previously shown to be required for EutV binding of dual-hairpin substrates (5). We tested one mutant, in which these critical residues of the P3 loop were mutated (M1) and a second, in which the same changes were made to the P4 loop (M2). Similar to deletion of P3/P4, these mutant constructs were both induced by EA alone in the eutX strain, in contrast to wild-type eutG-lacZ (Fig. 3D). Therefore, these data confirm that P3/P4 mutations that prevent EutV binding affect regulation. We also examined the M3 mutation predicted to abrogate AdoCbl binding and cause constitutive inclusion of P3/P4 in EutX (Fig. 2, C and D). As expected, this resulted in uninducible expression (Fig. 3C). In conclusion, we present evidence of a riboswitch acting in trans, the second described (13). In the prior example, a classical sRNA that acts by base-pairing to a target mRNA can be prematurely terminated by a riboswitch. However, EutX acts in a signal transduction pathway that is subject to riboswitch-mediated control within the confines of an sRNA. A few other sRNAs, like EutX, have been shown to affect gene expression by sequestering RNA-binding proteins. The beststudied examples are CsrB and CsrC, which titrate CsrA, a translational inhibitor protein, away from its mRNA targets [reviewed by (14)]. EutX demonstrates a mechanism for how protein sequestration can be placed under signal-responsive regulatory control by a riboswitch. ### REFERENCES AND NOTES - 1. A. Roth, R. R. Breaker, Annu. Rev. Biochem. 78, 305-334 (2009). - A. Serganov, E. Nudler, Cell 152, 17-24 (2013). - L. S. Waters, G. Storz, Cell 136, 615-628 (2009). - K. A. Fox et al., Proc. Natl. Acad. Sci. U.S.A. 106, 4435-4440 - A. Ramesh et al., PLOS Genet. 8, e1002666 (2012). - F. A. Scarlett, J. M. Turner, J. Gen. Microbiol. 95, 173-176 - D. A. Garsin, Nat. Rev. Microbiol. 8, 290-295 (2010). - K. A. Baker, M. Perego, J. Bacteriol. 193, 2575-2586 - M. F. Del Papa, M. Perego, J. Bacteriol. 190, 7147-7156 (2008) - 10. J. E. Johnson Jr., F. E. Reyes, J. T. Polaski, R. T. Batey, Nature 492. 133-137 (2012) - 11. A. Peselis, A. Serganov, Nat. Struct. Mol. Biol. 19, 1182-1184 - 12. K. G. Roelofs, J. Wang, H. O. Sintim, V. T. Lee, Proc. Natl. Acad. Sci. U.S.A. 108, 15528-15533 (2011). - 13. F. Loh et al., Cell 139, 770-779 (2009) - 14. P. Babitzke, T. Romeo, Curr. Opin. Microbiol. 10, 156-163 (2007). ## **ACKNOWLEDGMENTS** The data reported are presented in the main paper and the supplementary materials. This work was supported by the NIH grants R01AI076406 (D.A.G.), R56AI110432 (D.A.G. and W.C.W.) and R01GM099790 (A.V.H.), a NSF grant MCB-1051440 (W.C.W.) and a Welch Foundation grant AU-1773 (A.V.H.). For transmission electron microscopy imaging, we thank S. Kolodziej and P. Navarro; J. R. Mellin and P. Cossart are acknowledged for valuable discussions. ## SUPPLEMENTARY MATERIALS www.sciencemag.org/content/345/6199/937/suppl/DC1 Materials and Methods Figs. S1 to S7 Tables S1 and S2 References (15-17) 21 April 2014; accepted 26 June 2014 10.1126/science.1255091 ## **RIBOSWITCHES** # Sequestration of a two-component response regulator by a riboswitch-regulated noncoding RNA J. R. Mellin, 1,2,3 Mikael Koutero, 1,2,3 Daniel Dar, 4 Marie-Anne Nahori, 1,2,3 Rotem Sorek, 4 Pascale Cossart 1,2,3x Riboswitches are ligand-binding elements contained within the 5' untranslated regions of bacterial transcripts, which generally regulate expression of downstream open reading frames. Here, we show that in Listeria monocytogenes, a riboswitch that binds vitamin B₁₂ controls expression of a noncoding regulatory RNA, Rli55. Rli55, in turn, controls expression of the eut genes, whose products enable ethanolamine utilization and require B₁₂ as a cofactor. Defects in ethanolamine utilization, or in its regulation by RIi55, significantly attenuate Listeria virulence in mice. RIi55 functions by sequestering