluctuations
observed with no gamma irradiation (Figure 2C), because
Mdm2 lifetime is longer in the absence of DNA damage than
in its presence (Stommel and Wahl, 2004).

The observed noise in oscillation amplitude is
captured by low-frequency fluctuations in the
protein production rates

Deterministic simulations cannot capture the variability
in the oscillation amplitudes observed in the cells (Figures 1,
2, and 4). We therefore added internal stochasticity to the
equations. We found that the characteristic variability ob-
served in our experiments, where amplitude varies more
strongly than frequency, could best be captured by varying the
protein production rates. Production rate variations change
amplitudes, but do not significantly affect the oscillation
period (Supplementary Figure S8). In contrast, we find that
variations in other parameters, such as degradation rates,
generally lead to variations in both amplitude and period.

To describe stochasticity in protein production rates, we
used multiplicative noise in the protein production terms.

© 2006 EMBO and Nature Publishing Group



Table II Model parameters
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Common params. & definitions Units 1 I 1 v v VI Consensus
Bx  p33 production rate P, h! 0.3 2.55 2.3 0.9+35% - 0.9+60% 0.9
By  p53-dependent Mdm?2 My h | 04 085 24 1.1£55%  1.5260% 1.0+10% 1.2

production rate 1
Pmaxh
Oly Mdm2-1r}dependent p53 h! 0 01 0 0 (<<1) B B 0
degradation rate
Oy  Mdm?2 degradation rate h! 0.1 0.6 24 0.8+25%  0.9+30% 0.7+20% 0.8
0o Mdm?2 maturation rate h! 0.1 55 - 0.8£20%  1.1£25% - 0.9
T Delay in Mdm2 h - - 33 - - 0.9+25% 0.9
accumulation
Oy Mdm2-dependent p53 | pg -1~} 3.2 3.15 120 - 3.7£50% 1.4+20%
degradation rate
Additional parameters Xmax= 0.92 k=0.0001 TI=2.0 0g=2.7+30%
(see definitions, Table I) Poax Poax (<<1)  #25% h! Moy 'h!
Xmin= 0.12 o= 1.7+ Bs=0.9
Prax 20% Ppax +25% K
Myl
M=34 M n=4
Initial conditions: x |0 0.28 0.02 0 0.02 0
Yo |0 0 - 0.1 0.2 -
y |0 0.73 0.02 0.8 0.5 0.9
S 0

‘Best-fit’ model parameters used to generate simulations in Figure 6. Models IV-VI, which could be robustly fit to the average dynamics,
are highlighted in gray. Parameters with ‘consensus’ values are highlighted in yellow. Time is in units of hours. p53 and Mdm2 are in units
of their maximal nuclear concentrations Py and My,.y: Signal levels ‘S” are in units of its response threshold Ks. Errors are in %.

Most previous theoretical analyses of noise employed white
noise, which is rapidly fluctuating (McAdams and Arkin, 1997;
Thattai and van Oudenaarden, 2001; Paulsson, 2004; Kaern
et al, 2005; Ramanathan and Swain, 2005). We used, in
addition to white noise, noise with different characteristic
correlation times, including noise that varies on slow
timescales. This was inspired by the recent observation that
protein production rates vary significantly between individual
bacterial cells, and that this variation has long autocorrela-
tion times on the order of a cell generation (Rosenfeld et al,
2005).

We first used high-frequency noise (similar to white noise), in
which the production rates varied with a correlation time on the
order of minutes to an hour (Figure 6C). This may represent
intrinsic noise due to stochastic transcription and translation
(McAdams and Arkin, 1997; Thattai and van Oudenaarden,
2001; Elowitz et al, 2002; Ozbudak et al, 2002; Blake et al, 2003;
Isaacs et al, 2003; Paulsson, 2004; Becskei et al, 2005; Colman-
Lerner et al, 2005; Golding et al, 2005; Kaern et al, 2005; Volfson
et al, 2006). The stronger the noise in production rates, the
higher the resulting fluctuations in the dynamics. However,
even very strong high-frequency noise (STD of 50% in
production rates) resulted in only mild variations in the
oscillation amplitudes in all six models. These variations were
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significantly lower than the variations observed in individual
cell measurements in the present experiments.

We next introduced low-frequency noise, with a timescale of
several hours (e.g. 12.5h; Figure 6D). We found that under
such noise, the amplitudes vary far more strongly than under
high-frequency noise. The extent of the variability was similar
to that experimentally observed, with strong amplitude
variations and smaller variations in the period of the
oscillations.

Finally, we found that very low-frequency noise (e.g. 50 h;
Figure G6E) does not produce strong variability in the
oscillations. It appears that the oscillators can only amplify
the frequency component of the noise close to their natural
resonant frequency (about 6 h). We find that the variability is
maximal at noise frequencies of about twice the natural
frequency of the oscillator (Figure 6F), such that consecutive
peaks are oppositely affected by the noise.

