Publications
2024
-
(2024) International Journal of Science Education. Abstract
Authentic science learning has a significant potential for contributing to students self-efficacy (SE) and science career aspirations (SCA) by introducing contemporary science. However, the design of authentic learning remains challenging due to the elusive and subjective nature of experiencing authenticity and the interdisciplinarity and complexity of contemporary science. This study aimed to transform these challenges into opportunities by integrating theoretical frameworks of authentic design with a unique setting, including: (a) authentic pedagogy highlighting social experiences, (b) authentic scientific equipment including hands-on operation of a scanning electron microscope (SEM) situated in a research institute, (c) contemporary science theme (biomineralization). This integrated design was investigated by collecting data from 70 secondary science students on their perceived-authenticity, SE, and SCA using prepost Likert-type questionnaires. After discovering that authenticity was intensely perceived, we used inferential statistics to examine the relationships between different authentic aspects related to both hard and soft science skills and SE and SCA. We identified a significant connection between students experience of acquiring authentic knowledge (i.e. hard skills) and their SCA, as well as between the social experience (i.e. soft skills) and students SE. This study contributes to understanding the design and impact of authentic science activities in research institutes.
-
(2024) Nature Communications. 15, 6671. Abstract
Silk fibers unique mechanical properties have made them desirable materials, yet their formation mechanism remains poorly understood. While ions are known to support silk fiber production, their exact role has thus far eluded discovery. Here, we use cryo-electron microscopy coupled with elemental analysis to elucidate the changes in the composition and spatial localization of metal ions during silk evolution inside the silk gland. During the initial protein secretion and storage stages, ions are homogeneously dispersed in the silk gland. Once the fibers are spun, the ions delocalize from the fibroin core to the sericin-coating layer, a process accompanied by protein chain alignment and increased feedstock viscosity. This change makes the protein more shear-sensitive and initiates the liquid-to-solid transition. Selective metal ion doping modifies silk fibers mechanical performance. These findings enhance our understanding of the silk fiber formation mechanism, laying the foundations for developing new concepts in biomaterial design.
-
(2024) Nature Plants. 10, 5, p. 830 Abstract
Correction to: Nature Plantshttps://doi.org/10.1038/s41477-024-01628-9, published online 23 February 2024 In the version of the article initially published, there was an error in the protein orientations in Fig. 6, where the bulk orientation of the PSI did not face the stroma. This has now been amended in the HTML and PDF versions of the article.
-
(2024) Developmental Cell. 59, 7, p. 911-923.e4 Abstract[All authors]
Autophagy eliminates cytoplasmic material by engulfment in membranous vesicles targeted for lysosome degradation. Nonselective autophagy coordinates sequestration of bulk cargo with the growth of the isolation membrane (IM) in a yet-unknown manner. Here, we show that in the budding yeast Saccharomyces cerevisiae, IMs expand while maintaining a rim sufficiently wide for sequestration of large cargo but tight enough to mature in due time. An obligate complex of Atg24/Snx4 with Atg20 or Snx41 assembles locally at the rim in a spatially extended manner that specifically depends on autophagic PI(3)P. This assembly stabilizes the open rim to promote autophagic sequestration of large cargo in correlation with vesicle expansion. Moreover, constriction of the rim by the PI(3)P-dependent Atg2-Atg18 complex and clearance of PI(3)P by Ymr1 antagonize rim opening to promote autophagic maturation and consumption of small cargo. Tight regulation of membrane rim aperture by PI(3)P thus couples the mechanism and physiology of nonselective autophagy.
-
(2024) Nature Plants. 10, 3, p. 512-524 Abstract
The balance between linear electron transport (LET) and cyclic electron transport (CET) plays an essential role in plant adaptation and protection against photo-induced damage. This balance is largely maintained by phosphorylation-driven alterations in the PSIILHCII assembly and thylakoid membrane stacking. During the dark-to-light transition, plants shift this balance from CET, which prevails to prevent overreduction of the electron transport chain and consequent photo-induced damage, towards LET, which enables efficient CO2 assimilation and biomass production. Using freeze-fracture cryo-scanning electron microscopy and transmission electron microscopy of Arabidopsis leaves, we reveal unique membrane regions possessing characteristics of both stacked and unstacked regions of the thylakoid network that form during this transition. A notable consequence of the morphological attributes of these regions, which we refer to as stacked thylakoid doublets, is an overall increase in the proximity and connectivity of the two photosystems (PSI and PSII) that drive LET. This, in turn, reduces diffusion distances and barriers for the mobile carriers that transfer electrons between the two PSs, thereby maximizing LET and optimizing the plants ability to utilize light energy. The mechanics described here for the shift between CET and LET during the dark-to-light transition are probably also used during chromatic adaptation mediated by state transitions.