the two-component response regulator EutV by means of a EutV-binding site contained within the RNA. Thus, Rli55 is a riboswitch-regulated member of the small group of regulatory RNAs that function by sequestering a protein and reveals a distinctive mechanism of signal integration in bacterial gene regulation. thanolamine is an abundant molecule in the vertebrate intestine (1, 2), and genes of the ethanolamine utilization pathway (eut) are widely conserved in pathogenic bacteria (3-5). This includes the Gram-positive intracellular human pathogen Listeria monocytogenes, in which eut expression has been shown to be up-regulated in the intestine during infection of mice (6), which suggests that ethanolamine is important for Listeria pathogenesis. In Enterococcus faecalis, eut expression is activated in response to ethanolamine by a two-component response regulator, EutVW (7, 8). In Salmonella enterica, ethanolamine utilization requires vitamin B_{12} as a cofactor (9), and we noted the presence of a B₁₂-binding riboswitch located upstream of the first gene in the *eut* locus of *L. monocytogenes* (Fig. 1A) (10), which suggested that eut expression might also be regulated in response to B₁₂ availability. To investigate a role for B₁₂, we examined expression of the eut locus in response to B_{12} and ethanolamine by RNA sequencing (RNA-seq) (Fig. 1B) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) (fig. S1). We observed expression of the eutVW genes under all conditions, albeit at low levels, which suggested that the cell maintains a pool of EutVW to sense and respond to ethanolamine. In contrast, higher-level expression of eutVW and expression of other eut genes require both B₁₂ and ethanolamine (Fig. 1B). These data indicated B_{12} is required to activate eut expression and suggested that the B_{12} riboswitch does not prevent ¹Unité des Interactions Bactéries-Cellules, Institut Pasteur, F-75015 Paris, France. ²INSERM, U604, Paris, F-75015 France. ³INRA, USC2020, F-75015 Paris, France. ⁴Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, transcription of the eut locus in the presence of B₁₂, as might be expected for a classical riboswitch (11). To clarify whether the riboswitch has a role in the B₁₂-dependent regulation of eut expression, we examined transcription of the riboswitch locus (Fig. 1C) in response to B_{12} and ethanolamine. We were unable to detect any long transcript, which might extend into the downstream eut locus. However, we did detect a ~450-nucleotide (nt) transcript, Rli55 (10, 12), in the absence of B₁₂ (Fig. 1D), and a smaller (~200-nt) transcript that accumulated in the presence of B_{12} (Fig. 1D). This result suggested that the riboswitch mediates transcription termination of the ~450-nt Rli55 transcript in response to B₁₂, and any remaining long transcript is rapidly degraded (fig. S2A). A strain with a deletion in the B₁₂ riboswitch (Δ ribo) constitutively expressed the long Rli55 transcript under all conditions (Fig. 1E and fig. S2B), which confirmed B₁₂-dependent regulation by the riboswitch. Conversely, neither the long or short Rli55 transcripts were detected in a strain ($\Delta rli55$) in which the entire rli55 locus was deleted (Fig. 1E and fig. S2B). Thus, the B₁₂ riboswitch determines whether Rli55 is expressed as a long or short transcript in response to B_{12} . We reasoned that Rli55 might act as a regulatory RNA controlling expression of the eut locus. To test this hypothesis, we examined expression of eut genes by qRT-PCR in the wildtype, Δ ribo, and Δ *rli55* strains. In the wild-type strain, eut expression was elevated only when both ethanolamine and B_{12} were present in the media (Fig. 1F and fig. S3, A and B), whereas in the Δ ribo strain, which constitutively expresses the long Rli55, eut genes were never expressed under any conditions. In contrast, in the $\Delta rli55$ strain, expression of the eut genes was high in the presence of ethanolamine alone in addition ^{*}Corresponding author, E-mail: pcossart@pasteur.fr Fig. 1. Control of ethanolamine utilization (eut) genes by a B₁₂ riboswitchregulated ncRNA. (A) The eut locus. Green arrow denotes B₁₂ riboswitch. Vertical arrows denote positions of ANTAR elements (13) (B) RNA-seq coverage of eut operon. (**C**) Regions deleted in the $\Delta rli55$ and $\Delta ribo$ strains are indicated by solid black lines. Northern blot of the rli55 transcript in the (**D**) wild-type strain with probe indicated by thick dashed line in schematic or (E) wild-type (wt), Δribo, or Δrli55 strains with probe indicated by thin dashed line in schematic. Ethidium bromide staining of ribosomal RNA is shown as a loading control. Quantification of bands from three experiments is shown below each blot. Expression of the (\mathbf{F}) eutV, eutC, and eutT genes was evaluated by qRT-PCR in the indicated strains. LB, Luria broth. Values represent means \pm SEM, n = 3; *P < 0.05; ns, not significant. Fig. 2. Ethanolamine utilization and pathogenesis. BALB/c mice were injected intravenously with ~4500 colony-forming units (CFU) of the indicated strain. Mice were killed at (A) and (D) 24 hours, (B) and (E) 48 hours, or (C) and (F) 72 hours, and spleens and livers were removed to assess bacterial load per organ. Results represent two independent experiments with three or four mice per group in each experiment. *P < 0.05, ns, not significant. to ethanolamine and B₁₂ together. Together, these data support a model in which Rli55 prevents the expression of the eut locus in the absence of B₁₂, ensuring that the eut genes are expressed only in the presence of both ethanolamine (substrate) and B₁₂ (cofactor) (fig. S3C). We tested whether defects in ethanolamine utilization, or its regulation, impacted L. monocytogenes virulence by examining the wild-type, Δ ribo, and Δ rli55 strains in a mouse intravenous infection model. We also tested a mutant lacking the eutB gene encoding an ethanolamine lyase subunit, which is unable to catabolize ethanolamine. The Δ ribo and Δ eutB strains both had significantly reduced bacterial loads at 24 hours after infection compared with the wild-type strain, and these differences increased at 48 hours and 72 hours postinfection (~10- to 50-fold) (Fig. 2, A to F). In contrast, the $\Delta rli55$ strain, in which eut expression is not inhibited, was present in amounts comparable to those in the wild-type strain in the spleen and liver. Thus, defects in ethanolamine utilization or activation of eut expression significantly attenuate L. monocytogenes virulence. In E. faecalis, ethanolamine is sensed by the sensor-kinase EutW, which subsequently phosphorylates the response regulator EutV (7). Phosphorylated EutV in turn binds ANTAR elements (AmiR and NasR transcriptional antiterminator regulator) in the 5' untranslated regions of actively transcribed eut mRNAs, which prevents the formation of a transcription terminator and consequently activates eut expression (13). In L. monocytogenes, ANTAR sites were identified upstream of the eutA and eutV genes, and a third site was identified in the rli55 locus upstream of the $\operatorname{\it eut} G$ gene and downstream of the B_{12} riboswitch (13). We also identified a second ANTAR site in the rli55 locus (Fig. 3A), which suggested that one or both of these ANTAR elements could be transcribed as part of the 3' end of Rli55 RNA. Indeed, our RNA-seq data showed that, in the absence of B₁₂, high levels of Rli55 are transcribed as a long transcript encompassing the first ANTAR element (Fig. 3A). In contrast, rli55 transcription terminates abruptly after the riboswitch in the presence of B₁₂, which indicates that the riboswitch determines whether Rli55 is transcribed with or without an ANTAR