The models with low-frequency noise in the production
rates showed qualitatively similar dynamics to those found in
the experiments, including occasional loss of a peak. Only
model VI was able to reproduce our observations that p53 and
Mdm2 peak amplitudes had only a weak correlation. Other
models had a strong coupling in the variations of the peaks of
these two proteins.
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Discussion

The present study examined p53 and Mdm2 dynamics in
individual cells from a clone. We found undamped oscillations
with more than 10 consecutive peaks, lasting for at least three
days following DNA damage. The dynamics showed striking
cell-cell variability. A fraction of the cells showed either no
response or a slowly fluctuating signal. The cells that
performed oscillations displayed large variation in peak
amplitude, and smaller variations in the oscillation period.
Models point to the source of the noise in the oscillations: low-
frequency fluctuations in protein production rates.

The oscillations following DNA-damaging gamma irradia-
tion had a period of about 5.5h, and were synchronized to
the gamma irradiation pulse. The number of oscillating cells
increased with gamma dose, reaching about 60% of the cells
following 10Gy. Some cells divided during the movies.
Divisions allowed one to follow the passage of information
across the cell division event. We found that the oscillations
continued in the same phase after division, suggesting that the
information in the system is transferred to the daughter cells.
However, correlation between daughter cells was lost after
about 11 h. This loss of correlation indicates the timescale on
which prediction of the cell state in this system can be made
based on the cell state in the past.

The oscillations after DNA damage had a distinct noise
characteristic. Their amplitudes varied from peak to peak by
about 70%. In contrast to the large amplitude variation, the
oscillation period was less noisy, and had a variability of only
20%. Similar features are seen in other biological oscillators.
For example, the cell-autonomous circadian clock in cyano-
bacteria and in fibroblasts shows larger amplitude variations
than timing variations in experiments and in models (Barkai
and Leibler, 2000; Vilar et al, 2002; Mihalcescu et al, 2004;
Nagoshi et al, 2004). Precise period and variable amplitude
may characterize other biological oscillators.

Although the timing is relatively precise, and the oscillations
are initially synchronized to the gamma irradiation signal, the
variation in timing causes peaks to eventually go out of phase.
Therefore, the p53 and Mdm2 dynamics appear as damped
oscillations in assays that average over cell populations, such
as immunoblots. This averaging effect was also seen by
averaging over the present individual cell dynamics, showing
damped oscillations with 2-3 discernable peaks (Supplemen-
tary Figure S2E).

It is interesting to compare the present results with our
previous study that followed cells over only 16 h (Lahav et al,
2004). In that study, cells showed either zero, one, or two
peaks of p53 in the 16h period. The fraction of cells with
two peaks increased with gamma irradiation. It seemed
therefore that the number of peaks depended on the gamma
dose. The present study, which followed cells over a much
longer time, suggests that oscillations in most cells are
in fact long lasting, and that most oscillating cells show
numerous peaks following damage. We found that the
fraction of oscillating cells (with a 4-7h period in Mdm2-
YFP levels) increases with gamma dose. The previous 16h
movies registered some cells with one pulse, whereas the
present study indicates that such cells can often show
additional pulses after a delay (Supplementary Figure S4).
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This emphasizes the importance of extended measurements
for dynamical systems with slow timescales.

How are the oscillations produced? Instead of analyzing
a single model, the limited state of current knowledge of the
system makes it appropriate to study several families of
models, to ask about the general properties of the dynamics.
We performed a theoretical analysis of several model families.
Most models were able to produce oscillations. The models
suggest that the noise in the oscillations is owing to
stochasticity in the protein production rates, rather than in
other parameters such as degradation rates. Furthermore, the
observed oscillations suggest that the noise in protein
production rate has a slowly varying component, with a
correlation time of 10-20h. Internal noise that is too fast or
too slow cannot explain the observed variability. The negative
feedback loop, which is a natural oscillator, amplifies the
frequency component of the noise in the vicinity of its natural
frequency, resulting in the observed variability.

The present results were obtained in a clonal population of
a human, MCF7 cell line, stably expressing fluorescent fusions
of p53 and Mdm2. Endogenous p53 and Mdm?2 oscillations
were found in cell averages also in MCF7 cells that do not
express ectopic fusion proteins (Lev Bar-Or et al, 2000). These
cancer cells might be deficient in some aspects of p53
regulation (Vojtesek and Lane, 1993) and downstream
apoptotic responses (Janicke et al, 1998). It would therefore
be important to study other cell types. For example, Western
blots performed over several hours after DNA damage showed
a peak of p53, Mdm2, and p21 expression in several cell lines
including WS1 human primary skin fibroblasts (Stommel and
Wahl, 2004), human glioblastoma cells (Ohnishi et al, 1999),
and HCT116 human colon cancer cells (Chen et al, 2005). This
raises the possibility that oscillations may occur also in these
cell lines. It would be important to extend the present
individual cell experiments to other cell types, and to try to
monitor DNA damage in parallel to the dynamics of the p53
system.

