ULTRASAT: Project overview

Yossi Shvartzvald, Weizmann Institute of Science

Implementation

- Launch into GEO orbit
 - Final orbit Slot 4-West (under discussion)
 - Full Station Keeping
- Continuous transmission, except for 13% of ToOs (Antenna limits)
- Instantaneous >50% of the sky in <10 min for >3 h
- No limit on ToO number, except for ~13% with Sun angle > 144° (Power limit)

Mission lifetime	3 years
Kinematic lifetime	6 years
Science observations availability	>90%
Pointing stability	<3.0" over 300s (3 σ)
Data Downlink rate	>5 Mbps
Pointing slew agility	30°/min

ULTRASAT אולטראסאט Ultraviolet Transient Astronomy Satellite

S/C Configuration

- Schmidt design:
 - 2 Schmidt correctors (33cm) + 1 mirror (50cm)
 - + 2 flat-field correctors
 - $_{\odot}$ Each pair of lenses: Fused Silica + CaF2
 - $\circ\,$ Focus mechanism: FF vs Mirror
- Baffle

6/29/2020

- $\circ\,$ Reduce stray light
- $\circ\,$ Cerenkov Radiation Suppression
- Highly sensitive to contamination:
 - No complex material
 - $\circ\,$ Several outgassing cycles
- Optimized PSF in the UV + large FoV:
 - PSF radial variation
 - $\circ\,$ PSF wavelength variation

Telescope

DA + F.F LENSES

MIRROR

Ø 670 mm

SCHMIDT COR.

~ 1600 mm

BAFFLE

Telescope main Spec.

Aperture	33cm
Field of View	200 deg ²
Mean in-band PSF FWHM	<13"
Pixel scale	5.44"/pix
In-band optical throughput	>0.8
Out-of-band attenuation	<4x10 ⁻³
Obscuration	<0.31

ULTRASAT אולטראסאט

Ultraviolet Transient Astronomy Satellite

Baffle – Cerenkov radiation

- Trapped relativistic electrons propagating through the corrector glass emit Cerenkov UV radiation
- Isotropic radiation
- Large temporal variations

Baffle main Spec.

Stray light suppression factor	>4.5x10 ¹⁰
Solid-angle suppression (Cerenkov)	1/6
Baffle Column Density (Cerenkov)	1 g/cm ²
Sun pointing angle	>70°
Earth (/moon) pointing angle	>48°

- Developed and supplied by DESY
- 4 quadrants BSI CMOS from TowerJazz
- Ramon Space support for space qualified design (e.g., radiation hardness)
- Optimized UV QE using high-K dielectric coating

Sensor main Spec.

Photosensitive surface (4 quadrants)	90x90 mm
Pixel size	9.5 µm
Operation waveband	220-280nm
Mean QE in Operation band	>60%
Operation temperature	200±5 °K
Dark current @ 200 °K	<0.03 e ⁻ /sec
Readout mode	Rolling shutter
Readout time	<25 sec
Readout noise @ High-gain	<3.5 e ⁻ /pixel
Electronic cross-Talk	<0.01%
Pixel sampling scheme	HDR capability
Low-gain Well capacity	140-155 Ke ⁻
High-gain Well capacity	16-21 Ke ⁻
Bits per Pixel – total (data only)	14 (13)

QE optimization

- Scouts with 3 ULTRASAT-optimized coatings
- One of which already measured and proven

Option	Mean QE (220-280)	+/-5% thickness	Minimum QE @>290
STD	62.2%	1%	30%
#1	65.5%	2.6%	30%
#2	61.8%	2.6%	18%

Launcher

- Hosted launch to GEO
 - Direct to GEO on the launcher
 Or
 - Piggy back on a larger satellite, then GTO to GEO
 - Up to 6 month slot acquisition to <u>final</u> <u>orbit</u>
- ULTRASAT compatible to ESPA port

- Terminal @ IAI/MBT GEO Ground Station
 - Command & Control, Telemetry Processing
 - Immediate ToO tasking
 - Receive imagery data, deliver to WIS (SOC)
- High-rate Ku communication
- Perform ranging for orbit determination

Raw Image

Tasking

WIS

SOC

SCC

Mission

Planning

Command

Program Time Table

Mile Stone	ARO + Month	Time
Kick off	0 (23 September 2019)	"Q4" 2019
SRR	3	Q1 2020
SDR	6	Q2 2020
PDR	12	Q4 2020
CDR	18	Q2 2021
Supply of Camera	35	Q3 2022
Supply of Payload	45	Q3 2023
DRB	52	Q1 2024
EIOT	56	Q2 2024

- Main survey mode (\rightarrow Key goal: Death of massive stars)
 - $_{\odot}$ 2 directions near the Ecliptic poles
 - minimize Galactic extinction and zodiac background
 - Continuous visibility
 - \circ Switching between fields every 6 months
 - \circ Cadence 300s
 - $_{\odot}$ Real-time data download and analysis
 - Alerts within 20min of exposure end
- Alternative survey mode
 - Each season Cycle through several (<10) adjacent (<40 deg) fields near the nominal fields
 - 6x300s images at each field

- ToO's: (\rightarrow Key goal: Neutron star mergers)
 - \circ Instantaneous >50% of the sky in <15 min for >3 h
 - Continuous transmission to the ground, except for 13% of ToO's
 - No limit on ToO number, except for 13% with Sun angle >144° (Power limit)

- 3hr/day during the first 6 months
- Using the ToO mode
- 23 AB limiting mag (|b|>30°), 7x deeper than the GALEX all-sky survey
- Building reference images for transient detections

ULTRASAT capabilities

Field of View	200 deg ²
Band	220-280 nm
Cadence	300 s
Limiting AB mag	22.3 (5s, 900s)
PSF, pixel #	<13", 90Mpxl
Alert distribution	<20 min
ТоО	50% of sky in <15min for >3hr

Noise sources

Source	Variance (e ⁻ /pix)
Zodiac (Survey)	140
Cerenkov (75%)	125
Stray light (max)	12
Readout noise [^2]	12
Dark current	8
Electronic Crosstalk	2
Gain	1
Quantum Yield	<1
Total	300

ULTRASAT capabilities

Field of View	200 deg ²
Band	220-280 nm
Cadence	300 s
Limiting AB mag	22.3 (5s, 900s)
PSF, pixel #	<13", 91Mpxl
Alert distribution	<20 min
ТоО	50% of sky in <15min for >3hr

