Principles & Practice of Light Microscopy 5 Special Techniques (TIRF, FRET, FRAP, FLIP, FLIM, FCS, molecular sensors...)

Edited by: Zvi Kam, Weizmann For Advance Light Microscopy course

Total Internal Reflection Fluorescence (TIRF)

TIRF

Total Internal Reflection Microscopy

Problem: background light from other planes

One approach: confocal

Even more powerful solution: TIRF *IF* the object of interest is at the surface

Total Internal Reflection Fluorescence

Total Internal Reflection Snell's Law: $n_1 \sin(\theta_1) = n_2 \sin(\theta_2)$ Aqueous sample $\theta_2 = 90^{\circ}$ $n_2 \approx 1.33 - 1.38$ Cover Glass $\theta_1 = \theta_{crit}$ $n_1 = 1.518$ $Sin(\theta_{crit}) = n_{2/} n_{1}$

Total Internal Reflection Decay length vs. angle

$$k_{z} = \sqrt{k_{2}^{2} - k_{x}^{2}} =$$

$$= \sqrt{\left(\frac{n_2}{\lambda}\right)^2 - \left(\frac{n_1 \operatorname{Sin}(\theta_1)}{\lambda}\right)^2}$$

$$=\frac{1}{\lambda}\sqrt{n_2^2-n_1^2}\sin^2(\theta_1)$$

If $n_1 Sin(\theta_1) > n_2$ $\theta_1 > \theta_{crit}$ then k_z is imaginary: $k_z = ib$

$$E \propto e^{2\pi i k_z z} = e^{-2\pi b z}$$
$$I \propto \left| E \right|^2 \propto e^{-4\pi b z} = e^{-z/z_{TIRF}}$$

$$z_{\text{TIRF}} = 1/4\pi b = \lambda / 4\pi \sqrt{n_2^2 - n_1^2 \text{Sin}^2(\theta_1)}$$

Two forms of TIRF microscopy

Prism coupled

- No excitation light in emission path
 > Very low background (if quartz slide)
- Needs separate, external beam path
 ⇒ Harder to align

- Easy to align
- Excitation light in emission path
 - \Rightarrow Vulnerable to autofluorescence in the optics
- Requires very high NA

Chromaffin cell

Identification of individual vesicles

TIRF Objectives

Typical NA 1.45-1.49

Extreme example: Olympus NA 1.65 Requires special high-index cover glass and (volatile, toxic) immersion fluid

TIRF examples

Focal adhesions Epifluorescence TIRF

Microtubule growth movie

Single vesicle release 1 s intervals

Fluorescence Resonance Energy Transfer (FRET)

FRET

Fluorescence Resonance Energy Transfer or Förster Resonance Energy Transfer

Need: sense *interactions* Idea: sense *distance*

Excitation energy is transferred from donor to acceptor

Efficiency depends on distance (and on angles, motion...)

FRET efficiency vs. distance

Characteristic distance R_{FRET} FRET efficiency $\propto 1/(1+(R/R_{FRET})^6)$

Example: FITC→TRITC R_{FRET}≈5.5 nm

Distance scale ~ 50 times smaller than microscope resolution

FRET efficiency vs. angles

$$R_{FRET} \propto (\cos \theta_{\rm T} - 3\cos \theta_{\rm D} \cos \theta_{\rm A})^{1/3}$$

Angle effects less important if the fluorophores tumble freely faster than the fluorescent decay time

CFP / YFP Protein FRET pairs: Cerulean / Citrine ? CyPet / Ypet ? EGFP / MKO / cherry ?

FRET detection

Unwanted crosstalk between bands

FRET

How can one detect it?

Want to know FRET efficiency separately from concentration

- Spectrally
 - Measure intensity of donor-donor, acceptor-acceptor & donor-acceptor (FRET)
- Donor lifetime
 - Lifetime is shortened by FRET
- Acceptor photobleaching
 - Donor intensity rebounds when acceptor is removed
- Donor photobeaching
 - Quenching byFRET slows photobleaching
- Need to calibrate for background, crosstalk etc
- Environmental effects can change spectra & lifetimes Complicates calibration

FRET-based sensors

Chameleons
 Conformation change
 alters FRET

Perturbation of a

of a fusion partner

(circularly permuted) FP

by conformation change

• Camgaroos

Circular Permutation in Yellow Fluorescent Protein

Fluorescence Recovery After Photobleaching (FRAP)

FRAP

Fluorescence Recovery after Photo-bleaching

Need: to probe transport Idea: bleach in one area, watch recovery by transport from other areas

FRAP example

GFP-Histone H1 Wildtype H1 is immobile Partially deleted mutants exchange much faster

Fluorescence Loss In Photobleaching (FLIP)

FLIP

Fluorescence Loss in Photo-bleaching

Need: probe connectivity Idea: bleach in one compartment, watch loss in connected compartments by exchange

Bleach one area repeatedly. Entire ER dims. \Rightarrow ER is contiguous

Photo Activation (PA)

Photo-Activation (Better?) FRAP/FLIP alternative

Some fluorophores can be activated by light

- Photo-uncagable dyes
- GFP-family proteins

Look for weak light against dark background Instead of slight dimming of bright background

Activate a small area Watch fluorescence spread

Photo-Activativatable Proteins

Fluorescence Correlation Spectroscopy (FCS)

Speckle Analysis

FCS

Fluorescence Correlation Spectroscopy

Small volume \rightarrow only a few molecules \rightarrow random fluctuations

- Study the *noise*
- Conclude about *random processes* at different *time scales*

Small excitation volume Random molecular processes:

- Diffuse in and out
- Adopt different states
- Bind or react
- Photobleach
- ...

Image Correlation Spectroscopy Image FCS

Sense the random fluctuations of fluorescence within an *image* or *image sequence*

Much slower than point FCS, but get whole area Can see where you are & deal with motion Can do spatio-temporal analysis

> Image series Measure time and space variations in intensity

Image Correlation Spectroscopy

Fluorescece Speckle Microscopy FSM (Clair Waterman-Storer)

Analysis of: Translocation of stable structure Assembly of new molecules

Current Biology

% labeled tubulin

Fluorescence Life Time Imaging (FLIM)

FLIM Fluorescence Lifetime Imaging

Measure the lifetime of the excited state

Separate fluorophores with similar spectra
Detect environmental parameters that affect lifetime (FRET, pH, ...)

FLIM Measurement approaches

- Frequency domain
 - Modulated excitation
 - Lock-in detect emission phase

- Time domain (pulsed exc.)
 - Gated intensifier Photon inefficient
 - Time-correlated single photon counting Very efficient
 - \leq one photon per pulse \Rightarrow slow

FLIM Examples

B-cells

fluorescence decay time

Hepatocyte membrane-stained with NBD, which has a hydrophobicity-dependent lifetime (TCSPC, 3 minutes for 300x300 pixels)

Optical Tweezers

Optical Tweezers

Mechanically manipulate the specimen with light

Why?

Measuring force and displacement of a single polymerase molecule

DNA recoil after stretching

Optical Tweezers How does it work?

Photons carry momentum Changing photon direction requires a force More light refracted away from high intensity region → Force toward intensity maximum

Alternative way to look at it: Field energy is less in higher index System energy depends on particle position dE/dx = Force

Holographic Optical Tweezers

- Many traps at once
- Independently movable
- Made using a computer-controlled spatial light modulator in a pupil plane

Fiber Optics

