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a set of N data points, described as vectors of K traits. Each data point 
is also annotated by a vector of M additional features. The method 
has two stages: (i) compute the minimal polytope that encloses  
the data and its statistical significance and (ii) compute the  
enrichment of each feature as a function of the distance from 
each archetype. The data are well explained by ParTI if a low-
dimensional polytope significantly describes them, and if there 
are features that are maximally enriched near each archetype 
(Supplementary Note 2 and Supplementary Fig. 2).

We determine the number of archetypes by fitting polytopes 
with n vertices to the data using principal convex hull analysis  
(PCHA)12. We choose n beyond which there is little improve-
ment in the explained variance (EV), according to an ‘elbow’ test 
(Online Methods). Archetype positions are then determined by 
hyperspectral unmixing algorithms13–16. Statistical significance is 
assessed by the t-ratio test9 (Online Methods). These algorithms 
have rarely been applied to biological data, with the notable excep-
tions of studies by Schwartz and Shackney17 and Tolliver et al.18 
that analyzed tissue mixtures in tumors and research by Thøgersen 
et al.19 that used PCHA to analyze bacterial gene expression.

The second stage of the method provides clues for the biological 
task that is optimized at each archetype (Fig. 1a). A simple approach 
is to characterize each archetype by searching for gene sets over-
represented among the genes differentially expressed at the arche-
type19. We find that this can be improved by considering the density  
of each feature as a function of distance from the archetype: 
we seek features (for example, Molecular Signature Database 
(MSigDB)20 gene-set expression levels and clinical informa-
tion) whose density peaks at the points closest to the archetype. 
For this purpose, we bin data using a computed optimal bin size  
and determine which feature is maximal in the bin closest to 
an archetype. Statistical significance of this maximization and  
relevant multiple-hypotheses testing controls (false discovery 
rate (FDR) and randomization tests) are computed (Online 
Methods). We use a leave-one-out strategy to avoid circularity 
concerns when a feature (for example, gene) is also used to define 
the archetype location.

We demonstrated ParTI on a gene expression data set of 2,106 
human breast cancer tumors and healthy tissues3. These data reside 
in a 6,970-dimensional gene expression space and are annotated 
by a vector of 181 clinical features (Supplementary Table 1).  
A tetrahedron (four-vertex polytope) best described the data  
(P < 10−4; Fig. 1b). Projections on facets resembled triangles  
(Fig. 1b). Vertex coordinates lay well outside of the data (Fig. 1b). 
The Supplementary Results and Supplementary Figure 3 provide 
more details.

On average, 12 features (of 181) were maximally enriched at 
each archetype (FDR < 0.1). The enriched features corresponded 
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We present the Pareto task inference method (ParTI;  
http://www.weizmann.ac.il/mcb/UriAlon/download/ParTI) for 
inferring biological tasks from high-dimensional biological data. 
Data are described as a polytope, and features maximally enriched 
closest to the vertices (or archetypes) allow identification of the 
tasks the vertices represent. We demonstrate that human breast 
tumors and mouse tissues are well described by tetrahedrons in 
gene expression space, with specific tumor types and biological 
functions enriched at each of the vertices, suggesting four key tasks.

Approaches for analyzing high-dimensional data sets1–5 include 
dimensionality reduction techniques such as principal-component  
analysis (PCA)6, t-distributed stochastic neighbor embedding 
(t-SNE)7 and methods that split data points into groups, such 
as clustering8 and Gaussian mixture models (GMMs)8. A recent 
advance suggests a complementary way to understand large bio-
logical data sets on the basis of Pareto optimality of biological 
systems with respect to multiple evolutionary tasks9–11. Here we 
present a method for identifying such tasks.

The Pareto approach notes that cells that need to perform multiple 
tasks face a fundamental trade-off: no gene expression profile can 
be optimal for all tasks faced by the cell. Shoval et al.9 showed that 
the best compromises between tasks lead to phenotypes that lie in 
low-dimensional polytopes in trait space (for example, gene expres-
sion space). Two tasks lead to points arranged along a line, three 
tasks to a triangle, four tasks to a tetrahedron and so on. The verti-
ces of these polytopes are called archetypes, and they represent the 
optimal phenotype for a single task9 (Supplementary Note 1 and 
Supplementary Fig. 1).