element. This notion was supported by the detection of putative Rli55 orthologs in E. faecalis and Streptococcus sanguinis (fig. S4). In the latter, the riboswitch, in conjunction with a single ANTAR element, has undergone an inversion relative to the adjacent eutG gene, which suggests that the riboswitch and the first ANTAR element are functionally linked (fig. S4B) and that this is also the case in *L. monocytogenes*. To test if the ANTAR elements are involved in Rli55-mediated regulation, we complemented the $\Delta rli55$ strain with chromosomally integrated rli55 alleles carrying mutations in the ANTAR elements and examined which ones restored Rli55mediated regulation of eut expression (Fig. 3, B and C, and fig. S5). A strain with an empty Fig. 3. Rli55 sequesters the two-component response regulator EutV. (A) RNA-seq coverage in reads per million (RPM) of the rli55 locus from bacteria grown as indicated. (B and C) qRT-PCR of eutV and eutA genes. Vitamin B_{12} (B_{12}), ethanolamine (Ea). Values represent means \pm SEM, n=3. All differences were significantly different (*P < 0.05) from the $\Delta r l i 55$::Empty strain in the Ea condition, except where indicated (ns). All differences were not significantly different from the $\Delta r li55$::Empty strain in the B₁₂ + Ea condition, ex- cept where indicated. (D) Secondary structure of the ANTAR elements encoded in the boxed region of Fig. 3A. Mutations are shown in blue. (E and F) RNA-seq coverage in RPM of the rli55 and eutV loci with RNA isolated by coimmunoprecipitation of cell lysates from either EutV^{FLAG} or EutV^{NOFLAG} cultures grown in the presence of ethanolamine (Ea) or ethanolamine and B₁₂ together. (G) Proposed model of Rli55-mediated regulation of eut expression in the presence of ethanolamine (Ea) alone or ethanolamine $+ B_{12}$ (Ea $+ B_{12}$). 942 22 AUGUST 2014 • VOL 345 ISSUE 6199 sciencemag.org SCIENCE construct (\Delta rli55::Empty) could not prevent expression of the eut genes in ethanolamine alone (as in the parental $\Delta rli55$ strain), whereas a strain with a wild-type copy of rli55 ($\Delta rli55$::rli55) fully restored Rli55-mediated inhibition. However, a strain with a deletion in the riboswitch $(\Delta rli55::\Delta ribo)$ inhibited *eut* expression in all conditions, as the riboswitch can no longer terminate rli55 transcription in response to B_{12} . In strain $\Delta rli55::rli55\Delta$ M1, wherein four uridine residues in the first ANTAR site were mutated to adenines (Fig. 3D, Δ M1), inhibition of *eut* expression by Rli55 was abolished in the presence of ethanolamine alone. In contrast, in strain Δrli55::rli55ΔM1/M2, where compensatory mutations were made to the opposite side of the ANTAR stem-loop (Fig. 3D, Δ M2), wild-type regulation of eut expression was restored. Mutation of the six nucleotides in the stem-loop of the second ANTAR element (Fig. 3D, Δ M3, Δ rli55::rli55 Δ M3) had no significant effect on Rli55-mediated regulation. Thus, the first ANTAR element is necessary and sufficient for Rli55-mediated regulation. The long form of Rli55 containing an ANTAR element might bind and sequester EutV and so prevent it from activating expression of the eut genes in the presence of ethanolamine but absence of B_{12} . When sufficient levels of B_{12} accumulate, B₁₂ would bind the riboswitch, producing truncated Rli55 transcripts, which would lack an ANTAR element and be unable to sequester EutV. To examine this hypothesis, we constructed a strain with an additional copy of the eutV gene carrying a 2XFLAG-tag (EutV^{FLAG}) and first showed that expression of $\operatorname{EutV}^{\operatorname{FLAG}}$ protein is regulated identically to the native eutV gene in response to ethanolamine and B₁₂ (fig. S6A). We also constructed a strain with an additional eutV gene lacking a FLAG tag $(EutV^{NOFLAG})$. Anti-FLAG immunoprecipitations