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a b s t r a c t 

Motion detection is paramount for computational vision processing. This is however a particularly chal- 

lenging task for a neuromorphic hardware in which algorithms are based on interconnected spiking en- 

tities, as the instantaneous visual stimuli reports merely on luminance change. Here we describe a neu- 

romorphic algorithm, in which an array of neuro-oscillators is utilized to detect motion and its direction 

over an entire field of view. These oscillators are induced via phase shifted Gabor functions, allowing 

them to oscillate in response to motion in one predefined direction, and to dump to zero otherwise. We 

developed the algorithm using the Neural Engineering Framework (NEF), making it applicable for a va- 

riety of neuromorphic hardware. Our algorithm extends the existing growing set of approaches aiming 

at utilizing neuromorphic hardware for vision processing, which enable to minimize energy exploitation 

and silicon area while enhancing computational capabilities. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

The emergence of motion perception from spatiotemporal pat-

erns of light has an essential role in vision [1 , 2] . Motion percep-

ion is also fundamental in numerous artificial vision processing,

hich span a wide spectrum of applications, ranging from sup-

ort systems in surgical robotics [3] to mobile robot navigation [4] .

o support the increasing demand of such applications for compu-

ational resources, multiprocessor System-on-Chip (SoC) platforms

ere developed, demonstrating a wide collection of architectures

5] including neuromorphic [6] . 

In neuromorphic computing architectures, computational prin-

iples of biological neural circuits are utilized to design and build

rtificial neural systems. These architectures process information

epresented with spikes and are comprised of physically (in con-

rast to computationally) joined networks of interconnected com-

uting elements (e.g. silicon neurons). Neuromorphic elements are

ensely connected, [7] , supporting energy efficient information

rocessing with a high signal-to-noise ratio. Neuromorphic systems

ere shown to produce the same computational capabilities of a
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igital system with 10,0 0 0 times less energy and 100 times less

ilicon area [8] . 

Some of the first and greatest successes in Neuromorphic com-

uting architectures have been in vision processing [9] , including

he first silicon retina by Mahowald and Mead [10] , and its bio-

ogically plausible version by Zaghloul and Boahen [11] . Currently,

ost neuromorphic vision sensors communicate transients in lu-

inance via the Address Event Representation (AER) protocol. They

re comprised of an array of silicon neurons, each generates spikes

n response to a change in luminance. Spikes are time-multiplexed

ver an asynchronous data bus via an address encoder, which des-

gnates each spike with a corresponding address (usually, the neu-

on’s x–y coordinate). These frame-less and event-driven neuro-

orphic Dynamic Vision Sensors (DVS) can resolve thousands of

rames per second, have fine temporal resolution, high dynamic

ange and high signal to noise ratio. Moreover, since DVS perform

ensor-level data compression, they optimize data transfer, stor-

ge, and processing, enhancing the power and size efficiency of the

ystem [12] . 

However, there is a considerable gap between neuromorphic

ardware and our current software and algorithmic approach, as

he latter is fundamentally designed to be sequentially executed

ver von Neumann computing architectures [13] and is based on

ynchronous signals (e.g. frames). A neuromorphic approach for

lgorithm design based on spiking neurons is therefore a ne-

essity. One framework for designing functional neuronal circuits
implementation of motion detection using oscillation interference, 
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is the Neural Engineering Framework (NEF). NEF encodes signals

with ensembles of spiking neurons and provides decoders as lin-

ear/nonlinear transformations between neuron ensembles [14] . 

In this work, we utilized NEF for the implementation of a neu-

romorphic motion detector using the Oscillation Interference (OI)

model [15] . Our model was developed in Nengo [16] and deployed

over a GPU for efficient evaluation. Visual input was implemented

via a neuromorphic spiking camera, as well as via a spiking camera

emulator that we developed. Our model can be deployed over neu-

romorphic hardware for near real-time detection of motion, is sen-

sitive over a wide range of velocities (up to 10 times the optimal

specification) and does not heavily rely on the neuronal spatial or-

ganization and synaptic time constants. It is particularly appealing

for newly developed neuromorphic hardware, which have a desig-

nated compiler that supports NEF, such as the BrainDrop [17] and

Intel’s Loihi chip [18] . 

2. Methods 

2.1. Dynamics and the neural engineering framework 

NEF is often referred to as a “neural compiler”, being able to

transform high level specifications given in terms of vectors and

functions to a set of interconnected ensembles of spiking neurons.

