
 
 
Appendix A: The input functions of genes: Michaelis-Menten and Hill equations 
 
A.1 Binding of a repressor to a promoter  
This appendix provides a simplified introduction to basic models in biochemistry. We will 
begin with understanding the interaction of a repressor protein with DNA and with its 
inducer1. We will then turn to activator proteins. The repressor X binds to a specific DNA 
site, D, in a promoter. Thus, X and D bind to form a complex, [XD]. Transcription of the gene 
occurs only when the repressor is not bound, that is, when D is free. The DNA site can thus 
be either free, D, or bound, [DX], resulting in a conservation equation: 
 

𝐷	 +	 [𝑋𝐷] 	= 	𝐷(  (A.1.1) 
 
where DT is the total concentration of the site. For example, a single DNA binding site per 
bacterial cell means that DT = 1/cell volume ~ 1/μm3 ~ 1 nM. In eukaryotic cells, the volume 
of the nucleus is on the order of 10–100 μm3. 
The repressor X and its target D diffuse in the cell and occasionally collide to form the 
complex [XD]. This process can be described by mass-action kinetics: X and D collide and 
bind each other at a rate kon. The rate of complex formation is thus proportional to the 
collision rate, given by the product of the concentrations of X and D: 
 

rate of complex formation = kon X D 
 
The complex [XD] falls apart (dissociates) at a rate koff. The rate of change of [XD] based on 
these collision and dissociation processes is described by 

𝑑[𝑋𝐷]/𝑑𝑡	 = 	𝑘-.	𝑋	𝐷	–	𝑘-00	[𝑋𝐷] (A.1.2) 
The rate parameter for the collisions, kon, describes how many collision events occur per 
second per protein at a given concentration of D, and thus has units of 
1/time/concentration. It is useful to remember that kon  in biochemical reactions is often 
limited by the rate of collisions of a diffusing molecule hitting a protein-size target, and has 
a diffusion-limited value of about kon  ~ 108 – 109 M–1  sec–1, independent of the details of 
the reaction. For the case of a transcription factor and DNA, the diffusion limit is usually 
about ten times higher because of one-dimensional diffusion effects due to sliding of the 
transcription factor along the DNA (Berg, Winter and von Hippel, 1981) 
The off-rate koff, on the other hand, has units of 1/time and can vary over many orders of 
magnitude for different reactions, because koff is determined by the strength of the 
chemical bonds that bind X and D. 
The kinetics of Equation A.1.2 approach a steady-state in which concentrations do not 
change with time, d[XD]/dt = 0. Solving Equation A.1.2 at steady-state, we find that the 
balance between the collision of X and D and the dissociation of [XD] leads to the chemical 
equilibrium equation: 
 

                                                        
1The theoretical treatment for the input function of simple gene regulation was initiated by 
Gad Yagil in the context of the lac system of E. coli ((Yagil and Yagil, 1971)). 
  



𝐾2	[𝑋𝐷] 	= 	𝑋𝐷 (A.1.3) 
 
where Kd is the dissociation constant, 
 

𝐾2 	= 	𝑘-00/𝑘-. 
 
The dissociation constant Kd has units of concentration.  The larger the dissociation 
constant, the higher the rate of dissociation of the complex, that is, the weaker the binding 
of X and D. 
Solving for the concentration of free DNA sites, D, using Equations. A.1.1 and A.1.3, we find 
Kd (DT – D) = X D, which yields 
  

3
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567/84
		 (A.1.4) 

 
For many repressors, [XD] complexes dissociate within less than 1 sec (that is, koff > 1 sec–1). 
Therefore, we can average over times much longer than 1 sec and consider D/DT  as the 
probability that site D is free, averaged over many binding and unbinding events. 
The probability that the site is free, D/DT, is a decreasing function of the concentration of 
repressor X. When there is no repressor, X = 0, the site is always free, D/DT  = 1. The site has 
a 50% chance of being free, D/DT  = 1/2, when X = Kd. 
When site D is free, RNA polymerase can bind the promoter and transcribe the gene. The 
rate of transcription (number of mRNAs per second) from a free site is given by the maximal 
transcription rate 𝛽 . (Νote that in the main text we used \beta to denote the rate of protein 
production. This rate is proportional to the transcription rate times the number of proteins 
translated per mRNA provided that there is a constant mRNA life-time and translation rate.)  
The maximal transcription rate depends on the DNA sequence and position of the RNA 
polymerase binding site in the promoter and other factors. It can be tuned by evolutionary 
selection, for example, by means of mutations that change the DNA sequence of the RNAp 
binding site. In different genes, \beta ranges over several orders of magnitude, \beta ~ 10-4 
– 1 mRNA/sec. The rate of mRNA production, called the promoter activity, is b\beta times 
the probability that site D is free: 