Perhaps the most intriguing question raised by these
observations is the biological function of the undamped
oscillations, assuming that they also occur in normal cells
with endogenous p53 and Mdmz2. One clue is that undamped
oscillations are also found in other stress-response systems.
Tightly regulated oscillations with variable amplitude and
precise timing were recently observed in the SOS DNA-damage
response in Escherichia coli (Friedman et al, 2005). Highly
variable nuclear-cytoplasmic oscillations were found in NF-xB
system (Hoffmann et al, 2002; Nelson et al, 2004). Both NF-xB
and the SOS regulator LexA are involved in a negative
feedback loop motif similar to that of p53-Mdm2. As in the
p53 system, these loops are embedded in many additional
interactions. The presence of oscillations in the systems
mentioned above may suggest that oscillations play a general
role in stress or damage response.

The present study demonstrated prolonged undamped
oscillations in the p53-Mdm2 system following gamma
irradiation. Significant cell-cell variability was observed in
the amplitude but not period of the oscillations. Some of the
cells had slow fluctuations that do not resemble oscillations;
the fraction of oscillating cells increased with irradiation dose
but the oscillation amplitude did not. Modeling suggests that
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the noise in the oscillations reflects slow internal noise in
protein production rates. The present approach that combines
long-term dynamic experiments in individual cells and
theoretical analysis of families of models may help to under-
stand oscillations and cell-cell variability in other regulatory
systems.

Materials and methods

Cell line and constructs

We used MCF7, human breast cancer epithelial cells, U280, stably
transfected with pU265 and pU293 as described (Lahav et al, 2004).
In pU265, ECFP from pECFP-C1 (Clontech) was subcloned after the
last codon of p53 cDNA, under the mouse Metallothionein-1 promoter
(MTA156) (Brinster et al, 1982). This promoter provides a basal and
constant level of transcription of p53-CFP. A basal promoter for p53-
CFP was chosen because p53 is thought to be primarily regulated at the
protein level and not at the transcriptional level (Michael and Oren,
2003). Control experiments with CFP expressed from this promoter
showed constant expression with no oscillations. In pU293, the
hMDM2 promoter was cloned by PCR using genomic DNA as a
template, creating a 3.5 kb fragment upstream of the ATG site in exon 3,
including P1 and P2 (Oliner et al, 1992). This promoter was subcloned
into pEYFP-1 (Clontech) (Lahav, 2004).

Time-lapse microscopy

Cells were maintained at 37°C in 96-well plates or in 2 mm optical
plates (Nunc) in RPMI 1640 medium containing 10% fetal calf serum
(Sigma). At 1-2 h before observation in the microscope, medium was
changed to RPMI 1640 medium containing 3% fetal calf serum,
HEPES, and 2 mM L-glutamine, lacking riboflavin and phenol red (Beit
Haemek, Biological Industries), in order to reduce background
fluorescence. Cells were then exposed to the appropriate dose of
gamma irradiation (*°Co, 1.8 Gy min~"). The number of DSBs has been
found to be linear in gamma dose, with an average of about 30 DSB per
Gy per cell (Bonner, 2003). Cells were viewed with three types of
inverted fluorescence microscope systems denoted by MS.I, MS.II, and
MS.III. MS.I: Olympus IX70 with a Photometrics Quantix 57 cooled
back-illuminated CCD camera, in a 37°C incubator, using bright-field,
CFP and YFP exposures, every 20 min, with a mercury lamp. MS.II:
Leica DMIRE2 with a Hamamatsu ORCA-ER cooled back-illuminated
CCD camera, in a 37°C incubator with humidity and CO, control, using
phase-contrast and YFP exposures only, every 10 min, with a mercury
lamp. MS.III: Nikon TE2000E2 with a Hamamatsu ORCA-ER cooled
back-illuminated CCD camera, in a 37°C incubator with humidity and
CO, control, using phase-contrast, YFP and CFP exposures, every
20 min, with a xenon lamp.

CFP filter set: excitation 436/20 nm, dichroic beam splitter 455 nm,
emission 480/40 nm. YFP filter set: excitation 500/20 nm, a dichroic
beam splitter 515 nm, emission 535/30 nm.

The mean cell generation time was about 20 h in the CO, incubated
microscope without gamma irradiation. We find that movies using CFP
and YFP illumination over 3 days did not visibly affect the cell
morphology or generation time.