In NEF, the firing rate δ of neuron i in response to stimulus x (tun-

ing curve) is defined with: 

δi ( x ) = G i 

[
αi e i x + J b i 

]
(1)

Where G i is a spiking neuron model (here, we used leaky-

integrate-and-fire (LIF)), αi is the gain term, e i is the neuron’s pre-

ferred direction (encoding vector) and J b 
i 

is a fixed background

current. An ensemble of neurons, in which each neuron has its

own gain and preferred direction, can encode a vectorized high-

dimensional stimuli. The encoded stimuli ˆ x can be decoded using:

ˆ x = 

N ∑ 

i 

a i ( x ) d i (2)

Where N is the number of neurons, a i ( x ) is the postsynaptic fil-

tered activity of neuron i to stimuli x and d i is a linear decoder

which was optimized to reproduce x using least squared optimiza-

tion. As the number of neurons N increase, the mean squared error

decreases as 1/ N . 

Eqs. (1) and (2) specify the encoding and decoding of vectors

using distributed activity of neuronal ensembles. A key aspect in

neuromorphic computing is activity propagation – the transference

of data from one neuron group to another - by linking ensembles

with a weighted matrix of synaptic connections. The resulted ac-

tivity transformation is a function of x . Notably, it was shown that

any function f(x) can be approximated using a specific set of de-

coding weights d f [19] . 

Defining f ( x ) in NEF can be made by connecting two neuronal

ensembles A and B via neural connection weights w ij ( x ) using: 

w i j = a j d 
f 
i 

L e j (3)

Where i is the neuron index in ensemble A, j is the neuron index in

ensemble B , d 
f 
i 

is a linear decoder, which was optimized to trans-

form x to f ( x ), and L is a linear relationship between x and f ( x ). d

matches the linear decoder in Eq. (2) and is the set of connection

weights needed to decode x given the activity in A; e is the con-

nection weights which represent f(x) in ensemble B . That is, the

optimal weights to pass the information from A to B is simply the

dot-product of d and e as it is reflected in Eq. (3) . Further details

and a full explanation are in [19] . 
Please cite this article as: E.E. Tsur and M. Rivlin-Etzion, Neuromorphic 
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A very useful aspect of NEF, which is of a particular inter-

st here, is its ability to resolve dynamic behavior or detect dy-

amic input, such as the motion of an object in the visual im-

ge and its direction. As we connect ensembles of neurons to

ompute f ( x ), we introduce low-pass filtered spikes from one en-

emble to the other, resulting in: y (t) = f ( x (t) ) ∗ h (t) , where ∗ is

he convolution operator and h ( t ) is the synaptic response func-

ion (a decaying exponential), which is given in the Laplace do-

ain as: H(s ) = 1 / ( 1 + st ) . Given an ensemble encoding X , an in-

ut u ( t ), and a recursive connection for resolving g ( x ( t )) (a feed-

ack connection from x back to itself), we define in the Laplace

omain X(s ) = H(s )( G (s ) + U(s ) ) . Following substitution and rear-

angement we derive sX(s ) = ( G (s ) − X(s ) ) /t + U(s ) /t , which can

e inversely transformed to the time domain as: 

x / dt = 

g ( x ( t ) ) / t − x ( t ) / t + 

u ( t ) / t (4)

hus, we can achieve arbitrary dynamics in the form of: dx / dt =
f ( x ( t) + u (t) ) , by scaling u by τ and resolving connection weights

atrix w that optimize: g( x ( t) ) = τ f (x ) + x as was described

bove. 

Detailed description of NEF is given in [19] , a recent overview

s given in [14] , and a focused description of dynamics in NEF is

iven in [20] . NEF is the foundation upon our entire model is built.

ost importantly, it is utilized here to define neuromorphic oscil-

ators, which constitute our fundamental component for direction

ensitivity. 

.2. 2D oscillation model 

A 2D oscillator, which alternates the values of x 1 and x 2 , at a

ate r , can be defined recurrently using: 

x 1 
x 2 

)
= 

(
1 r 
−r 1 

)(
x 1 
x 2 

)
= Ax (5)

hen initial values to x 1 and x 2 are zeroed, the oscillator stands

till. When a stimulus is applied, the oscillator is driven to oscillate

ndefinitely. 

A dumped oscillator can be defined by introducing λ as a

umping factor (see Section 3.2 and 3.5 ): 

x 0 
x 1 

)
= ( A − λI ) x (6)

here I is the identity matrix. Below, we use Eq. (4) to optimize

qs. (5) and (6) which describe oscillatory dynamics, in order to

esolve the connectivity weighted matrix w . 

.3. Gabor functions 

Gabor functions are filter kernels inspired from the primary vi-

ual cortex (V1) which can be used to extract the locations and

irections in space where the utmost changes in intensity appear

21] . 