If a biological data set represents a Pareto-optimal situation, 
then (i) it should fall inside a polytope, and (ii) the points nearest  
each vertex of the polytope (each archetype) should correspond 
to specific biological tasks or functions. In other words, key 
biological features related to a given task should be maximally 
enriched near the archetype that corresponds to that task.

To implement these ideas, we present the ParTI method (http://
www.weizmann.ac.il/mcb/UriAlon/download/ParTI). The input is 
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to major clinical subtypes. Archetype 1 was 
maximally enriched with samples classi-
fied as basal tumors, which are high-grade 
ESR1–ERBB2–PGR– tumors. Archetype 2 
corresponded to normal tissue samples. 
Archetype 3 was enriched for tumors of 
the Her2 subtype. Archetype 4 corresponded to LumB tumors, 
which are mostly ESR1+ERBB2– tumors in the present data set. 
These features showed maximal enrichment at the points closest 
to the archetype rather than at the centroid of the clusters obtained 
by k means or by GMM (Fig. 1c–f, Supplementary Tables 2–5, 
Supplementary Notes 3–5 and Supplementary Fig. 4).

We also found biological functions (MSigDB20 gene sets) maxi-
mally enriched at the points closest to each archetype (Online 
Methods, Supplementary Tables 2 and 6). These gene sets fit well 
with the biology of cancer subtypes enriched at the archetypes 
(Supplementary Discussion). Comparing the gene-set enrichment 
using ParTI to the method of ref. 19 (Supplementary Table 7),  
we found statistical significance (P values) typically improved by 
about 20 orders of magnitude and improved gene-set coherence 
(one edge closer on a Gene Ontology tree on average), yielding 
a set of more related and hence more interpretable biological  
functions (Supplementary Note 6 and Supplementary Fig. 5).

Enriched clinical features and gene sets suggested putative tasks 
for three of the archetypes: for archetype 1, cell de-differentiation 
and division; for archetype 2, cell differentiation; and for arche-
type 4, high metabolism and growth. Archetype 3 was harder to 
understand: it was enriched with signaling pathway expression 
(Fig. 1c–g). Pareto theory suggests that the trade-off between 
these tasks shapes the distribution of tumors in expression space. 
For example, differentiation and de-differentiation are tasks that 
cannot be achieved at the same time. An alternative explanation is 
that ParTI detects the relative proportion of different cell types in 

each tissue sample. However, we found normal tissues enriched at 
only one archetype despite their different breast contexts, hinting 
that composition may not be dominant in the present context. The 
inferred tasks may provide clues for effective therapy targets. For 
example, the tumors near the rapid-growth archetype (4) could be 
affected by therapy that blocks metabolic growth pathways. The 
division archetype (1) suggests drugs that target dividing cells.

We extended the enrichment analysis also to higher numbers 
of archetypes. Taking more than four archetypes resulted in a 
split of the basal tumor archetype into several archetypes, leaving 
the other archetypes nearly unchanged (Supplementary Results 
and Supplementary Fig. 6). One may consider these as potential 
subtypes of basal breast cancer, a tumor category thought to have 
at least six clinical subtypes21.

An mRNA-Seq data set of 1,106 breast tumors5 yielded similar 
results (Supplementary Table 8): data were well described by a tet-
rahedron, and three of the four archetypes (1,2 and 4) matched the 
archetypes found above in terms of enriched gene sets and clinical 
types (Supplementary Results and Supplementary Fig. 7). This fur-
ther supports the inference of key tasks for three of the archetypes.

