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Significance

Myelin is essential for the 
development and function of the 
central nervous system (CNS), and 
its loss or dysfunction is central to 
aging and neurodegenerative 
diseases. To build myelin, 
oligodendrocytes undergo 
dramatic cell morphology changes 
that are powered by actin 
cytoskeletal dynamics. However, 
how the oligodendrocyte 
cytoskeleton is regulated during 
myelination remains poorly 
understood. Here, we identify the 
transcription factor SRF (serum 
response factor) as essential for 
myelination. SRF directly regulates 
expression of actin regulatory 
genes in oligodendrocytes and, 
surprisingly, also inhibits disease- 
associated gene expression. 
Together with our recent 
discovery that SRF promotes 
oligodendrocyte rejuvenation, our 
findings uncover a pathway 
promoting myelin formation that 
may represent a therapeutic 
target for restoring myelin in the 
aged or diseased CNS.
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Myelination of neuronal axons is essential for nervous system development. 
Myelination requires dramatic cytoskeletal dynamics in oligodendrocytes, but how 
actin is regulated during myelination is poorly understood. We recently identified 
serum response factor (SRF)—a transcription factor known to regulate expression of 
actin and actin regulators in other cell types—as a critical driver of myelination in the 
aged brain. Yet, a major gap remains in understanding the mechanistic role of SRF in 
oligodendrocyte lineage cells. Here, we show that SRF is required cell autonomously 
in oligodendrocytes for myelination during development. Combining ChIP- seq with 
RNA- seq identifies SRF- target genes in oligodendrocyte precursor cells and oligo-
dendrocytes that include actin and other key cytoskeletal genes. Accordingly, SRF 
knockout oligodendrocytes exhibit dramatically reduced actin filament levels early 
in differentiation, consistent with its role in actin- dependent myelin sheath initia-
tion. Surprisingly, oligodendrocyte- restricted loss of SRF results in upregulation of 
gene signatures associated with aging and neurodegenerative diseases. Together, our 
findings identify SRF as a transcriptional regulator that controls the expression of 
cytoskeletal genes required in oligodendrocytes for myelination. This study identifies 
an essential pathway regulating oligodendrocyte biology with high relevance to brain 
development, aging, and disease.

myelin | SRF | cytoskeleton | oligodendrocytes | neurodevelopment

Myelination is essential for rapid nerve signaling and has emerged as an important regulator 
of central nervous system (CNS) development, plasticity, and disease (1). The cellular 
mechanisms controlling myelin formation and dynamics are still incompletely understood. 
Oligodendrocytes form myelin by dramatically rearranging their cell morphology to 
ensheath and then spirally wrap dozens of individual myelin sheaths around neuronal 
axons. Central to the ability of an oligodendrocyte to form myelin is its actin cytoskeleton 
(2), which powers morphological changes in two distinct steps: first, actin assembly is 
required for early stages of myelination in which oligodendrocytes extend their cellular 
processes to make first contact with axons that they loosely ensheath (3, 4) similar to how 
actin assembly drives the extension of neuronal growth cones (5). Second, and unexpect-
edly, dramatic disassembly of the oligodendrocyte actin cytoskeleton occurs prior to the 
start of myelin wrapping (4, 6). The first stage—ensheathment—requires expression of 
proteins that promote actin filament assembly, including Arp2/3 and its regulators. In 
contrast, the subsequent stage—wrapping—does not require actin assembly factors, while 
actin disassembly factors (e.g., cofilin, ADF, gelsolin) are all highly upregulated and are 
required for wrapping (4, 6). Thus, precise control over actin assembly and disassem-
bly—e.g., through tight regulation of gene expression of actin regulatory proteins—is 
likely to be essential to coordinate oligodendrocyte morphology changes required for these 
sequential steps of myelination. The mechanisms regulating the oligodendrocyte cytoskel-
eton during myelination remain largely unknown.

Serum response factor (SRF) is a MADS box transcription factor that functions as a 
major transcriptional regulator of the actin cytoskeleton in diverse cell types (7) including 
neurons (8, 9), muscle (10, 11), and cardiac cells (12, 13). Many of the cytoskeletal genes 
that are induced during oligodendrocyte differentiation (14–16) are known targets of SRF 
(17). In the developing nervous system, SRF is required in neural precursor cells for the 
specification of oligodendrocyte precursor cells (OPCs) and astrocytes (18). In addition, 
neuronal SRF was found to affect myelination non- cell autonomously by controlling 
neuronal secretion of paracrine signals that affect oligodendrocyte differentiation (19). 
However, whether SRF also plays a direct, cell- autonomous role in oligodendrocytes 
during myelination has not been directly addressed.