They are mathematically interpreted as an exponentially decay-

ng 2-dimentional sinusoidal wave and are specified with σ (Gaus-

ian width), ζ (ellipticity), θ (orientation), κ (wavenumber) and φ
phase). The Gabor filter is defined with: 

 ( x, y ) = exp 

(
x 2 

d 
+ ζ 2 y 2 

d / 2 σ 2 

)
cos ( 2 πκx d + φ) (7)

here, x d = x cos (θ ) + y sin (θ ) and y d = y cos (θ ) − x sin (θ ) . The

abors orientation and phase set the perceived edge orientation

nd its movement direction. This formulation is similar to the el-

iptic 2D Gabor function proposed in [21] , with the exception of

ormulating the decay parameters (originally defined separately for

ach spatial dimension) as a Gaussian width. This simpler form is
implementation of motion detection using oscillation interference, 
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Fig. 1. System schematic. Our GPU deployed oscillators-based neuromorphic algorithm generates motion detection signals from asynchronous visual stimuli. Stimuli can 

be generated by either a commercial event-based camera or using an emulator. The emulator can convert regular frame-based camera or an animation file inputs to a 

neuromorphic event-based visual representation. The system reports on motion in the visual field, and if motion occurs it also specifies its direction. 
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ufficient for symmetrical Gabor functions which are decaying sim-

larly in both dimensions. 

Here, the direction of motion was always perpendicular to the

abor’s orientation, so for a given orientation there are only two

ossible moving directions. The selectivity for edge size can be op-

imized for various shapes and is set by the Gabor’s wavenum-

er (which is the inverse of the sinusoidal wave length – its

requency). 

.4. The neural ENGineering objects simulator 

We used Neural ENGineering Objects simulator (Nengo) [16] to

imulate our model, as it efficiently facilitates neuromorphic im-

lementation. Here we utilized Nengo 2.0, which was implemented

ith Python and supports GPU acceleration and a graphical user

nterface. Particularly, we used the following Nengo’s objects: The

nsemble object to specify visual encoding and to implement neu-

onal oscillators; the Node object to introduce spikes-encoded

rames and to evaluate the Gabor functions; and the Connection ob-

ect to describe connections between ensembles, particularly, the

eedback connections that are required for oscillatory behavior. In

engo, the neural simulator is decoupled from model creation, al-

owing separation of concerns . We used Nengo’s Model object to

imulate our model. Elaborated description of Nengo is available

n [16] . 

.5. GPU computing 

Graphics Processing Units (GPUs) are powerful, low-cost com-

uting resources, which are available in most modern worksta-

ions, and are programmed using the OpenCL framework [22] .

engo was implemented to support GPU implementation utiliz-

ng PyOpenCL [23] . It therefore permits to parallelize computa-

ions over GPUs, accelerating the model simulation and approach-

ng real-time. The OpenCL-based Nengo simulator can simulate

arge neuronal models at least an order of magnitude faster than

ith a CPU-based hardware. Particularly, it was shown that, a

adeon 7970 GPU performs 500-dimensional circular convolution

ith about half a million neurons faster than real time, and 50

imes faster than with CPU-based hardware. In the 50-dimensional

ase, the Radeon 7970 GPU is 200 times faster. Here, we used

VIDIA TITAN Xp to accelerate the model. It is based on NVIDIA’s

ascal architecture, has 3840 CUDA cores operated at 1.5 GHz and

 12 GB memory with a bandwidth of 547 GB/s. 

.6. Dynamic visual sensor 

We used three types of visual modalities as inputs: animated

atterns, regular frame-based camera and a Dynamic Visual Sensor

DVS). Particularly, we used a 128 × 128 pixels DVS, developed

y the Neuroscientific System Theory group at the Technical
Please cite this article as: E.E. Tsur and M. Rivlin-Etzion, Neuromorphic 

Neurocomputing, https://doi.org/10.1016/j.neucom.2019.09.072 
niversity of Munich. This DVS is an asynchronously address-event

amera, responding to temporal contrast by generating a spike

ddress, which represents a quantized change of log intensity at

 particular location. While the camera’s protocol discriminates

etween positive and negative changes in contract, here they were

reated the same. It delivers time-stamped address events to the

erver via USB at a 1 μs level resolution, has a dynamic range

f 120 dB, a contrast threshold mismatch of 2.1%, a bandwidth

f 3 kHz and a power consumption of only 23 mW. A detailed

escription of the sensor is available in [24] . Details regarding the

mulator and the generation of the animated patterns are given in

he results section. 