We also analyzed 4,364 genes expressed in at least 95% of 
63 mouse tissues22 (Supplementary Note 7). These genes are 
expressed in most cell types and thus do not include the marker 
genes that are often used to define cell types. Most of the 63 tis-
sues are thought to each be made of a single cell type. We find 
that the data are best explained by four archetypes (P < 0.01, 
Fig. 2). The archetypes were close to bone marrow macrophage 
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Figure 1 | Key cancer features are maximally 
enriched at points nearest the archetypes. 
(a) ParTI tests for the maximal enrichment of 
features near the archetypes. Note that maximal 
enrichment in this case is not at the cluster 
centroid (plus sign). (b) Three-dimensional (3D) 
plot of the data and enclosing tetrahedron. The 
axes are the first three principal components. 
The colored ellipsoids represent the archetype 
location and error on the most varying 
directions. Archetype error bars are obtained by 
bootstrapping. Each ellipsoid represents 68% 
confidence level. The inset near each archetype 
shows the projection of the data on the plane 
defined by the tetrahedron’s face opposing that 
archetype. (c–f) 3D plots of basal tumor (c),  
Her2 (d), LumB (e) or normal tissue (f) in the 
breast cancer data set. Numbers indicate the 
archetypes. 2D plots show enrichment as function 
of rank order of bins of 5% of the points sorted by 
Euclidean distance from archetype. The positions 
of the centroid of the cluster and the Gaussian 
mixture model (GMM) mean corresponding to 
each feature are shown by arrows. (g) Inferred 
tasks of each archetype in the breast cancer data 
set, along with PAM50 subtype (Online Methods), 
representative clinical features and gene sets 
enriched in the vicinity of each archetype. For 
complete lists, see Supplementary Table 2.
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(archetype 3, macrophage and microglia 
cells), CD4+CD8+ T cells (archetype 4, 
lymphoid cells), amygdala (archetype 2, 
neural cells) and pancreas (archetype 1, 
secretory glands). Enrichment analysis 
suggested specific functions for the arche-
types: locomotion, digestion and cell-cell 
communication (3); proliferation and antigen presentation (4); 
communication across synapses (2); and secretion (1) (Fig. 2 and 
Supplementary Table 9). Indeed, these functions are hallmarks 
of the respective archetypal tissues. This suggests tasks that may 
trade off in the rest of the tissue types: for example, locomotion 
and enzymatic digestion in the macrophages and microglia might 
not be feasible together with rapid cell division as in lymphoid 
and progenitor cells.

The tetrahedron was nonuniformly populated; differentiated 
tissues mostly occupied one triangular facet between archetypes 
1, 3 and 4. The remaining differentiated tissues, namely all neu-
ral tissues, were along the edge from archetype 2 to archetype 1 
(Supplementary Fig. 8). Thus, two potential trade-offs—the two 
edges between archetypes 2 and 3 and archetypes 2 and 4—were 
not found. Embryonic stem cells were near the center of the tetra
hedron, as expected for generalists. Stem cells on their way to dif-
ferentiation (hematopoietic stem cells) came closer to the face of the 
tetrahedron as they approached their differentiated fate (Fig. 2a).

The analyzed data sets are cell-population averages for each data 
point; but one may apply ParTI also to analyze single-cell data to 
study the variation among individual cells in a population. ParTI 
has caveats: a data set may resemble a polytope owing to reasons 
unrelated to Pareto optimality—for example, if experimental error 
increases with trait magnitude or when outliers dictate an arche-
type (Supplementary Fig. 9). Many of these cases can be resolved 
by archetype enrichment analysis (Supplementary Discussion). 
Further work can improve the method’s statistical power and 
efficiency. Analyzing more biological data sets can help to deter-
mine the biological prevalence of polytopes induced by trade-offs 
between tasks.

Methods
Methods and any associated references are available in the online 
version of the paper.
Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Figure 2 | A mouse tissue gene expression data 
set is well described by a tetrahedron, with  
archetypes enriched with specific features.  
(a) Embryonic stem cells (light blue) are at the 
center of the tetrahedron. As they differentiate, 
they come closer to the facets. Arrows 
represent differentiation into neural (yellow), 
hematopoietic (orange for lymphoid, olive green 
for myeloid) and macrophage cells (purple).  
(b–e) Three-dimensional plots of enrichment 
near each archetype and two-dimensional  
plots of enrichment as function of rank order  
of bins of 20% of the points sorted by  
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ONLINE METHODS
Calculating the explained variance and determining the 
number of archetypes. Dimensionality of the data is first reduced 
by principal-component analysis (PCA) down to eight dimen-
sions (using 20 dimensions provides very similar results). For 
each number of archetypes n, we find the best-fit polytope using 
the PCHA algorithm12 with δ = 0. We compute the explained 
variance given by the mean relative distance of the N data points 
to the polytope  