of cell lysates from these two strains (fig. S6, B and C), followed by RNA-seq analysis (Fig. 3, E and F), showed that Rli55 is enriched by coimmunoprecipitation with EutV^{FLAG} primarily when bacteria are grown in the presence of ethanolamine alone, although we saw no enrichment in a parallel immunoprecipitation with the EutV^{NOFLAG} strain (Fig. 3E). In contrast, the ANTAR element upstream of the eutV gene (Fig. 3F) is enriched by coimmunoprecipitation of lysates from EutV^{FLAG} bacteria, but not EutV^{NOFLAG} bacteria, grown in the presence of ethanolamine and B₁₂ together but not from lysates of bacteria grown in ethanolamine alone. To a lesser extent, the ANTAR-containing region upstream of eutA and the entire eutA-Q locus are enriched under the latter condition (fig. S7). These data support a model in which the majority of EutV is bound and sequestered by Rli55 in the presence of ethanolamine alone. Conversely, in the presence of ethanolamine and B₁₂, the riboswitch produces short truncated Rli55 transcripts, which cannot bind EutV, and so allows EutV to bind eut mRNAs and to activate eut expression (Fig. 3G). This riboregulatory mechanism coordinates expression of the ethanolamine utilization (eut) locus with the availability of B_{12} , the essential cofactor for ethanolamine catabolism. Previously, ethanolamine utilization has been shown to be important after oral infection by Salmonella enterica serovar Typhimurium and enterohemorrhagic Escherichia coli (3, 4, 14); however, the contribution of ethanolamine utilization to L. monocytogenes pathogenesis in an intravenous mouse infection model suggests that ethanolamine utilization is important outside of the intestine and possibly in the intracellular environment. This study also extends the role of riboswitches in the regulation of noncoding RNAs (15, 16). Finally, our data show that Rli55 represents a new member of the small family of regulatory RNAs that function by sequestering a protein, which also includes the 6S and CsrB/C RNAs (17), and highlights a distinctive means of signal integration in bacterial gene regulation. ## **REFERENCES AND NOTES** - 1. D. A. Garsin, Nat. Rev. Microbiol. 8, 290-295 (2010). - K. Koichi, F. Michiya, N. Makoto, Biochim. Biophys. Acta 369, 222-233 (1974). - P. Thiennimitr et al., Proc. Natl. Acad. Sci. U.S.A. 108, 17480-17485 (2011). - 4. Y. Bertin et al., Environ. Microbiol. 13, 365-377 (2011). - O. Tsoy, D. Ravcheev, A. Mushegian, J. Bacteriol. 191, 7157-7164 (2009). - C. Archambaud et al., Proc. Natl. Acad. Sci. U.S.A. 109, 16684-16689 (2012). - 7. M. F. Del Papa, M. Perego, J. Bacteriol. 190, 7147-7156 - 8. K. A. Fox et al., Proc. Natl. Acad. Sci. U.S.A. 106, 4435-4440 (2009). - J. R. Roth, J. G. Lawrence, T. A. Bobik, Annu. Rev. Microbiol. 50 137-181 (1996). - 10. A. Toledo-Arana et al., Nature 459, 950-956 (2009). - 11. W. C. Winkler, R. R. Breaker, Annu. Rev. Microbiol. 59, 487-517 (2005). - 12. O. Wurtzel et al., Mol. Syst. Biol. 8, 583 (2012). - 13. A. Ramesh et al., PLOS Genet. 8, e1002666 (2012). - 14. S. E. Winter, A. J. Bäumler, Gut Microbes 2, 58-60 - 15. J. R. Mellin et al., Proc. Natl. Acad. Sci. U.S.A. 110, 13132-13137 (2013). - 16. G. André et al., Nucleic Acids Res. 36, 5955-5969 - 17. S. Gottesman, G. Storz, Cold Spring Harb. Perspect. Biol. 3, a003798 (2011). #### **ACKNOWLEDGMENTS** We are grateful to D. Garsin and W. Winkler for their exchange of ideas and discussion of unpublished data. We also thank, N. King and J. Pederson for helpful and insightful discussions and Y. Chao and J. Vogel for assistance with the CLIP-seq protocol. This work was supported by grants to P.C., European Research Council advanced grant (233348), ANR (BACNET 09-BLAN-0024-02), ANR Investissement d'Avenir Programme (10-LABX-62), Fondation Le Roch, and Fondation Jeantet. P.C. is an International Senior Research Scholar