We recently found that infusing cerebrospinal fluid (CSF) from young mice into the 
brains of old mice improves memory function by a mechanism that appears to be largely D
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dependent on the formation of new myelin (20). Young CSF 
increased OPC proliferation, differentiation into oligodendro-
cytes, and the number of myelinated axons in the hippocampus. 
Mechanistically, we found that the major cellular target of young 
CSF in oligodendrocytes is SRF. Its expression is rapidly induced 
in OPCs treated with young CSF, followed within hours by the 
induction of numerous known SRF target genes. Additionally, 
young CSF increased actin filament levels and growth cones in 
OPCs, consistent with activating SRF. In culture, the young 
CSF- induced increase in OPC proliferation is dependent on SRF, 
as SRF- KO OPCs failed to proliferate in response to young CSF. 
However, it is still unknown whether SRF also regulates myelina-
tion itself—for example, by controlling expression of actin genes 
known to be required in oligodendrocytes for ensheathment and/
or wrapping of axons.

Here, we show that SRF is required cell- autonomously in oli-
godendrocytes for the formation of myelin during development. 
On the gene regulatory level, the direct gene targets of SRF in 
OPCs and oligodendrocytes include actin itself and several genes 
that regulate the formation and stability of actin filaments. Loss 
of SRF in cultured oligodendrocytes causes a dramatic reduction 
in actin filament levels early in differentiation, a time point in 
which actin filament assembly is required for axon ensheathment. 
Unexpectedly, SRF- loss also induced a gene signature associated 
with aging and neurodegenerative diseases such as Alzheimer’s 
Disease. Together, our results reveal mechanistic insight into how 
the oligodendrocyte cytoskeleton is regulated to promote myeli-
nation during development and dissect a unique pathway that 
could be targeted to boost, protect, and/or restore myelination in 
aging or disease.

Results

SRF Is Expressed by OPCs and Oligodendrocytes during CNS Deve
lopment. We first sought to determine when in the oligodendrocyte 
lineage SRF is expressed during CNS development. We used 
multiplexed fluorescence RNA in situ hybridization (RNAScope) 
to visualize and quantify expression of SRF transcripts in brain 
sections from postnatal day 8 (P8) and P16 mice (Fig.  1A), 
time points representing the start of myelination in the mouse 
brain. Simultaneous labeling of PDGFRα (OPCs) and Olig2 (all 
oligodendrocyte lineage) allowed us to quantify SRF expression in 
both OPCs (Olig2- expressing, PDGFRα- high) and differentiating 
or mature oligodendrocytes (Olig2- expressing, PDGFRα- low) 
while avoiding other cell types that express SRF (Fig. 1 B and C). 
Consistent with published transcriptomics studies (16, 21) and 
our prior work on SRF in the aging brain (20), SRF mRNA was 
expressed by both OPCs and oligodendrocytes throughout the 
brain at both P8 and P16 (Fig. 1D). Furthermore, immunostaining 
with a knockout- validated antibody confirmed SRF protein 
expression in oligodendrocyte nuclei (Fig. 1E), consistent with 
its known function as a transcription factor. We confirmed SRF’s 
nuclear localization by immunostaining primary cultured OPCs 
and oligodendrocytes using the same antibody (Fig. 1F). Thus, 
SRF is expressed by both OPCs and oligodendrocytes during 
postnatal development, positioning it to regulate gene expression 
during myelination.

Conditional Knockout of SRF Causes CNS Hypomyelination. To 
test the role of SRF in myelination in vivo, we generated mice 
in which a floxed allele of SRF (22) was conditionally deleted 
from OPCs using Olig2- Cre (23) (SI  Appendix, Fig.  S1A).  
SRF- flox/flox; Olig2- Cre/+ conditional knockout mice (hereafter “SRF-  
cKO”) were born in Mendelian frequencies and displayed no 

gross behavioral or motor defects. We confirmed complete loss 
of SRF mRNA in OPCs using RT- PCR on purified OPCs from 
SRF- cKO mice and littermate controls (“SRF- Flox,” genotype: 
SRF- flox/flox; and “SRF- cHet,” genotype: SRF- flox/+; Olig2- Cre/+; 
SI  Appendix, Fig.  S1B). In  vivo, immunostaining revealed loss 
of SRF protein from oligodendrocytes but not from neighboring 
cells (e.g., neurons) (SI Appendix, Fig. S1C).