EV( ) ( || || / || ||)n p s p
N i i i

i

N

= − −
=
∑1

1

1
  

Here pi is the ith data point and si is the closest point to pi in the 
polytope19,23. For points inside the polytope,

|| ||
 
p si i− = 0

We seek a number of archetypes for which adding an additional 
archetype does not increase EV by much. Operationally, we  
seek the value of n at which the EV(n) curve has a bend; typically, 
the EV curve has a rapid rise with n that switches to a slower  
rise at higher values of n. The value of n at which the bend  
occurs is estimated by finding the ‘elbow’ of the curve 
(Supplementary Fig. 10).

This method for determining the data dimensionality dif-
fers from PCA. PCA can find the dimensionality of the data set 
and provides a set of orthogonal axes along which the data vary  
most. PCA, however, does not indicate whether the data lie in 
a polytope. We used PCA as a pre-step to reduce data dimen-
sionality. Using PCA is not essential, as some polytope-finding 
algorithms also work well in the full original high dimensionality  
of the data set. More subtly, the orientation of the archetypes 
does not generally align with the first principal components. This 
implies that the biological meaning of the archetypes is distinct 
from that carried by the PCA components.

Estimating archetype position. After determining the number 
of archetypes, we use a hyperspectral unmixing algorithm to find 
the archetype positions. The software includes settings that allow 
use of one of five different algorithms. To fit the data to a polytope, 
we start by performing PCA on the data (thus centering the data 
to have a zero mean), without normalizing the data by their s.d. 
(that is, without Z-scoring). For the case of n archetypes, we use 
data projected on the first n − 1 principal components (i.e., for a 
tetrahedron, we use the first three components to represent the 
data). Then we use an unmixing algorithm to fit the n-vertices 
polytope that best describes the data (see Supplementary Note 8  
and Supplementary Fig. 11 for a list of algorithms). We used 
Sisal24 for the cancer data and MVSA13 for tissues because MVSA 
does not allow outliers and thus is more appropriate for a small 
number of data points.

Archetypal analysis differs from clustering analysis and 
Gaussian mixture models (GMMs) in several aspects—namely, 
a graded score for each point according to its distance from the 
archetypes rather than a discrete assignment into clusters, and 
lower sensitivity to local dense clumps that may result from data 
sampling. For a general comparison of these approaches, see 
Mørup and Hansen12 and Supplementary Note 2.

When using unmixing algorithms such as Sisal or MVSA, the 
archetypes are usually located some distance outside of the data. 
In this case, they represent hypothetical gene expression pro-
files that, according to the theory, should correspond to optimal 
profiles for the different tasks (or to archetypal cell mixtures in 
the case of tissue heterogeneity). We computed error bars on the 
archetypes by resampling the data with replacement and com-
puting the archetypes 1,000 times (see Supplementary Note 9 
and Supplementary Fig. 12). The error in estimating the arche-
types is about 10% (s.d./mean). The s.d. values of the archetype 
positions are depicted as ellipsoids in Supplementary Figure 13  
for the mouse tissue data set and in Figure 1b for the breast  
cancer data set.

Evaluating significance of best-fit polytopes. We note that  
estimating the number of archetypes using EV curves suggests 
the number of vertices of the best-fit polytope but does not mean 
that the data are necessarily well fit by a polytope (Supplementary 
Discussion and Supplementary Fig. 14).

To estimate the statistical significance (P value) of the  
description of the data by an n-vertex polytope, we compute a 
measure for the extent that the data fill the polytope, known as 
the t-ratio. The t-ratio is defined as the ratio of the volume of 
the polytope to the volume of the convex hull of the data9. This  
ratio is usually larger than 1; the closer it is to 1, the better the 
enclosing polytope captures the shape of the data. We then gen-
erate randomized data sets where for each point, values of each 
trait are sampled independently from its ensemble of measured 
values. This preserves the distribution of values of each trait while 
eliminating correlations between traits. We calculate the t-ratios 
for each randomized data set and set the P value to be the propor-
tion of randomized sets with a t-ratio smaller than or equal to that 
of the original data.