𝑝𝑟𝑜𝑚𝑜𝑡𝑒𝑟	𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦	 = D

56 E
FG

		 (A.1.5) 

Figure A.1 shows the promoter activity as a 
function of X (here X is repressor in its 
active, DNA binding form, denoted X* in the 
main text). When X is equal to Kd, 
transcription is reduced by 50% from its 
maximal value. The value of X needed for 
50% maximal repression is called the 
repression coefficient. 
For efficient repression, enough repressor is 
needed so that site D is almost always 
occupied with repressor. From Equation 
A.1.4, this occurs when repressor 
concentration greatly exceeds the 

no
rm

al
iz

ed
 p

ro
m

ot
er

 a
ct

iv
ity

, f
(X

)/`

normalized repressor concentration, X/Kd

1

1/2

1

Figure A.1 



dissociation constant, such that X/Kd >> 1. This is the case for many repressors, including 
the lac repressor LacI. 
So far we discussed how the repressor binds the promoter and inhibits transcription. To 
turn the gene system ON, a signal must cause X to unbind from the DNA. We will treat the 
simplest case, in which a small molecule (an inducer) is the signal. The inducer directly binds 
to protein X and causes it to assume a molecular conformation where it does not bind D 
with high affinity. Typically, signals can reduce the affinity of X to its DNA sites by a factor of 
10 to 100. Thus, the inducer frees the promoter and allows transcription of the gene. We 
now consider the binding of inducer to X. 
 
A.2 Binding of an inducer to a repressor protein: the Michaelis-Menten equation 
The repressor protein X is designed to bind a small-molecule inducer Sx, which can be 
considered as its input signal. The two can collide to form a bound complex, [XSx]. The 
repressor is therefore found2 in either free form, X, or bound form [XSx], and a conservation 
law states that the two forms sum up to the total concentration of repressor protein XT: 

𝑋( 	= 	𝑋	 + [𝑋𝑆I] (A.2.1) 
X and Sx collide to form the complex [XSx] at a rate kon, and the complex [XSx] falls 
apart (dissociates) at a rate koff. Thus, the mass-action kinetic equation is:2 
 

𝑑	[𝑋𝑆I]/𝑑𝑡	 = 	 𝑘-.	𝑋	𝑆I	–	𝑘-00	[𝑋𝑆I] (A.2.2) 
At steady state, d[XSx]/dt = 0, and we find the chemical equilibrium relation: 

𝐾I	[𝑋𝑆I] 	= 	𝑋	𝑆I (A.2.3) 
 
where Kx =koff/kon is the dissociation constant. For the lac repressor, Kx ~ 1 μM ~ 1000 
inducer (IPTG) molecules/cell. Using the diffusion-limited value for kon ~ 109/M/sec, we find 
the lifetime of the complex is 1/koff ~ 1 msec. 
 Using the conservation of total repressor X (Equation A.2.1), we arrive at a useful equation 
that recurs throughout biology (this equation is known as the Michaelis–Menten equation in 
the context of enzyme kinetics; we use the 
same name in the present context of inducer 
binding): 
 

 
[𝑋𝑆I] =

74JE
JE68E

    Michaelis–Menten equation  

(A.2.4) 
  
 
The Michaelis–Menten term (Figure A.2) has 
three notable features: 
 

1. It rises about linearly with Sx when Sx is low (Sx<<Kx). 
                                                        
2 Usually the number of Sx molecules is much larger than the number of X molecules, and so 
we need not worry about conservation of Sx, Sx,total = Sx + [XSx]. For example, in the lac 
system, the number of LacI repressors, each made of a tetramer of LacI proteins, is XT ~ 10 
units/cell, which is negligible relative to Sx, which is at least 1000/cell for a detectable 
response. 
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2. It reaches saturation (stops rising) at high Sx. 
3.  It is equal to 0.5 when Sx = Kx . 