Having confirmed loss of SRF from oligodendrocyte cells in 
SRF- cKO mice, we used transmission electron microscopy to test 
whether SRF is required in oligodendrocytes for myelination. We 
focused on the optic nerve and the corpus- callosum, two highly 
myelinated axon tracts that we and others have studied extensively 
as a model of CNS myelination (4, 6, 24, 25). At P18 (during 
active myelination), SRF- cKO optic nerves had on average half 
as many myelinated axons as control SRF- Flox littermates with 
no other abnormalities (SI Appendix, Fig. S2 A and B). This degree 
of hypomyelination of SRF- cKO mice persisted into adulthood 
in both the optic nerve (SI Appendix, Fig. S2 D and E) and the 
corpus callosum (Fig. 2 A–E and SI Appendix, Fig. S3 A and B), 
indicating that the reduction of myelinated axons in cKOs was 
not just due to a transient developmental delay. Focusing on only 
myelinated axons, morphometric analysis revealed that the average 
g- ratio (ratio describing myelin thickness relative to axonal diam-
eter) of SRF- cKO myelinated axons was significantly higher than 
WT littermates in the adult corpus callosum (0.760 vs. 0.703; 
Fig. 2E), but this result did not achieve significance in the optic 
nerve (SI Appendix, Fig. S2 G–N). Interestingly, average myelin 
thickness was not significantly different between WT and SRF-  
cKO mice in either optic nerve or corpus callosum (SI Appendix, 
Figs. S2 C and F and S3C), arguing against a role of SRF in myelin 
wrapping. Instead, the higher g- ratios observed in SRF- cKO mice 
were due to significantly larger diameters of myelinated axons in 
cKOs (SI Appendix, Figs. S2 K and L and S3D)—suggesting a 
specific defect in ensheathing smaller caliber axons. Thus, while 
SRF is important for axonal ensheathment, it appears to be dis-
pensable for the later stage of myelin wrapping.

The hypomyelination phenotype of SRF- cKO mice could be a 
result of a defect in differentiation or viability of mature oligo-
dendrocytes. We therefore quantified the cell density of OPCs 
(CC1−Olig2+ cells) and oligodendrocytes (CC1+Olig2+ cells) in 
the corpus callosum (CC, Fig. 2 F–H) and cortex (Fig. 2 I–K). 
We found similar densities of OPCs and oligodendrocytes in both 
regions with a slight trend towards fewer OPCs in the cortex 
(Fig. 2J), suggesting that SRF is not necessary for oligodendrocyte 
maturation or viability. This was in line with similar levels of MBP 
staining intensity in the cortex and corpus callosum (SI Appendix, 
Fig. S3 E–G). Together, these results indicated that the hypomy-
elination phenotype in SRF- cKO mice is a result of improper 
myelination and that SRF is required cell- autonomously within 
oligodendrocytes for the initial steps of myelination.

ChIP- Seq Identifies SRF Target Genes in Oligodendrocytes. To gain 
a better mechanistic understanding of the role of SRF in myelination, 
we used chromatin immunoprecipitation- sequencing (ChIP- seq) 
to identify direct SRF gene targets in the oligodendrocyte lineage. 
Due to the high number of cells required to perform transcription 
factor ChIP- seq, we performed the experiments on primary rat 
OPC cultures under proliferation conditions (OPC) or on day 3 
of differentiation (immature oligodendrocytes). We identified 848 
significant SRF binding sites (peaks) in total and narrowed down the 
list to 329 high- confidence targets that appeared consistently across 
replicates within the same group and not in the IgG control (Fig. 3A 
and Dataset S1). Consistent with other SRF ChIP- seq datasets (10), 
most peaks were enriched within 2 kb of the transcription start site D
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(TSS) (Fig. 3B). Inspection of the target sequences confirmed an 
enrichment for the SRF CArG consensus (Fig. 3C) as well as for 
Thap11 and Zic2 motifs (Dataset S1). Roughly half (n = 60) of the 

