ML Course 2025 (Weissman Auditorum Thursdays)

Welcome to the Weizmann practical Deep Learning Course 2024

All communication with the lecturers will be made via SLACK. Join here:

join slack channel

Your lecturers and TAs are
Etienne Dreyer, Nilotpal Kakati, Dmitrii Kobylianskii and Prof Eilam Gross.

The grading system is based on your mandatory homework assignments (10%), a project (<30%), and a take-home assignment (>60%). The exact weight of the project and take-home assignment will be fixed so the class average will not exceed 90.

All lecture slides and tutorial code will be posted below.

Date Lecture Slides
& Video
Tutorial  Slides
& Video
Tutorial 2 Slides
& Video

27/3/2025

Eilam:

Introduction

 

Etienne:

Python essentials

 

Etienne:

NumPy and grad. desc.

 
6/4/2025

Dmitrii:

Backpropagation

 

Etienne:

pytorch (tut)

 

Etienne:

homework 1

Classification

 
24/4/2025

Eilam:

Convolutional NN

 

Nilotpal:

CNNs (tut)

 

Dmitrii:

Optimisation,
Regularisation

 
8/5/2025

Etienne:

Autoencoders
(VAE)

 

Dmitrii:

VAE (tut)

 

Etienne:

transfer learning

homework 2

 

15/5/2025

Eilam:

CNN architectures and RNN

 

Eilam:

GAN

 

Nilotpal:

GAN tutorial

 

22/5/2025

Eilam:

Graph Neural Networks

 

Etienne:

GNN tutorial

 

Etienne:

homework 3:

Graph Neural Networks

 
29/5/2025

Eilam (Recorded):

Detection & Segmentation

 

 

Etienne:

UNET

 

 

 

 

5/6/2025

Etienne:

Attention is All You Need
(Transformers)
notebook

 

Eilam:

GPT

Eilam:

Attention on Attention

Dmitrii:

Homework 4:
Attention

 
12/6/2025

 

Dmitrii:

Diffusion

 

 

Dmitrii:

Diffusion tutorial

 

 

 

 

26/6/2025

Eilam:

Deep Reinforcement Learning

 

Dmitrii:

Deep Q-learning tutorial

 

 

Etienne:

Homework 5: policy gradient

 
3/7/2025 Project Proposals I          
TBA  Project Proposals II          
             
             

TBA

10:00-12:00

Final exam          

TBA

11:00-16:00

Project Presentations (POSTERs festival)