 
The dissociation constant thus provides the scale for detection of signal: Sx concentrations 
far below Kx are not detected; concentrations far above Kx saturate the repressor at its 
maximal binding.  
Recall that in cases like LacI, only X unbound to Sx, is active, X*, in the sense that it can bind 
the promoter D to block transcription. Because free X is active, we denote it by X*. Active 
repressor, X* = XT – [XSx], decreases with increasing inducer levels: 
 

𝑋∗ = 74
56JE/8E

      concentration of X not bound to 𝑆7      (A.2.5) 

  
A.3 Cooperativity OF Inducer binding And THE Hill Equation 
Before returning to the input function, we comment on a more realistic description of 
inducer binding. Most transcription factors are composed of several repeated protein sub- 
units, for example, dimers or tetramers. Each of the protein subunits can bind inducer 
molecules. Often, full activity is only reached when multiple subunits bind the inducer. A 
useful phenomenological equation for this process can be derived by assuming that n 
molecules of Sx can bind X. 
To describe the binding process, we assume a simple case: the protein (multimer) X can 
either be bound to n molecules of Sx, described by the complex [nSx X], or unbound, 
denoted Xo (thus, in this simple treatment, intermediate 
states where fewer than n molecules are bound are neglected). The total concentration of 
bound and unbound X is XT, and the conservation law is thus 

[𝑛𝑆I	𝑋] 	+	𝑋- 	= 	𝑋( (A.3.1) 
The complex [nSx X] is formed by collisions of X with n molecules of Sx. Thus, the rate 
of the molecular collisions needed to form the complex is given by the product of the 
concentration of free X, Xo, and the concentration of Sx to the power n (the probability of 
finding n copies of Sx at the same place at the same time): 
 

𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛	𝑟𝑎𝑡𝑒	 = 	𝑘-.	𝑋-	𝑆I.	 (A.3.2) 
 
where the parameter kon describes the on-rate of complex formation. The complex [nSx X] 
dissociates with rate koff: 
 

𝑑𝑖𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛	𝑟𝑎𝑡𝑒	 = 	𝑘-00	[𝑛𝑆I	𝑋] (A.3.3) 
 

The parameter koff corresponds to the strength of the chemical bonds between Sx and its 
binding sites on X. The total rate of change of the concentration of the complex is thus the 
difference between the rate of collisions and dissociations: 

𝑑[𝑛𝑆I	𝑋]/𝑑𝑡	 = 	 𝑘-.	𝑋-	𝑆I𝑛	–	𝑘-00	[𝑛𝑆I	𝑋] (A.3.4) 
 This equation reaches equilibrium within milliseconds for typical inducers. Hence, we 
can make a steady-state approximation, in which d[nSx X]/dt = 0, to find that dissociations 
balance collisions: 

𝑘-00	[𝑛𝑆I	𝑋] 	= 	 𝑘-.	𝑋-	𝑆I. (A.3.5) 
We can now use the conservation equation (Equation A.3.1) to replace Xo with XT – 



[nSx X], to find 
(𝑘-00/𝑘-.)	[𝑛𝑆I	𝑋] 	= 	 (𝑋(	–	[𝑛𝑆I	𝑋])𝑆I. (A.3.6) 

Finally, we can solve for the fraction of bound X, to find a binding equation known as 
the Hill equation: 
  

[.JE	7]
74

= JE
Q

8E
Q6JE

Q    Hill equation (A.3.7) 

 
where we have defined the constant Kx such that 

𝐾𝑥𝑛	 = 𝑘-00/𝑘-.  (A.3.8) 
Equation A.3.7 can be considered the probability that the site is bound, averaged over many 
binding and unbinding events of Sx. 
 