target genes with a confirmed CArG consensus were shared between 
OPCs and oligodendrocytes and included known SRF targets such 
as immediate early genes (Egr1, Egr2, Egr3, Fos, Junb, and Srf) 
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Fig. 1.   Expression of SRF in the oligodendrocyte lineage. (A) Region of interest in sagittal sections of P8 and P16 brains. (B) RNAscope for Pdgfrα, Olig2, and 
SRF in the cortex of P8 and P16 brains, n = 2 (Scale bar, 10 μm.) (C) Gating strategy for selection of OPCs (Pdgfrα- high) and oligodendrocytes (OLs; Pdgfrα- low) 
expressing cells. (D) Quantification of SRF spots per cell in OPCs and oligodendrocyte population at P8 and P16. Each dot represents a cell, bar represents the 
mean from all cells. n = 3 mice at each age. (E) Overview of immunostaining of a P16 mouse with CC1 (mature oligodendrocytes) and SRF and an enlargement of 
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and cytoskeleton genes (Actb, Actng1, Arc, and Vcl) (Fig.  3D). 
Among the OPC unique target genes, we found several genes 
with promyelinating effects such as Cardiotrophin- 1 (Ctf1) (26) 
and involved in nervous system development such as Reticulon 4 

(Rtn4/Nogo) and UTP11. Notably, among the oligodendrocyte 
unique target genes we found cytoskeletal proteins such as Filamin 
A (Flna) and Pppr12b and members of the postsynaptic density 
scaffold Homer1 and Dlg4.
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SRF Regulates Actin Cytoskeleton Gene Expression. To test 
whether the ChIP- seq targets were functionally regulated by 
SRF in oligodendrocytes, we performed transcriptome (RNA- 
seq) analysis of primary OPCs purified from SRFflox/flox mice, 
infected with a Cre- expressing virus ex vivo and sequenced at the 
proliferative stage (OPC) or on differentiation day 3 (immature 
oligodendrocytes). We identified 157 differentially expressed genes 
(P.adj < 0.05) in SRF- KO OPCs vs SRF- WT and 264 in SRF- KO 
oligodendrocytes, including known SRF target genes (according 
to the TRANSFAC database) (27) (Fig. 4 A and B and Datasets 
S2 and S3). We further validated these findings using RNAscope 
in the cortex of P18 mice and found that Srf (Fig. 4 C, E, and G), 
Actb (Fig. 4 D, F, and G), Actg1 (SI Appendix, Fig. S4 B and D) 
were significantly down- regulated in our primary cells and in vivo 
in SRF- cKO Olig2 positive nuclei.

Next, we plotted the CarG consensus- containing genes iden-
tified by ChIP- seq as direct SRF targets that were significantly 
altered in SRF- KO OPCs and oligodendrocytes (Pval < 0.05, 
Fig. 4H). Actin genes such as beta actin (Actb) were down- regulated 
in SRF- KO OPCs and oligodendrocytes indicating that they are 
indeed directly regulated primarily by SRF and therefore 
down- regulated when SRF is knocked- out (SI Appendix, Fig. S4A). 
Interestingly, we did not identify “myelin genes” as direct SRF 
targets. Together, these experiments identified genes controlled by 
SRF in OPCs and oligodendrocytes and highlighted actin 
cytoskeletal regulation as a potential role of SRF during early stages 
of myelination.

SRF Functionally Regulates the Oligodendrocyte Actin Cytoskele
ton. Actin dynamics are critical for CNS myelination, with the early 
(SRF- dependent) stage of ensheathment requiring actin filament 
assembly (4, 6). SRF is known in other cell types to regulate actin 
filament assembly and disassembly by transcriptional control of 
numerous actin regulatory genes (10, 28, 29). Our ChIP- seq and 
RNA- seq results suggested that, in oligodendrocytes, SRF primarily 
regulates genes that promote actin assembly (including actin 
itself ) and not genes that regulate actin disassembly (SI Appendix, 
Fig. S4 E and F). To test this functionally, we purified OPCs from 
SRF- Flox and SRF- cKO littermates and compared their actin 
cytoskeletons over a time course of differentiation (Fig. 5A). In 
OPCs and early stages of oligodendrocyte differentiation, SRF- 
cKO cells had dramatically reduced actin filament levels (~20% 
to 40% of SRF- Flox levels; Fig. 5 B, C, and E). However, both 
SRF- Flox and SRF- cKO oligodendrocytes underwent a similar 
degree of actin disassembly during late stages of differentiation, 
and by full maturation at 7 d of differentiation cells from both 
genotypes were nearly indistinguishable (Fig. 5D). Furthermore, 
the protein level of the differentiation marker and major myelin 
protein MBP was not different between SRF- WT and SRF- cKO 
oligodendrocytes, similar to our findings in vivo (SI Appendix, 
Fig. S3 E–G). These data suggest that the effect of SRF on the 
actin cytoskeleton is due to its direct regulation of actin gene 
expression rather than a more general effect on oligodendrocyte 
differentiation.