. Results 

.1. System architecture 

Our system is comprised of three main parts: (1) an asyn-

hronous event based visual stimulus; (2) a neuromorphic motion

etection algorithm, which was developed using the Neural Engi-

eering Framework and deployed over a GPU; and (3) a results vi-

ualization module. Inputs to our algorithm are not restricted to a

ertain format but rather can arrive either via a commercial spike-

ased camera, or via a frame-based camera or computer animation

hich are translated to spike sequences by our emulator. In this

ork, we developed an emulator that converts visual input arriv-

ng from either an off-the-shelf camera or an animated pattern to

piking activity. System schematics is given in Fig. 1 . 

Most spiking cameras, as well as the spike-generating emula-

or we developed, communicate spikes using the AER protocol, in

hich events are represented by pixel coordinates. For example,

f a change in the acquired illumination in a pixel indexed 23 at

ime stamp 2 (frame) is detected, the string ’23, 2 ′ is delivered

 Fig. 2 , A, top). Our emulator is parametrized with a frame rate

FPS) and number of pixels. As the number of pixels increase, the

ore accurate and sharper the resulted image would be ( Fig. 2 ,

, bottom). For example, to emulate the DVS spiking camera (de-

cribed in the method section), we would parameterize our emu-

ator with 16,384 pixels, and 10 6 FPS. In a case where our input

odality is 30 FPS (e.g. standard camera), our module interpolates

he acquired frames to achieve the desired frame rate. 

Our system includes a framework for the generation of visual

rifting grating, a stimulus often used to measure the directional

uning of neurons [25] . Given a desired FPS and grating parame-

ers (spatial frequency, temporal frequency, orientation and direc-

ion), our framework generates an animated video, which can be

ntroduced to the spike-generating emulator. We used this frame-

ork extensively in this work, generating and evaluating grating

atterns moving in different directions and speeds and of various

requencies. Our emulator logs the generated events in a .dat file,
implementation of motion detection using oscillation interference, 
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Fig. 2. Visual stimuli. (A) Stimuli is encoded by a combination of pixel location and time-stamp (constituting Address-Event Representation (AER)) and can be generated 

by either a commercial event-based camera or an event-based emulator. The emulator can produce AER data in varying rates and resolutions (number of pixels) from a 

standard frame-based camera as well as from animated patterns of motion. (B) Examples of different grating patterns, drifting horizontally, vertically and diagonally for two 

seconds. This animation is introduced to the emulator, which generates spikes in response, depicted in the pixel raster plots below. (C) Emulator schematic. Round boxes 

are data objects and circles are operations. Frames are sequentially modified for histogram equalization and converted to gray color scale. Giving the required resolution in 

space (# pixels) and time (Frames Per Seconds (FPS)), data is interpolated. Each frame i is pixel-wise subtracted from its predecessor i-1 (Ref.), producing a differentiated 

frame (Diff.). Each pixel in the Diff frame is compared to a threshold value. If the threshold was exceeded, a spike is generated (spikes R ). The threshold can be adapted 

to generate responses with varying sensitivities to changes in luminance. Spikes R can be interpolated in space to fit a video feed or encoded (enc.) according to the AER 

protocol. Encoded data are logged and sent for analysis. 
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which can be an input to our algorithm for evaluation or can later

be used to generate pixels raster plots ( Fig. 2 , B). 

Our emulator was designed with multiple computational and

representational states, supporting frame-based camera or ani-

mated patterns. Schematics is given in Fig. 2 , C. If the visual source

is a standard frame-based camera, frames are sequentially un-

dergoing histogram equalization and gray scale color conversion

and introduced to a modification kernel, where data is discretized

given a number of pixels. Animated patterns are directly intro-

duced to the discretizing kernel. To generate the spiking pattern,

sequential frames are subtracted, and if the difference exceeds a

certain threshold, a spike is generated. Threshold value is auto-

matically adapted to support emulating cameras with varying sen-

sitivities. Spikes are logged, time stamped and introduced to our

GPU-powered neuromorphic algorithm for detection of motion di-

rection. At the same time, spikes are interpolated and visualized

on a computer. The emulator was primarily developed using the

OpenCV package [26] . 