2023
-
(2023) ACS Nano. 17, 21, p. 20962-20967 Abstract
Development of biodegradable plastic materials is of primary importance in view of acute environmental and health problems associated with the accumulation of plastic waste. We fabricated a biodegradable composite material based on hydroxyethyl cellulose polymer and tyrosine nanocrystals, which demonstrates enhanced strength and ductility (typically mutually excluding properties), superior to most biodegradable plastics. This emergent behavior results from an assembly pattern that leads to a uniform nanoscale morphology and strong interactions between the components. Water-resistant biodegradable composites encapsulated with hydrophobic polycaprolactone as a protection layer were also fabricated. Self-assembly of robust sustainable plastics with emergent properties by using readily available building blocks provides a valuable toolbox for creating sustainable materials.
-
(2023) Small structures. 4, 7, 2200353. Abstract
Coccolithophores are a group of unicellular marine algae that shape global geochemical cycles via the production of calcium carbonate crystals. Interestingly, different life-cycle phases of the same coccolithophore species produce very different calcitic scales, called coccoliths. In the widely studied diploid phase, the crystals have anisotropic and complex morphologies, while haploid cells produce coccoliths consisting solely of calcite crystals with simple rhombohedral morphology. Understanding how these two life-cycle phases control crystallization is a highly sought-after goal, yet, haploid phase crystallization has rarely been studied, and the process by which they form is unknown. Herein, advanced electron microscopy is employed to elucidate the cellular architecture of the calcification process in haploid cells. The results show that in contrast to diploid-phase calcification, the coccolith-forming vesicle of haploid-phase cells is voluminous. In this solution-like environment, the crystals nucleate and grow asynchronously in a process that resembles calcite growth in bulk solution, leading to the simple morphologies of the crystals. The two distinct mineralization regimes of coccolithophore life-cycle phases suggest that cellular architecture, and specifically confinement of the crystallization process, is a pivotal determinant of biomineral morphology and assembly.
-
(2023) Nature Plants. 9, 5, p. 817-831 Abstract[All authors]
Modulation of the endocannabinoid system is projected to have therapeutic potential in almost all human diseases. Accordingly, the high demand for novel cannabinoids stimulates the discovery of untapped sources and efficient manufacturing technologies. Here we explored Helichrysum umbraculigerum, an Asteraceae species unrelated to Cannabis sativa that produces Cannabis-type cannabinoids (for example, 4.3% cannabigerolic acid). In contrast to Cannabis, cannabinoids in H. umbraculigerum accumulate in leaves' glandular trichomes rather than in flowers. The integration of de novo whole-genome sequencing data with unambiguous chemical structure annotation, enzymatic assays and pathway reconstitution in Nicotiana benthamiana and in Saccharomyces cerevisiae has uncovered the molecular and chemical features of this plant. Apart from core biosynthetic enzymes, we reveal tailoring ones producing previously unknown cannabinoid metabolites. Orthology analyses demonstrate that cannabinoid synthesis evolved in parallel in H. umbraculigerum and Cannabis. Our discovery provides a currently unexploited source of cannabinoids and tools for engineering in heterologous hosts.
-
(2023) ACS Omega. 8, 20, p. 17856-17868 Abstract
Antibiotic-resistant bacterial infections have increased the prevalence of sepsis and septic shock mortality worldwide and have become a global concern. Antimicrobial peptides (AMPs) show remarkable properties for developing new antimicrobial agents and host response modulatory therapies. A new series of AMPs derived from pexiganan (MSI-78) were synthesized. The positively charged amino acids were segregated at their N- and C-termini, and the rest of the amino acids created a hydrophobic core surrounded by positive charges and were modified to simulate the lipopolysaccharide (LPS). The peptides were investigated for their antimicrobial activity and LPS-induced cytokine release inhibition profile. Various biochemical and biophysical methods were used, including attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, microscale thermophoresis (MST), and electron microscopy. Two new AMPs, MSI-Seg-F2F and MSI-N7K, preserved their neutralizing endotoxin activity while reducing toxicity and hemolytic activity. Combining all of these properties makes the designed peptides potential candidates to eradicate bacterial infection and detoxify LPS, which might be useful for sepsis treatment.