Together, our results indicate that SRF promotes early stages 
of developmental myelination—at least in part—by controlling 
the expression of genes required for actin filament assembly.

SRF Loss Induces Oligodendrocyte Disease- Associated Genes. 
Beyond the actin cytoskeleton, what other gene pathways does SRF 
control during myelination? As expected, Gene Set Enrichment 
Analysis (GSEA) of SRF- KO OPC genes identified depletion of 
pathways associated with “Transcription regulation” and “Cell 
cycle” (SI Appendix, Fig. S5A), and SRF- KO oligodendrocytes were 

depleted of pathways including “actin cytoskeleton,” “postsynaptic 
density,” and “myelin sheath” (SI Appendix, Fig. S5B) in accordance 
with the role of SRF as a transcriptional regulator driving cell 
proliferation (20) and regulating the actin cytoskeleton.

To our surprise, enriched pathways in SRF- KO OPC genes also 
consisted of genes like Apoe and Clusterin (Clu) associated with 
diseases such as “Alzheimer’s Disease” and “Parkinson’s Disease,” 
suggesting that SRF negatively regulates their expression. To validate 
these findings in vivo, we performed snRNA- seq of 10- mo- old 
SRF- Floxed and SRF- cKO pre- frontal cortex white matter. To 
enrich for glial cells, we sorted NeuN− nuclei and indeed captured 
mostly oligodendrocytes (cluster 0 and 2) and astrocytes (cluster 1) 
with modest numbers of OPCs (cluster 5) (Fig. 6A and SI Appendix, 
Fig. S5 C–E). Differential gene expression analysis of SRF- cKO 
over SRF- Flox oligodendrocyte clusters identified 63 significantly 
up- regulated and 213 down- regulated genes on both OL clusters 
combined (log 2FC > 0.1, P.adj < 0.05, Fig. 6B). GSEA pathway 
analysis identified pathways enriched with endothelial and immune 
genes and depletion of pathways associated with oligodendrocyte 
specific genes as well as “regulation of actin cytoskeleton” and 
“mRNA processing” (Fig. 6C). Oligodendrocyte marker genes and 
myelin genes were among the top down- regulated genes (Fig. 6D) 
suggesting reduced myelination in cKO mice, in line with the TEM 
hypomyelination findings in postnatal and adult cKO mice (Fig. 2 
and SI Appendix, Figs. S2 and S3).

Similar to our findings in culture, among the top upregulated 
genes in SRF- cKO oligodendrocytes were genes like C4b (Fig. 6E) 
and Serpina3n (Fig. 6F) previously reported as upregulated in 
disease associated- oligodendrocytes (30–33) and in mouse aging 
datasets (34), and the mechanosensitive ion channel Piezo2 
(Fig. 6G) which, to our knowledge, was not reported to be an 
oligodendrocyte disease- associated gene. Notably, these genes were 
absent or very lowly expressed in middle- aged (10- mo- old) 
SRF- Flox mice. These findings were intriguing in light of our 
previous observation that SRF is down- regulated in OPCs in aged 
mice (20) and suggests that SRF might have an additional role in 
maintaining oligodendrocyte homeostatic state.

Discussion

Myelin plays essential roles in CNS development, dynamics, and 
disease, but the mechanisms that regulate its formation are still 
incompletely understood. In particular, actin cytoskeleton dynam-
ics precisely regulate the morphological changes oligodendrocytes 
must undergo to build myelin sheaths, but the molecules that 
regulate actin in oligodendrocytes are largely unknown. Here, we 
show that the transcription factor SRF is required in oligodendro-
cytes for early stages of myelination. SRF is expressed develop-
mentally by both OPCs and oligodendrocytes throughout the 
CNS. SRF- cKO mice have severe defects in numbers of axons 
myelinated, consistent with an ensheathment defect, while myelin 
sheaths that do form wrap normally. Combining ChIP- seq with 
RNA- seq of SRF knockout oligodendrocytes identifies SRF target 
genes during myelination and include genes required for the for-
mation of actin filaments. Accordingly, SRF knockout oligoden-
drocytes fail to assemble actin normally, potentially explaining 
their inability to ensheath axons. Thus, SRF is a transcription 
factor that promotes myelination by regulating the expression of 
actin and actin- regulatory genes during the early, actin- dependent 
stage of myelination.