The statistical significance of the fitted polytope depends both 
on the dimension of the data set and the number of data points. 
Generally we find that a few tens of data points are sufficient for 
preliminary analysis (data not shown).

Evaluating the enrichment of features for each archetype. We 
seek those features that are maximally enriched at the points near-
est each archetype. Each data point is associated with a value for 
each of M features. A feature can be categorical, for example, the 
PAM50 feature (a computational classification of tumor subtypes 
based on gene expression profiling) in the breast cancer data set 
that can only take specific values (basal, LumB, …). We transform 
such categorical features into Boolean features (true or false). For 
example, the PAM50 feature becomes a set of Boolean features 
(PAM50-basal, PAM50-LumB, …). Other features are continuous, 
for example, patient age. We begin by defining the density profile 
for each feature as a function of distance from the archetype. For 
this purpose, we sort points in increasing order of Euclidean dis-
tance from archetype i. We bin all points in the data set according 
to their distance from the given archetype, such that each bin has 
an equal number of points (see “Calculating the optimal bin size” 
below). We compute the enrichment of feature j in the bins of 
sorted points. For discrete features, enrichment is defined as the 
density of the feature in the bin relative to its mean density across 
all data. To calculate the significance of the enrichment in the bin 
closest to the archetype, we use the hypergeometric test.
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A continuous feature can be treated in two ways. First, one can 
bin the feature values into several bins and then treat them as a 
categorical variable (this was used for features with low informa-
tion content; see Supplementary Note 10). A second option is 
to define enrichment as the median value of the property in the 
bin and to use continuous significance tests such as the Mann-
Whitney test25 for calculating the P value. This method finds 
enrichment for only high or low feature values and not for inter-
mediate values.

We plot enrichment curves as a function of the median distance 
of each bin to the archetype and normalize the binned distance 
between 0 and 1.

In cases where many features are tested for enrichment, one 
must control for multiple-hypothesis testing. We used two meth-
ods: one is a standard false discovery rate (FDR) calculation26 
(with a threshold of 0.1, in our case). The second controls for 
multiple-hypothesis testing by comparison to data sets in which 
the feature vectors are randomly shuffled between data points 
(Supplementary Note 11 and Supplementary Fig. 15). Both 
tests provide similar results and suggest that multiple-hypotheses 
errors are minimal for both data sets.

We record the features whose maximal enrichment is at the bin 
closest to the archetype. To do so, we calculated the probability 
that the fraction of data points with a certain feature is maximally 
enriched in the bin closest to the archetype. We first determined, 
in each bin, the probability distribution of the fraction of points 
with the feature, which follows a beta distribution B(m + 1, q + 1), 
where m and q are the number of points in the bin with and with-
out the feature, respectively. We then computed the probability 
that this fraction is higher in the first bin than in all other bins. 
Taking the product of the probabilities that the fraction of points 
with the feature is larger in bin 1 than in all other bins yields the 
probability Pmax that the feature is maximally enriched close to the 
archetype (see Supplementary Note 12 for the detailed deriva-
tion). This is a stringent criterion because it removes features that 
peak some distance away from the archetype (Supplementary 
Note 6). The latter features cannot be associated with the tasks 
and trade-offs at play according to Pareto theory9,10. Moreover, 
we use a leave-one-out strategy to avoid circularity concerns that 
stem from using a trait for both defining the archetype and mea
suring its enrichment. Finally, in our approach, no threshold on 
gene regulation needs to be chosen beyond which to look for 
over-represented genes sets.

Calculating the optimal bin size. We developed an approach 
to determine the bin size for enrichment analysis. We seek the 
minimal bin size in which stochastic effects do not mask out  
the signal. To estimate the minimal bin size, we consider the  
following simple calculation. The total number of data points  
is N, and m of them have a given feature, so that the mean  
density is ρ0 = m/N. We assume that the feature density ρ(x) is 
maximal at an archetype and decreases with distance from the 
archetype, such that to a first-order approximation

r r l j( )/ ( / )x x0 1= −

Here ϕ is the enrichment at the archetype, and λ is the length scale 
over which enrichment decays from the archetype (related to the 
first derivative of ρ(x)). Consider bins of size b (as a fraction of 

total number of points). The number of feature points in the first 
bin (closest to archetype) is n1 = ϕρ0Nb. The number of feature 
points in the second bin is n2 = ϕ(1 − b/λ)ρ0Nb. Thus, the differ-
ence between the first and second bin is