The parameter n is known as the Hill coefficient. When n = 1, we obtain the Michaelis–
Menten term (Equation A.2.4). As shown 
in Figure A.3, both the Michaelis–Men- 
ten and Hill equations reach half-maximal 
binding when Sx = Kx. 
The steepness of the Hill curve is greater 
the larger the Hill coefficient n (Figure 
A.3). In the lac system, n = 2 with the 
inducer IPTG (Yagil and Yagil, 1971). 
Reactions described by Hill coefficients n > 
1 are often termed cooperative reactions. 
The concentration of unbound repressor X 
is given by: 
  

 
7∗

74
= 5

56STEFE
U
Q     (A.3.9) 

 
 
A.4   The Monod-Changeux-Wyman model  
 
We note that a more rigorous and elegant analysis of cooperative binding based on 
symmetry principles is due to Monod, Changeux, and Wymann, in a paper well worth 
reading ((Monod, Wyman and Changeux, 1965)), usually also described in biochemistry 
textbooks. In this model X switches to an active state X* and back. The signal Sx binds X with 
dissociation constant Kx, and binds X* with a lower dissociation constant Kx*.  Up to n 
molecules of Sx can bind to X. The two states, X and X* spontaneously switch such that in 
the absence of Sx, X is found at a probability larger by L than X*. The result is: 

 

7∗

74
=

S56
TE
FE
∗ U

Q

VS56TEFE
U
Q
6S56TEFE∗

U
Q      

Interesting extensions to this model make analogies to Ising models in physics (Duke et al., 
2001). One difference between the rigorous models and the Hill curve is that binding at low 
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concentrations of Sx is linear in Sx rather than a power law with coefficient n, as in Equation 
A.3.7. This linearity is due to the binding of a single site on X, rather than all sites at once. 
 
A.5    The input function of a gene regulated by a repressor  
We can now combine the binding of inducer to the repressor (Equation A.2.5) and the 
binding of the repressor to the DNA (Equation A.1.4) to obtain the input function of the 
gene. The input function in this case describes the rate of transcription as a function of the 
input inducer concentration Sx: 

𝑓(𝑆7) =
D

567∗/XY
= D

56E4ZG
[

[\S
TE
F]

U
Q
		

      (A.5.1) 

  
Figure A.4 shows how the transcription rate of 
a gene repressed by X increases with 
increasing inducer concentration Sx. Note, 
when no inducer is present, there is a leakage 
transcription rate, f(Sx = 0) = b/(1 + XT/Kd), 
also called the basal promoter activity. This 
leakage is smaller the stronger X binds its DNA 
site. In Figure A.4, the parameter values are 
XT/Kd = 10 (top curve) and XT/Kd = 50 (bottom 
curve), both with n = 2. Half-maximal 
induction is reached at Sx = 3 Kx and Sx = 7 Kx, 
respectively. The ihalf-maximal induction 
point, Sx = S1/2, is approximately (when XT >> 
Kd) 
 

𝑆5/^			~	`
74
8G
a
[
Q 	𝐾I	 (A.5.2) 

 
The halfway inducer concentration S1/2 can be significantly larger than Kx (Figure A.4). For 
LacI, for example, XT/Kd ~ 100 and n = 2, so that S1/2 ~10 Kx. 
We now turn to describe transcription activators. 
 
 
A.6    Binding of an activator to its DNA site  
In the decade following the discovery of the lac repressor, other gene systems were found 
to have repressors with a similar principle of action. It is interesting that it took several years 
for the scientific community to accept evidence that there also existed transcriptional 
activators. 
An activator protein increases the rate of transcription when it binds to its DNA site in the 
promoter. The rate of transcription is thus proportional to the probability that the activator 
X is bound to D. Using the same reasoning as above, the binding of X to D is described by a 
Michaelis–Menten function: 
 
 

𝑝𝑟𝑜𝑚𝑜𝑡𝑒𝑟	𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦	 = D7∗

7∗68G
						(A.6.1)	
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Many activators have a specific inducer, Sx, such that X is active, X*, in the sense that it can 
bind DNA to activate transcription, only when it binds Sx3.1 Thus, we obtain 
  
 
Figure  A.5 Input function for a gene 
regulated by an activator as a function of 
the inducer level.  
 