SRF is a versatile regulator of a multitude of cellular functions 
in various tissues like skeletal muscle (35), heart (36), and brain 
(8). In the developing brain, SRF modulates hippocampal neu-
ronal growth cone integrity, migration, axon guidance, and circuit D
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assembly (37). Mechanistically, at least half of all known SRF gene 
targets encode proteins that regulate actin- dependent processes in 
mammalian cells (38). It is interesting to speculate that SRF reg-
ulates neuronal and oligodendrocyte development by modulating 
their cytoskeleton to promote each cell’s unique structure and 
function.

How does SRF regulate myelination? Studying mice with con-
ditional deletion of ArpC3 (essential subunit of the actin- nucleating 
Arp2/3 complex), we previously formulated a two- step model of 
myelination in which actin assembly drives oligodendrocyte pro-
cess outgrowth and ensheathment at the start of myelination, 
while at later stages actin disassembly drives myelin wrapping (4). 
In the current study, SRF- cKO mice show very similar phenotypes 
to ArpC3- cKO mice, including hypomyelination in the optic 
nerve (SI Appendix, Fig. S2) and reduced actin filament levels in 
oligodendrocytes (Fig. 5). These similarities, along with the 
ChIP- seq and RNA- seq of SRF- KO OPCs and oligodendrocytes, 
suggest that a major role of SRF is to regulate the expression of 
target genes required for actin filament assembly at the 
actin- dependent stage of early myelination. Interestingly, both 
SRF- cKO and ArpC3- cKO mice only have a partial reduction of 

myelination. This suggests that SRF-  and Arp2/3- mediated actin 
assembly is not absolutely required for ensheathment or that suf-
ficient actin assembly remains in these oligodendrocytes to 
ensheath axons—albeit at a reduced frequency. An alternative 
possibility is that oligodendrocytes are heterogeneous in their 
requirement for SRF and/or Arp2/3, which future studies (e.g., 
using deeper sequencing methods) may help resolve. Our results 
also address an open question in the field: Is accumulation of actin 
filaments followed by their disassembly a required step prior to 
myelin wrapping (e.g., actin disassembly serving as a “checkpoint” 
for wrapping), or does wrapping just require the lack of actin 
filaments? We believe that since SRF- cKO oligodendrocytes have 
dramatically reduced actin filaments, were still able to differentiate 
and extended their membranes normally in culture (Fig. 5), and 
were able to wrap normally in vivo (Fig. 2), these results are con-
sistent with the second model in which wrapping requires the lack 
of actin filaments—rather than accumulation and subsequent loss 
of actin filaments.

Of note, Knoll et al. hypothesized that SRF could also drive 
myelination directly in oligodendrocytes by binding to myelin 
gene promoters (19). This was supported by another study which 
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showed that pharmacologic inhibition of SRF inhibited OPC 
differentiation (39). However, our ChIP- seq studies found no 
evidence that SRF directly regulates the expression of classical 

myelin genes but rather promotes actin formation which is 
required for proper axon ensheathment (Fig. 3). Based on the 
downregulation of mature oligodendrocyte genes (Fig. 6D) and 
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the downregulation of Myrf, a major regulator of oligodendrocyte 
differentiation (40) in vitro (SI Appendix, Fig. S4G), it is possible 
that loss of SRF causes a downstream delay in oligodendrocyte 
differentiation indirectly—e.g., via other transcription factors and 
immediate early genes that it regulates.