D = j r lb N2
0 /

We seek a bin size such that the s.d. due to random fluctuations 
in the two bins is smaller than the expected difference ∆. The 
number of points with a given feature value at each bin is given by 
a binomial process, with probability p for a feature point. For the 
first bin: p = ρ(0) ≈ ϕρ0, and the variance is given by σ1

2 ≈ σ2
2 ≈  

p(1 – p)Nb. We require σ1 + σ2 < ∆. This results in the inequality

b
N

> −
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
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4

1 0
2

0

1

3( )j r l
jr

The power laws result from the fact that bin size b has two effects: 
it controls the number of points in each bin and also the difference 
between the first and second bin. The 1/3 power law means that 
the minimal bin size depends only weakly on N, ρ0 and ϕ and 
depends most strongly on λ, the rate of decay of the enrichment 
with distance from the archetype. For the cancer data set, we find 
that the key features require an estimated minimal bin size of 
1–5% (the four features in Fig. 1c–f show λ = 0.25, 0.27, 0.45, 0.17; 
ϕ = 6.3, 2.7, 2.9, 15.1; ρ0 = 0.16, 0.11, 0.23, 0.06; and N = 2,106, 
respectively, resulting in bmin ≈ 1%, 7%, 6%, 2%). For simplicity, 
we use 5% bins in all calculations in the main text.

To further test the minimal bin size needed, we reanalyzed 
the cancer data set with bin sizes ranging from 1% to 30% in 
steps of 1%. At each bin size, we used bootstrapping to generate 
100 resampled data sets (generating N data points by sampling 
with replacement). We asked at which bin size the P value for 
enrichment varies the least while resulting in the most significant  
P values. We considered four enriched features: basal, normal 
tissue, Her2 and LumB, for archetypes 1, 2, 3 and 4, respectively. 
This yields minimal bin size estimates of 5–10%.

Gene-set enrichment analysis. We test whether specific gene 
functions and pathways are significantly enriched close to the 
archetypes. To do so, we use MSigDB database20 to define sets 
of genes belonging to the same pathway or sharing a common  
biological function. Specifically, we use the c2.cp.v4.0.symbols.gmt  
file, which contains curated gene sets from canonical pathways 
annotated by BioCarta27, KEGG28 and Reactome29. We also 
use the c5.all.v4.0.symbols.gmt file, which is based on the Gene 
Ontology (GO): there, genes annotated with the same GO term 
are grouped into the same gene set. We compute the expression 
level of each gene set by averaging over the log2 expression of all 
genes in that gene set. We discard gene sets that contain fewer than 
ten expressed genes in the gene expression data set. By repeating 
this procedure for all samples and all gene sets, we obtain a matrix 
in which cells represent the amount of expression of a gene set for 
each sample. We use a Mann-Whitney test to determine which 
gene sets are significantly overexpressed in the samples closest 
to each archetype compared to all other samples in the data set. 
Only gene sets with an FDR26 smaller than 0.1 are kept for further 
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analysis. Pareto theory implies that the enrichment of properties 
which correspond to archetypical tasks should peak at the arche-
type. We can therefore eliminate false positives by considering 
only gene sets whose median expression is highest in the bin clos-
est to the archetype. By repeating this procedure for all gene sets, 
we obtain a list of gene sets significantly enriched close to each 
archetype. To address circularity concerns stemming from using 
gene expression both to infer the position of the archetypes and 
their tasks, we use a leave-one-out procedure: for each enriched 
gene set, we recompute the position of the archetypes after remov-
ing the genes in that gene set. We then determine which samples 
are closest to the new archetypes, and test whether the gene set 
is still significantly enriched close to the archetype by the same 
method as above (Mann-Whitney test25). Finally, we rank the 
resulting list of significantly enriched gene sets by the difference 

between their median expression in the bin closest to each arche-
type and their median expression in all other samples.

Code availability. The entire analysis is implemented as a Matlab 
software package available from http://www.weizmann.ac.il/mcb/
UriAlon/download/ParTI.   
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