Welcome to the Weizmann practical Deep Learning Course 2024
All communication with the lecturers will be made via SLACK. Join here:
Your lecturers and TAs are
Etienne Dreyer, Nilotpal Kakati, Dmitrii Kobylianskii and Prof Eilam Gross.
The grading system is based on your mandatory homework assignments (10%), a project (<30%), and a take-home assignment (>60%). The exact weight of the project and take-home assignment will be fixed so the class average will not exceed 90.
All lecture slides and tutorial code will be posted below.
Date | Lecture | Slides & Video |
Tutorial | Slides & Video |
Tutorial 2 | Slides & Video |
---|---|---|---|---|---|---|
27/3/2025 |
Eilam: Introduction |
Etienne: Python essentials |
|
Etienne: NumPy and grad. desc. |
||
6/4/2025 |
Dmitrii: Backpropagation |
Etienne: pytorch (tut) |
|
Etienne: homework 1 Classification |
||
24/4/2025 |
Eilam: Convolutional NN |
|
Nilotpal: CNNs (tut) |
|
Dmitrii: Optimisation, |
|
8/5/2025 |
Etienne: Autoencoders |
Dmitrii: VAE (tut) |
|
Etienne: transfer learning homework 2 |
|
|
15/5/2025 |
Eilam: CNN architectures and RNN |
|
Eilam: GAN |
|
Nilotpal: GAN tutorial |
|
22/5/2025 |
Eilam: Graph Neural Networks |
|
Etienne: GNN tutorial |
Etienne: homework 3: Graph Neural Networks |
||
29/5/2025 |
Eilam (Recorded): Detection & Segmentation |
Etienne: UNET
|
|
|
||
5/6/2025 |
Etienne: Attention is All You Need |
Eilam: GPT |
Eilam: |
Dmitrii: Homework 4: |
||
12/6/2025 |
Dmitrii: Diffusion |
Dmitrii: Diffusion tutorial |
|
|
|
|
26/6/2025 |
Eilam: Deep Reinforcement Learning |
Dmitrii: Deep Q-learning tutorial
|
Etienne: Homework 5: policy gradient |
|||
3/7/2025 | Project Proposals I | |||||
TBA | Project Proposals II | |||||
TBA 10:00-12:00 |
Final exam | |||||
TBA 11:00-16:00 |
Project Presentations (POSTERs festival) |