3.2. The oscillation interference model 

As was shown in the methods Section 2.2 , a 2D oscillatory pat-

tern in which the values of x 1 and x 2 alternates at a rate r can be

defined using Eq. (5) , and a dumped 2D oscillatory pattern can be

defined by introducing λ as a dumping factor Eq. (6) ). These oscil-

latory patterns can be characterized with NEF ( methods 2.1 ). Partic-

ularly, Eqs. (5) and ( (6) can be implemented in NEF to resolve the

connection weighted matrix w , optimized as g(x) ( Eq. (4) ). 
Please cite this article as: E.E. Tsur and M. Rivlin-Etzion, Neuromorphic 
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Such a circuit comprises of a stimulation node, which intro-

uces an initial stimulus and recurrently connected neuron ensem-

le, which calculates Eq. (6) . In Fig. 3 , A we defined a stimulation

ode, which introduces a signal at t = 0 which induce the oscil-

ator to oscillate indefinitely - all neurons oscillate at rate r , with

ach neuron’s preferred direction was locked to a different phase

f the oscillator (see supplementary video m 1 ). 

In Fig. 3 , B we defined the same oscillating architecture as in

ig. 3 , A, with the exception of applying a dumping factor of 5.

fter signal induction the oscillator begins it descend toward the

rigin. However, we can introduce a second orthogonal stimulus, at

he exact moment when the oscillator arrives to a point where x 1 
s zeroed. The oscillator will bounce back into an oscillating mode,

oon to be dumped back to the origin. In Fig. 3 , C, we created

he same neuronal architecture as in Fig. 3 , B, where we introduce

 second orthogonal stimulus of at t = 0 . 3 s . The network behav-

or depends on the number of neurons in the ensemble and the

ump factor λ. As we use less neurons for signal representation,

he oscillatory path is gaining biases toward randomized locations.

or λ> 1 the oscillator dumps to 0, for λ< 1 it converges to lower

mplitude oscillations, and time to convergence increases as λ de-

reases ( Fig. 3 , D). Below, we define a dumped oscillator, which

scillates as long as movement is detected at a specific orienta-

ion. Based on the dumped oscillators, we design a 3-dimensional

rray of motion-sensitive oscillators which are direction selective,

.e., each oscillator encodes motion in one specific direction by pre-

erving oscillatory behavior only when exposed to motion in this

pecific direction (termed the preferred direction). 
implementation of motion detection using oscillation interference, 
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Fig. 3. NEF-based neuro-oscillators. (A) oscillatory behavior can be generated using self-feeded neuron ensemble which was optimized via NEF to oscillate the value of two 

state variables (x 1 , x 2 ). Oscillation is induced from a stimulation node, which introduces a signal of [0, 1] (thus, driving x 1 ) for 100 ms. A dumping factor of 0 allows the 

oscillator to permanently oscillate. The stimulation node is connected to an ensemble of 10,0 0 0 neurons via a slow synapse ( τ = 100 ms ) (tuning curves are distributed 

randomly). (B) Same oscillator as in A, induced for 50 ms in t = 0 . A dumping factor of 5 quickly ceases the oscillations. (C) Same damped oscillator as in B, introduced with 

a second stimulus of [0, 1] in t = 0 . 3 s , inducing the oscillator again. (D) Same induced damped oscillator as in C, with different number of neurons (# neurons) used to 

build the neuron ensemble, as well as different damping factors ( λ). 
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.3. Algorithm design 

As was described above (methods 2.3), motion in the vi-

ual field can be represented using Gabor functions of different

arameters. Seven Gabor functions with equally-spaced orienta-

ions (denoted by θ ) along the unit circle are shown in Fig. 4 ,

 top. Here, we used each Gabor function as a spatial filter for

electively driving an oscillatory neuron when a visual pattern

atches its precise orientation. A stationary edge will activate the

ppropriate oscillator, but it will quickly dump as long as it is

ot being induced at the appropriate time and direction. In or-

er to obtain motion detection, each Gabor function was phase

hifted at multiple phases, so a moving pattern will match a se-

ies of Gabor functions, and will sequentially activate a series of

scillatory neurons. Phase shifted Gabor functions at θ = 0 are

hown in Fig. 4 , A bottom. In our implementation, we have as-

igned for each given orientation 80 phase shifted Gabor functions

qually-spaced along the unit circle. In accordance, we defined

ach neuronal ensemble with 80 encoders aligned with the Gabor

unction. 

