• Prof. Alexander D. Bershadsky

    Studies the basic processes of self-organization of the most abundant cellular protein, actin, into filamentous structures that comprise the cytoskeleton, an intracellular network determining cell shape, generating cell motility, and strengthening adhesion of cells to each other and to extracellular matrix. These processes depend on the assembly of the actin filaments mediated by special proteins known as formins, filament movement mediated by molecular motors, myosins, and filament anchorage at the cell adhesion sites. Actin self-organization in the cell is coordinated by diverse signaling molecules, among which small G proteins from the Rho and Arf families and protein tyrosine kinases are also within sphere of interest of the laboratory. The main direction of the recent research focuses on understanding actin cytoskeleton- and adhesion-dependent mechanisms of cell mechanosensitivity, and the establishment of left-right cell asymmetry.

    Currently working in collaboration with Mechanobiology Institute, Singapore