of the Howard Hughes Medical Institute. ## SUPPLEMENTARY MATERIALS www.sciencemag.org/content/345/6199/940/suppl/DC1 Materials and Methods Figs S1 to S7 Tables S1 and S2 References 21 April 2014: accepted 24 June 2014 10.1126/science.1255083 ## **IMMUNOGENETICS** # **Chromatin state dynamics during** blood formation David Lara-Astiaso, 1* Assaf Weiner, 2,3* Erika Lorenzo-Vivas, 1 Irina Zaretsky, 1 Diego Adhemar Jaitin, Eyal David, Hadas Keren-Shaul, Alexander Mildner, Deborah Winter, Steffen Jung, Nir Friedman, 2,3 Ido Amit + Chromatin modifications are crucial for development, yet little is known about their dynamics during differentiation. Hematopoiesis provides a well-defined model to study chromatin state dynamics; however, technical limitations impede profiling of homogeneous differentiation intermediates. We developed a high-sensitivity indexing-first chromatin immunoprecipitation approach to profile the dynamics of four chromatin modifications across 16 stages of hematopoietic differentiation. We identify 48,415 enhancer regions and characterize their dynamics. We find that lineage commitment involves de novo establishment of 17,035 lineage-specific enhancers. These enhancer repertoire expansions foreshadow transcriptional programs in differentiated cells. Combining our enhancer catalog with gene expression profiles, we elucidate the transcription factor network controlling chromatin dynamics and lineage specification in hematopoiesis. Together, our results provide a comprehensive model of chromatin dynamics during development. hromatin plays a major regulatory role in cell-type-specific functions and response (1, 2). The current dogma of cellular differentiation suggests that there is a progressive closing of the regulatory potential of the genome. According to this model, differentiation is a gradual transition from an open chromatin state in multipotent stem cells to a compacted chromatin state in differentiated cells. However, genome-wide histone modification profiling of embryonic stem cells and terminally differentiated cells is not fully compatible with this model ## Sequestration of a two-component response regulator by a riboswitch-regulated noncoding RNA J. R. Mellin, Mikael Koutero, Daniel Dar, Marie-Anne Nahori, Rotem Sorek and Pascale Cossart Science 345 (6199), 940-943. DOI: 10.1126/science.1255083 A dual-action RNA switch for expression Riboswitches are short segments of RNA that bind small molecules and switch between two different conformations, thereby regulating gene expression (see the Perspective by Chen and Gottesman). DebRoy et al. and Mellin et al. find a new class of riboswitches—in two different species of bacteria—that are both part of and regulate the production of a noncoding RNA. Each riboswitch ensures that a particular metabolic pathway is only activated in the presence of an essential small-molecule cofactor. In the absence of the cofactor, the full-length non-coding RNA is made and binds a regulator protein, preventing the regulator protein from inappropriately activating the metabolic pathway. *Science*, this issue p. 937 and p. 940; see also p. 876 | ARTICLE TOOLS | http://science.sciencemag.org/content/345/6199/940 | |----------------------------|----------------------------------------------------------------------------------------------------------------------------| | SUPPLEMENTARY
MATERIALS | http://science.sciencemag.org/content/suppl/2014/08/20/345.6199.940.DC1 | | RELATED
CONTENT | http://science.sciencemag.org/content/sci/345/6199/876.full
http://science.sciencemag.org/content/sci/345/6199/937.full | | REFERENCES | This article cites 17 articles, 7 of which you can access for free http://science.sciencemag.org/content/345/6199/940#BIBL | | PERMISSIONS | http://www.sciencemag.org/help/reprints-and-permissions | Use of this article is subject to the Terms of Service