Cell tracking and fluorescence quantification

Cell images captured in MS.I (Figure 1 and Supplementary Figure S4):
Relative fluorescence analysis and background subtraction was carried
out using custom written Matlab software (Mathworks Inc.). The
location of each cell nucleus was marked manually in each frame,
using a custom written graphical user interface in Matlab. Independent
tracking by four different researchers showed that this manual step
contributed <5% errors. Background fluorescence was measured at
manually marked locations with no cells, and subtracted from the
nuclear fluorescence. Mean fluorescence intensity of pixels in the
nucleus was measured. Cellular autofluorescence of wild-type MCF7
cells without the CFP or YFP genes gave consistent and low values with
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a mean of 25 CFP fluorescence units per pixel and 1 YFP fluorescence
unit per pixel, with a coefficient of variation of ~30%. In these units,
average peak amplitude (range from minimum to maximum) was ~45
CFP fluorescence units (for p53-CFP) and ~8 YFP fluorescence units
(for Mdm2-YFP).

Cell images captured with MS.II (Figures 2 and 5, and Supplemen-
tary Figure S2) and MS.III: Relative fluorescence analysis and
background subtraction was carried out using custom written Matlab
software (Mathworks Inc.). Nuclei identification and tracking was
performed using MetaMorph™ software, and was manually controlled
for accuracy. Comparison of sister cells (that were separately tracked)
on frames before cell division shows that the identification and
tracking contributes ~2% errors. Background was automatically
subtracted. Mean fluorescence intensity of pixels in the nucleus was
measured. Autofluorescence (in the YFP channel) was negligible. The
inhomogeneity of the illumination was measured using a solution of
purified GFP (BD Biosciences Clontech, Palo Alto, CA) before and after
every movie and automatically corrected using custom written Matlab
software (Mathworks Inc.). Bleaching effects were corrected using an
empirical fit of the mean nuclear fluorescence levels to a decaying
exponent with an offset. Independent controls, in which H1299 cells
with constitutive nuclear YFP expression were imaged, indicate that
measurement errors and fluctuations in this system are on the order of
a few percent.

Statistical analysis of pulse properties

The p53-CFP and Mdm2-YFP data from MS.I were analyzed in the time
domain. In the dynamic curve of each cell, separate pulses of
expression were manually marked using custom written software
(Matlab). The separate pulses were identified using criteria based on
pulse magnitude and signal-to-noise ratio. The baseline was sub-
tracted for each pulse separately, to correct for slowly varying noise in
the fluorescence quantification, which may originate from slowly
varying autofluorescence of cells. For the comparison of the pulse
properties, the time domain was divided into segments of length 300-
400 min, and each pulse was independently assigned an ordinal
number according to the time segment when it occurs. Average
properties (and standard errors) were then calculated for all the
pulses that occur at a given time interval (Figure 4 and Supplementary
Figure S5).

Pitch detection

The intensity signals from each cell, as obtained from the microscope,
were analyzed to detect the oscillation period (1/frequency). We used
a standard method for the detection of pitch, used in speech and music
processing (Rabiner and Schafer, 1978). Pitch can be considered as the
basic frequency of oscillations. Each signal was divided into segments
of 128 samples, with a sliding window, which was moved at
increments of eight samples. For each window, the autocorrelation
of the windowed segment was computed, and normalized so that the
autocorrelations at zero lag are identically 1. The first peak of the
autocorrelation function was detected and identified as the pitch
period of this window if its autocorrelation value was higher than 0.2.
The sliding window method enables tracing temporal changes in the
oscillation period. To detect the most prominent pitch period for each
cell, we binned separate segment periods into 10 bins and selected the
most common period.

Sister-cell similarity

At each time point, we ranked all the cells in a movie from lowest to
highest nuclear Mdm2-YFP fluorescence level, and normalized the
ranking to the range 0-1. For a random pair of cells, the absolute
difference in ranking is equal to D;=1/3 on average. For each pair of
sister cells (after division), we measured the absolute difference in
rank between the two sister cells. We calculated the average for all
sister pairs as a function of time after division, for a total of 112 sister-
cell pairs after 0.3, 5, and 10 Gy of gamma irradiation. This average
difference, D(t) was found to increase over time from D(t=0) ~0.05
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(equivalent to the minimal rank difference in a movie with 20 cells)
to D(t>30h) ~0.3, close to the population average between unrelated
cells. In Figure 5, we plot the normalized sister-pair difference,
D' (t)=(D,—D(t))/(D;,—D(0)). Similar results (half correlation time of
6-16h) were found with different measures of average sister-cell rank
differences, such as root-mean-square difference, and with different
subsets of cell (such as only those exposed to 0.3 or 5Gy).

Model simulation

Numerical integration and optimization were carried out using Matlab
software.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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