When exposed to horizontal grating orientation, two oscillators

re induced into continuous oscillatory behavior: the one which

as initialized with θ = 0 and the one which was initialized with
Please cite this article as: E.E. Tsur and M. Rivlin-Etzion, Neuromorphic 
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= π . All other oscillators are not induced into action ( Fig. 4 , B

hows 6 out of 8 oscillators). In order to distinguish between the

wo directions of motion, we take advantage of the fact that the

wo activated oscillators are driven in different directions (clock-

ise/counter clockwise), as a result of the sequential activation of

he neuronal ensemble according to the phase parameter. Using

 neuromorphic differentiation circuit, we discriminate between

ovement in clockwise and counter clockwise directions ( Fig. 4 ,

). The differentiator circuit is comprised from 3 ensembles ( dx 1 ,

x 2 , theta ). The dx 1 and dx 2 differentiators are connected to x 1 and

 2 respectively and are defined with two types of connections: fast

ynapses ( τ = 10 ms ) and slow ( τ = 20 ms ) synapses. Connections

f each ensemble are multiplied, where the result of x 2 is scaled

y −1. Both ensembles are joined together at the theta ensemble,

esulting in a positive value when the direction of the oscillation is

lockwise, a negative value when it is counter clockwise, and zero

hen no oscillation is apparent. The theta ensemble was specified

ith 50 neurons and randomly distributed encoders. This imple-

entation produces eight direction selective oscillators, each en-

oding one specific direction of motion. 

For motion detection we create an array of direction selective

scillators, each continuously oscillates only when a motion is de-

ected at a specific direction. This produces a point process, se-
implementation of motion detection using oscillation interference, 
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Fig. 4. Inducing direction selective oscillations with Gabor functions-mediated inductions. (A) visualization of a vertically aligned Gabor function ( θ = 0), which was shifted in 

orientation (top images) and phase (bottom images) in π /4 intervals. (B) Induction of Gabor functions results in a continues oscillation in response to one specific orientation. 

Example of 6 oscillators, each defined with a Gabor function in one specific orientation, which was phase shifted and distributed along the unit circle to match a moving 

stimulus edge. For a given horizontal visual stimuli, two out of the six oscillators oscillate ( θ = 0, θ = π ) – each in different direction (counter clockwise, clockwise). (C) 

Discrimination between oscillation direction is established using a differentiation neuronal circuit, resulting in positive or negative value for clockwise or counter clockwise 

oscillation respectably. The dx 1 and dx 2 differentiators were connected to x 1 and x 2 , respectively, with fast ( τ = 10 ms ) and slow ( τ = 20 ms ) synapses and a scaling factor 

of −10 and 10, respectably. Result of x 2 was scaled by −1. 

Fig. 5. Tiled architecture of the direction sensitive MD cells. Each oscillator has its own preferred direction. Every 8 oscillators constitute a local motion detector (MD) cell. 

Each 4 neighboring local MD cells comprise a global MD cell, which are evenly distributed over an image. 
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lective to local motion. To scale this architecture up, we defined

each 8 oscillators (or point process) with different pref erred direc-

tions as a local motion detector (MD) cell – which detects motion

in a specific location. Each 4 neighboring local MD cells comprise

a global MD cell ( Fig. 5 ). MD cells can be distributed over a grid

in varying resolutions according to requirements and available re-

sources (neuron capacity). Each MD cell sums the contributions of

each group of direction selective oscillators, multiplying their to-

tal activity with the relevant direction vector, thus, representing a

global notion of directionality. Our system enables automatic dis-

tribution of Gabor functions across the image, according to the

number of MD cells defined by the developer. 
Please cite this article as: E.E. Tsur and M. Rivlin-Etzion, Neuromorphic 
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.4. Model specifications 

Our model is comprised of a hierarchical layers-based struc-

ure of interacting components. At the bottom layer we defined

-dimensional 8 neuronal ensembles, or the direction selective

scillators. Each oscillator comprised of 80 neurons, which were

pecified to encode 80 normalized vectors with similar orientation

nd different phases equally distributed along the unit circle. All

eurons in the ensemble were defined as LIF neurons with 100 Hz

aximal firing rate, and 0.1 intercepts (which correspond to the in-

ection point of each neuron tuning curve). Our input spikes (initi-

tes by the spiking camera/emulator giving a change in luminance)
implementation of motion detection using oscillation interference, 
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Fig. 6. Global MD cell response to drifting grating. (A) Stimuli used for the evaluation, where drifting direction is changing every second. Directions are color coded: green: 

East, blue: South, red: South-East, orange: South-West. Responses for each stimulus is shown in (B–E) respectively. Responses were recorder from a single global MD cell, 

which was placed at the middle of the field of view. Direction selectivity of the shown oscillators were respectively tuned to [0, 1], [1, 0], [1, 1] and [ −1, −1]. For each 

direction, the oscillation dynamics as a state chart and as a traced sum are presented at the figure’s top. At the bottom, the neuro-oscillator raster plot as well as the 

response of the local MD cell are shown. 
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ere multiplied by the relevant Gabor function, scaled down by

.2 and connected to their corresponding neuronal ensemble. Each

nsemble was connected to itself for the generation of oscillatory

ehavior, through slow synapses ( τ = 100 ms ). Each oscillator was

pecified with: λ = −8 and r = 2 π . Discriminating left and right

scillations was performed via a differentiating neural circuit. 

