CAN ULTRASAT SEE PROMPT GRB EMISSION?

DE with Mukesh Vyas and Asaf Pe'er

Need about 10⁻⁷ of bright GRB in near UV photons.

WIDELY HELD GRB MODEL:

CHAMPAGNE CORK GRB MODEL:

Lorentz factor ~ 100

Baryonic cork from host star pushed by GRB flash from central engine. Gamma rays (which are ~30 KeV X-rays in frame of cork) reflect off back end into obliquely backward direction. Blue shifted into observer's frame to

30KeV/ Γ (1- β cos θ) ~ 60 Γ KeV/(1+ θ ² Γ ²) ~ 280 KeV

Figure 5 from Three-dimensional Simulations of Long Duration Gamma-ray Burst Jets: Timescales from Variable Engines D. López-Cámara et al. 2016 ApJ 826 180 doi:10.3847/0004-637X/826/2/180

Information:

Thank you for downloading this PowerPoint slide from The Astrophysical Journal. This slide was designed to be edited; you can:

- Remove components (including this text box!)
- Resize components
- Apply a style or theme
- Please remember to include the original article citation information.

Figure 7 from Three-dimensional Simulations of Long Duration Gamma-ray Burst Jets: Timescales from Variable Engines D. López-Cámara et al. 2016 ApJ 826 180 doi:10.3847/0004-637X/826/2/180

Information:

Thank you for downloading this PowerPoint slide from The Astrophysical Journal. This slide was designed to be edited; you can:

- Remove components (including this text box!)
- Resize components
- Apply a style or theme
- Please remember to include the original article citation information.

Figure 3 from Three-dimensional Simulations of Long Duration Gamma-ray Burst Jets: Timescales from Variable Engines D. López-Cámara et al. 2016 ApJ 826 180 doi:10.3847/0004-637X/826/2/180

Information:

Thank you for downloading this PowerPoint slide from The Astrophysical Journal. This slide was designed to be edited; you can:

- Remove components (including this text box!)
- Resize components
- Apply a style or theme
- Please remember to include the original article citation information.

CHAMPAGNE CORK GRB MODEL:

Lorentz factor ~ 100

But what about heating of the cork?

The cork gets heated by (at least) Compton recoil to T ~ 1 KeV and it gets more than ½ of total energy.

CHAMPAGNE CORK GRB MODEL:

Lorentz factor ~ 100

Assuming Amati relation holds down to photons energies of 5 eV (ULTRASAT range), then

(ULTRASAT range), then E_{iso}^{2} (5 eV/1 KeV)² x GRB E_{iso}^{5} of GRB E_{iso}^{5} .

So maybe....detectable UV emission

Note that the UV emission, which is thermal emission from the cork, may be accompanied by *scattered* primary photons, which would appear as an X-ray flash (XRF).