Interestingly, in other cell types, SRF’s transcriptional activity is 
directly mediated by cofactors that respond to the balance of actin 
monomer/filament in the cytoplasm (41–43). In this way, it has been 
proposed that SRF could act as an “actin homeostat” to respond to 
the state of the actin cytoskeleton by inducing gene expression of 
proteins that, in turn, regulate actin assembly or disassembly. SRF 
has even been shown to shuttle from the nucleus to the cytoplasm 
(44–47), for example, in response to PDGF signaling (44) or the 
Rho kinase pathway that also regulates actin (45). This may explain 
why we observed a small amount of SRF immunostaining out in 
the processes of cultured oligodendrocytes, particularly in OPCs that 
are grown in the presence of PDGF (Fig. 1F). Although the 
actin- dependent regulation of SRF has—thus far—been only 
observed in cultured cells, it is tempting to speculate that such a 
regulatory feedback circuit could function in cells to coordinate 
cytoskeletal changes with gene expression. An ideal cell type to study 
actin- SRF feedback may be the oligodendrocyte, a cell type that 
undergoes dramatic cytoskeleton rearrangements during its differ-
entiation from actin- rich to nearly devoid of actin filaments (4, 6). 
In future studies, it will be interesting to explore whether SRF 
responds to cytoskeletal changes during oligodendrocyte differenti-
ation to coordinate gene expression with cytoskeletal remodeling.

Beyond development, myelin loss and the progressive inability of 
oligodendrocytes to regenerate myelin are increasingly found to 
underlie cognitive defects associated with aging and neurodegener-
ative disease. We have recently found that SRF is down- regulated in 
aged mouse OPCs and that infusion of young CSF promotes SRF 
pathway activation and actin assembly in OPCs, as well as OPC 
proliferation and differentiation (20). In the current study, we gained 
more mechanistic insight into the functional outcomes of SRF loss. 
We found that SRF- cKO in oligodendrocytes leads to developmental 
hypomyelination which persists into adulthood. Future studies 
focusing on adult- induced SRF- cKO in OPCs and oligodendrocytes 
could unravel the important roles of SRF in adaptive myelination 
in the context of learning and memory and cognitive aging. 
Furthermore, in our SRF- KO RNA- seq dataset, expectedly, SRF 
and many SRF targets such as Egr1 were transcriptionally 
down- regulated. However, to our surprise, some disease- related genes 
were up- regulated (Fig. 6). Combined, these results may link SRF 
loss to a dysfunctional oligodendrocyte disease state that appears in 
aging and neurodegenerative diseases.

In this study, we gained a deeper understanding of the roles of 
SRF in regulating oligodendrocyte maturation during development. 
Ultimately, a full mechanistic understanding of how oligodendro-
cytes undergo such dramatic morphology changes to form myelin 
will open the door to understanding how myelin is dynamically 
remodeled during learning and could reveal unique approaches for 
regenerating myelin in aging and disease.

Methods

Animals and Ethics Statement. All procedures involving animals were 
approved by the Institutional Administrative Panel on Laboratory Animal Care 

(APLAC) of Stanford University and followed NIH guidelines. Mice were group- 
housed under standard 12:12 light–dark cycles at temperatures of 18 °C to 23 °C 
and 40 to 60% humidity with free access to food and water and disposable bed-
ding in plastic cages. All mice received regular monitoring from veterinary and 
animal care staff and were not involved in prior procedures or testing. Sprague- 
Dawley rats and C57BL/6 mice were ordered from Charles River Laboratories. 
SRF- Flox mice (22) (Jax strain #: 006658) were a kind gift of Prof. David Ginty 
(Harvard University), and Olig2- Cre mice (48) were a kind gift of Prof. David 
Rowitch (University of Cambridge). All mouse lines were maintained by breed-
ing with C57BL/6 mice. Both male and female mice were studied for all in vivo 
experiments. For cell culture studies with OPCs from mutant mice, brains of both 
sexes were pooled to obtain sufficient cell numbers.

Data Analysis and Statistics. All analysis was conducted blind to the genotype 
and experimental condition. Data analysis and statistics were performed using 
GraphPad Prism 9.0 software. Descriptive statistics (mean, SEM, and N) were 
reported in figure legends. Statistical significance was determined between bio-
logical replicate (N = 3 to 5) by an unpaired, two- tailed t test, unless otherwise 
stated in the Figure Legends. For in vivo assays, N refers to the number of mice. For 
cellular assays, N refers to the number of independent cell purifications from 1 to 2  
mouse brains. We pre- determined that using 3 to 5 biological replicates for cul-
ture or in vivo experiments were sufficient based on previously published studies 
(4, 49). There were no outliers/excluded data in any experiment. Detailed descrip-
tion of all other methods can be found in SI Appendix, Materials and Methods.

Data, Materials, and Software Availability. Raw and processed ChIP- seq, 
RNA- seq, and snRNA- seq data are freely accessible at NCBI GEO using Accession 
No. GSE241561 (50). All other data are included in the manuscript and/or sup-
porting information.
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