 
  

𝑋∗ 	= 74JE
Q

8E
Q6JE

Q		(A.6.2)	

  
 
 
The genes input function is 
  

𝑓(𝑆I) 	= 𝛽		𝑋∗/(𝐾2 		+ 𝑋∗)  (A.6.3) 
 
This function, shown in Figure A.5, is an increasing function of signal. The basal transcription 
level is zero in this regulation function, f(Sx = 0) = 0. Simple activators thus can have lower 
leakage than repressors. If needed, however, a nonzero basal level can be readily achieved 
by allowing RNAp to bind and activate the promoter to a certain extent even in the absence 
of activator. 
The inducer level needed for half-maximal induction of an activator can be much smaller 
than Kx: 
 

𝑆5/^	~	`
8G
74
a
[
Q 		𝐾I (A.6.4) 

 
in contrast to the repressor case (Equation A.5.2). In Fig A.5, for example, Sx ~ 1/3 Kx and Sx 
~ 1/7 Kx for the cases of XT/Kd = 10 (bottom curve) and XT/Kd = 50 (top curve), both with n 
= 2.  
Overall, however, similar input function shapes as a function of inducer Sx can be obtained 
with either activator or repressor proteins. Rules that seem to govern the choice of activator 
or repressor for a given gene are discussed in Chapter 7. 
In this appendix we described a simplified model that captures the essential behavior of a 
simple gene regulation system, in which proteins are transcribed at a rate that increases 
with the amount of inducer Sx. Many real systems have additional important details that 
make them tighter and sharper switches. The present description is sufficient, however, to 
understand basic circuit elements in transcription networks. 
                                                        
3In other cases the activator is active when it is unbound to Sx and inactive when it is bound. 
In such cases, Sx is an inhibitor of X. Similarly, some repressors can be activated by binding 
Sx. These cases can be readily described using the reasoning in this appendix. 
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A.6.1   Comparison of dynamics with logic and Hill Input Functions 
How good is the approximation of using logic input functions (see Section 2.3.4) instead of 
graded functions like Hill functions? In Figure A.6, the dynamics of accumulation of a simple 
one-step transcription cascade are shown, using three different forms of the input function 
f(X). The input functions are Hill functions with n = 1 and n = 2, and a logic input function. At 
time t = 0, X* starts to be produced, and its concentration increases gradually with time. The 
graded input functions show expression as soon as X* appears, whereas the logic input 
function shows expression only when X* crosses the threshold K. Overall, the dynamics in 
this cascade are quite similar for all three input functions. 

A.7    Michaelis-Menten enzyme kinetics  
We now briefly describe a useful model of the action of an enzyme X on its substrate S, to 
catalyze formation of product P. Enzyme X and substrate S bind with rate kon  to form a 
complex [XS], which dissociates with rate koff. This complex has a small rate v to form 
product P, so that 
 
  

𝑋 + 𝑆
𝑘-.
⇌
𝑘-00

[𝑋𝑆]
c
→ 𝑋 + 𝑃 (A.7.1) 

  
 
The rate equation for [XS], taking into account the dissociation of [XS] into X + S, as well as 
into X + P, is 
 

d[𝑋𝑆]/𝑑𝑡	 = 	𝑘-.	𝑋	𝑆	–	𝑘-00	[𝑋𝑆]	– 	𝑣[𝑋𝑆] (A.7.2) 
At steady-state, we obtain 

 [𝑋𝑆] = 𝑘-./(𝑣 + 𝑘-00)𝑋𝑆 (A.7.3) 
If substrate S is found in excess, we need only worry about the conservation of enzyme X: 

𝑋	 +	[𝑋𝑆] 	= 	𝑋(   (A.7.4)  
Using this in Equation A.7.3, we find the Michaelis-Menten equation: 
𝑟𝑎𝑡𝑒	𝑜𝑓	𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛	 = 	𝑣[𝑋𝑆] = 	𝑣	𝑋𝑇 J

8h	6	J
  Michaelis–Menten enzyme kinetics   

(A.7.5) 
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where the Michaelis–Menten coefficient of the enzymee is: 
𝐾h 	= 	 (𝑣	 +	𝑘-00	)/𝑘-.   (A.7.6) 

This constant has units of concentration and is equal to the concentration of substrate 
at which the production rate is half maximal. When substrate is saturating, S >> Km, 
production is at its maximal rate, equal to v XT. Thus, the production rate does not depend 
on S (that is, it depends on S to the power zero) and is known as zero-order kinetics: 