.5. Motion detection 

As a proof of concept, we used our stimulator engine to pro-

uce a movie of drifting grating in different directions ( Fig. 6 ).
Please cite this article as: E.E. Tsur and M. Rivlin-Etzion, Neuromorphic 
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ur emulator was utilized to produce DVS-like spiking pattern.

n this illustration, a single global MD cell was defined at the

iddle of the field of view. During the first second, the grating

attern moved right, inducing the Gabor oscillators, which were

uned toward [0, 1] to oscillate continually ( Fig. 6 , B top). The val-

es of both dimensions are summed, generating a stable step re-

ponse, which indicates motion detection at this particular direc-

ion. Traced value, as well as a raster plot of the spiking ensem-

le are shown in Fig. 6 , B middle. The response of the MD cell is

hown in Fig. 6 , B bottom, indicated by the green arrow. The MD

ell sums the response of all oscillators, deviating motion at the [1,
implementation of motion detection using oscillation interference, 
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Fig. 7. Global MD cell response to drifting grating. 5 × 5 global MD cells were evenly distributed across the image. Same visual stimuli were used here as in Fig. 4 , only 

in varying velocities and frequencies. (A–D) pattern drifting times are 5, 10, 20, and 200 pixels/s respectively, gained by moving 2.5%, 5%, 10%, 100% of the gratings image 

width in 1 s intervals. In each panel, the state space of the middle global MD cell is shown on the left, and an arrow field, were each dot/arrow signifies the detected motion 

direction of one localized global MD cell. (E) Applying the same stimuli in different pattern switching frequencies ranging from 10 to 1.3 Hz, gained by moving 10%, 25%, 

50%, 75% of the grating image width in 0.1, 0.25, 0.5 and 0.75 s, while preserving drifting velocity of 200 pixels/s. 
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the value of each MD cell ensemble at the relevant directions. Re- 
0] direction. Once the movie switches to a different stimulus, such

as horizontal lines moving downwards, the oscillator tuned toward

[1, 0] dumps to [0, 0] (as it is indicated by its value trace), and

the oscillator tuned toward [0, −1] starts oscillating. In response,

the MD cell shifts its detected motion value toward [0, −1] as is

reflected in Fig. 6 , C bottom, indicated by the blue arrow. The pro-

cess is similar for the diagonally moving bars ( Fig. 6 , D–E). Note

that when stimulus is switching to diagonally moving bars, the

vertically aligned oscillators start to briefly oscillate. This is due

to their response to the vertically moving component of the mo-

tion. However, their oscillatory behavior is quickly dumped, as the

oscillatory induction is not persisted at their tuned direction. This

has little effect on the MD motion detection, as is exemplified in

Fig. 6 , D–E, bottom. MD cell dynamics are shown in supplementary

video m2. This shows that neuromorphic oscillators can be utilized

to detect the direction of a moving visual stimulus. 

We have elaborated this proof of concept to a 5 × 5 grid of MD

cells, which were evenly distributed throughout the field of view.

We utilized it to evaluate the speed range and frequency tolerance
Please cite this article as: E.E. Tsur and M. Rivlin-Etzion, Neuromorphic 
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f our method. Two main factors in our framework limit the range

f velocities for which our proposed method is relevant for: the os-

illation speed (r) and the Gabor wavenumber ( κ). Here, we tuned

 and κ to maximized at a speed of 200 pixels/sec. First, we used

our different speeds for the visual stimuli, from motion over 2.5%

f the image width in 1 s intervals (5 pixels/s) for the low velocity

otion, via 5% and 10% of the image width (10 and 20 pixels/s re-

pectively), to motion over 100% of the image width (200 pixels/s)

or the high velocity motion. When velocity was at 5 pixels/s, the

D cell did not perceive movement. When velocity increased to 10

ixels/s the MD cell perceived horizontal and vertical movements

ith a normalized amplitude of 0.75. When velocity increased to

0 pixels/s the MD cell was able to detect horizontal and vertical

ovements with an amplitude of 1.25. When velocity increased to

00 pixels/s, diagonal movements were also perceived ( Fig. 7 , A–

). We further increased the stimulus speed to 20 0 0 pixels/s and

ere able to capture movement in all directions, demonstrating

ery high range of tolerance to velocity. For each velocity we traced
implementation of motion detection using oscillation interference, 
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ults are shown in supplementary figure S1. It is apparent that the

oltage traces are stabilized when the pattern velocity matches the

esigned oscillators. Results showing the voltage traces as well as a

aster plot for each relevant ensemble are given in supplementary

gure S2. This shows that our proposed algorithm is robust and

an encode the direction of motion over a broad range of velocities.

Next, we tested out framework ability to detect motion with

arying spatial frequencies. First, we created a stimulus where

ach pattern of movement travels 10% of the image width in 0.1 s

10 Hz). Spatial frequency was then increased to 25% of the image

idth in 0.25 s (4 Hz), to 50% of the image width in 0.5 s (2 Hz),

nd finally to 75% of the image width in 0.75 s (1.3 Hz). Note that

n all cases, velocity is preserved at 200 pixels/s. When frequency

as at 10 Hz, the MD cells were not able to arrive at the correct

ynamics. At 4 Hz, vertical and horizontal movements were cap-

ured, and at lower frequencies the entire dynamics in all direc-

ions were captured ( Fig. 7 , E). Voltage traces for each frequency

ere also captured and are shown in supplementary figure S3. 

. Discussion 

Motion detection is fundamental for visual perception in both

iological and computer vision. Established approaches for motion

etection traditionally rely on frame-based visual modality, where

ach frame is sequentially analyzed. Such approaches include

eeger approach for motion estimation using spatio-temporal fil-

ers [27] , as well as differential, matching, ener gy-based, and

hase-based methods, reviewed by Barron and colleagues [28] . An-

ther implementation by Aziz and colleagues, proposed to use the

scillatory interference model for motion detection [29] . However,

ll of the above were applied to frame-based cameras which dis-

retely acquire the visual information as frames at a predetermined

ate, conveying information from the entire field of view, regard-

ess if it was changed or not. This results in increase in transmis-

ion power dissipation, channel bandwidth requirements, memory

apacity and postprocessing power demands [12] . 

The rise of neuromorphic architectures, which provide both

igh computational capabilities and low power density, are of in-

reasing importance, especially for visual applications. Therefore,

eveloping approaches for motion perception in neuromorphic cir-

uits are fundamental to the field. Neuromorphic architectures (as

iology) has no concept of a frame. Currently, most neuromorphic

vent-based vision sensors communicate changes in luminance -

hey are comprised of an array of silicon neurons, each generates

 spike in response to a change in luminance. Current state of the

rt approaches for neuromorphic motion detection are based on ei-

her latency encoding selectivity or spatiotemporal offsets between

xcitation and inhibition, tuned for directionality. For example,

bdul-Kreem and colleagues convolved biphasic slow and fast tem-

oral filters with the luminance input signal to derive first order

emporal derivative of the visual scene and retrieve motion estima-

ion [30] . A similar approach was taken by Brosch and colleagues,

hich also implemented their solution over IBM’s TrueNorth neu-

omorphic chip [31] . Giuliono and colleagues implemented an ar-

hitecture in which excitatory and inhibitory post-synaptic current

ulses where spatially arranged to generate a signal for a preferred

irection [32] . They implemented their solution over FLANN neu-

omorphic chip. These methods, while proved useful for different

pplications, have limited velocity sensitivity and are hard to op-

imize. Moreover, they lack the implementation generality of the

eural Engineering Framework, which becomes an important neu-

al compiler for neuromorphic circuits, such as the BrainDrop and

ntel’s Loihi chips. 

Here we proposed an approach for motion detection as well

s identification of the motion direction, which can be easily de-

loyed on neuromorphic hardware using NEF. This method has a
Please cite this article as: E.E. Tsur and M. Rivlin-Etzion, Neuromorphic 
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ide range of velocity sensitivity (up to 10 times the optimal spec-

fication) and does not heavily relay on the neuronal spatial orga-

ization and synaptic time constants. More importantly, once neu-

onal weights are optimized via NEF, it does not rely on real-time

onvolution with spatio-temporal filters, contributing to its usabil-

ty and reliability. This current implementation is however, relaying

n a large number of neurons, which were used to accurately rep-

esent the dynamics and values in the system. The accuracy costs

n long run times of the simulation, despite having a GPU as an

ccelerator, and the run time is expected to improve over neuro-

orphic machines. For example, using the pre-described method

n Section 2.5 , run time was ∼25x real-time, while in neuromor-

hic architecture, the expected run time would be ∼1x real-time. 

By integrating asynchronous cameras, NEF and event-driven

lgorithms, we have implemented a neuromorphic architecture

or motion perception. Our neuromorphic interference oscillation-

ased motion detection method provides an important step in the

rowing effort s to use neuromorphic implementations and mini-

ize energy exploitation while preserving computational quality. 
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