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛	𝑟𝑎𝑡𝑒	 = 	𝑣	𝑋(								𝑧𝑒𝑟𝑜 − 𝑜𝑟𝑑𝑒𝑟	𝑘𝑖𝑛𝑒𝑡𝑖𝑐𝑠𝑠 (A.7.7) 
In the main text we will sometimes make an approximation to this function, in which 
the substrate S is found in low concentrations, S << Km. In this case, the production rate 
becomes linear in S, as can be seen from Equation A.7.5 by neglecting S in the denominator. 
This regime is known as first-order kinetics: 
 

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛	𝑟𝑎𝑡𝑒	 = 	𝑣	𝑋(
𝑆
𝐾h

															𝑓𝑖𝑟𝑠𝑡 − 𝑜𝑟𝑑𝑒𝑟	𝑘𝑖𝑛𝑒𝑡𝑖𝑐𝑠 

 
 
Further reading 
(Ackers, Johnson and Shea, 1982) “Quantitative model for gene regulation by lambda phage 
repressor.” 
(Monod, Wyman and Changeux, 1965) “On the nature of allosteric transitions: a plausible 
model. “ 
(Ptashne, 2004) “Genetic Switch: Phage Lambda Revisited” 
(Setty et al., 2003) “Detailed map of a cis-regulatory input function.” 
(Berg et al., 2002) “Biochemistry Enzymes: Basic Concepts and Kinetics. “ 
 
 
 
Exercises  
1.A.1.    Given a simple repressor with parameters \beta, XT, Kd, Kx, and n, design an 
activator that best matches the performance of the repressor. That is, assign values to 	𝛽, 
XT, Kd, and Kx  for the activator so its input function will have the same maximal expression, 
and the same S1/2, and the same slope around S1/2  as the repressor input function. 
 
1.A.2.   Derive the approximate value of diffusion-limited kon based on dimensional analysis. 
Dimensional analysis seeks a combination of the physical parameters in the problem that 
yields the required dimensions. If only one such combination exists, it often supplies an 
intuitive approximate solution to otherwise complicated physical problems. Assume a target 
protein with a binding site of area a = 1 nm2, and a small molecule ligand that diffuses with 
diffusion constant D = 1000 μm2/sec. The affinity of the site is so strong that it binds all 
ligand molecules that collide with it. 
 
Solution: 
  
To study the on-rate kon, place a single protein in a solution of 1 M ligand L (concentration of 
ligand is ρ = 1M = 6·1023 molecules/liter ~ 109  mol/μm3). The number of L molecules 
colliding with the binding site of the protein has dimensions of molecules/sec and should be 
constructed from ρ, D, and a. The combination with the desired dimensions is kon ~ ρ D a1/2 , 



because D has units of [length]2/[time] and a has units of [length]2. This combination makes 
sense: it increases with increasing ρ, a, and D as expected. Inserting numbers, we find kon ~ ρ 
D    a ~ 109 mol/μm3·1000 μm2/sec·10–3  μm = 109  mol/sec, hence kon  ~ 109/M/sec. Note 
that dimensional analysis neglects dimensionless prefactors and is often only accurate to 
within an order of magnitude. 
  
 
1.A.3.    What is the expected diffusion-limited kon for a protein sliding along DNA to bind a 
DNA site. The protein is confined to within r = 1 nm of the DNA. The total length of DNA in a 
bacterium such as E. coli is on the order of 1 mm (!), and the volume of the E. coli cell is 
about ~1 μm3. Discuss the biological significance of the increase in kon relative to free 
diffusion in space. 
 
1.A.4.    Off-times 
(a) Estimate the off-time (1/koff ) of a diffusion-limited repressor that binds a site with Kd = 
10–11 M.  
(b) What is the off-time of a small-molecule ligand from a receptor that binds it with Kd = 10–

6 M (bacterial chemotaxis attractants), Kd = 10–12 M (mammalian hormone binding to 
receptors)?  
(c) Mammalian ligands that bind a receptor on the cell surface are often taken up into the 
cell and destroyed or recycled together with the receptor, in a process called endocytosis. 
Explain how the ligand can remain bound for long enough if endocytosis takes minutes? 
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