2022
-
(2022) EMBO Journal. 41, 23, e110771. Abstract[All authors]
Autophagy, a conserved eukaryotic intracellular catabolic pathway, maintains cell homeostasis by lysosomal degradation of cytosolic material engulfed in double membrane vesicles termed autophagosomes, which form upon sealing of single-membrane cisternae called phagophores. While the role of phosphatidylinositol 3-phosphate (PI3P) and phosphatidylethanolamine (PE) in autophagosome biogenesis is well-studied, the roles of other phospholipids in autophagy remain rather obscure. Here we utilized budding yeast to study the contribution of phosphatidylcholine (PC) to autophagy. We reveal for the first time that genetic loss of PC biosynthesis via the CDP-DAG pathway leads to changes in lipid composition of autophagic membranes, specifically replacement of PC by phosphatidylserine (PS). This impairs closure of the autophagic membrane and autophagic flux. Consequently, we show that choline-dependent recovery of de novo PC biosynthesis via the CDP-choline pathway restores autophagosome formation and autophagic flux in PC-deficient cells. Our findings therefore implicate phospholipid metabolism in autophagosome biogenesis.
-
(2022) The biophysicist.. 3, 1, Abstract
Before March 2020, with the outbreak of the COVID-19 pandemic, remote instruction of science was only moderately developed compared with more traditional approaches for learning science. Since the outbreak, however, all formal education systems have been carried out in remote mode, and outreach activities that take place in a research or academic setting have usually been canceled, or there has been a search for innovative approaches to shift to digital space. Therefore, the development of learning and teaching strategies has currently focused on remote activities. In this study, a design-based approach was applied to transform an existing authentic science activity using a scanning electron microscope (SEM) from face-to-face to remote learning mode. The remote mode activity included the remote operation of the SEM by the participants. The goal was to formulate a general approach to transform authentic outreach activities from face-to-face to remote operation. To evaluate the design, we compared learners' perceived authenticity in the 2 modes and reflected on the process. Data were collected with a Likert-type questionnaire regarding participants' perceived authenticity. The results suggest that items of authenticity related to the experience of learning content have a positive potential for use in remote mode. The learners' experience of connecting with the scientists is an apparent disadvantage in remote mode. However, changes in communication technology or in the pedagogy of remote teaching is a promising direction for improving social experience.
-
(2022) MRS Bulletin. 47, 1, p. 18-28 Abstract
Abstract: Snails of the superfamily Cavolinioidea, known as pteropods, are very abundant in the surface waters of all the oceans. Their transparent and lightweight shells are composed of densely packed, well-aligned, continuously crystalline curved aragonite fibers. Previous studies of the shell microstructure using mainly scanning electron microscopy, transmission electron microscopy, and x-ray diffraction suggested that the aragonite fibers adopt a helical motif. We mainly used focused ion beam-scanning electron microscopy to obtain three-dimensional information on the shell structure of Creseis acicula. We show that the basic structural motif in the central part of the shell (teleoconch) comprises aragonite fibers that are not helical, but are organized in nested S-shaped arcs arranged in planar arrays. This plane is oblique to the outer shell surface by approximately 20°. The planes stack in the third dimension with local displacements, to form a unique biological material. Impact statement: Of the seven basic materials used by mollusks to build their shells, the structure of one of these materials remains enigmatic, even though the snails that form this structure are by far the most abundant mollusks on earth. These so-called pteropods live in the surface waters of all the oceans and produce a significant amount of all the calcium carbonate formed in the open oceans. Since the first study of the pteropod shell structure in 1972, the basic structural motif of the arrays of highly elongated aragonite crystal fibers was inferred to be helical, although no one actually documented an entire helix. Here we resolved the 3D structure of the shell of one pteropod species using an instrument (FIB-SEM) that produces a high resolution 3D structure. We show that the basic repeating unit is a planar layer of nested S-shaped aragonite crystal fibers. Furthermore this planar layer is oblique to the shell outer surface. Besides resolving a fundamental basic question concerning mollusk shell structures, this unique organization of crystals raises fascinating questions about the mechanical properties of this most unusual curved space filling structure that will hopefully inspire materials scientists to produce superior synthetic materials.
2021
-
(2021) Biochemistry. 60, 39, p. 2943-2955 Abstract
The increasing number of resistant bacteria is a major threat worldwide, leading to the search for new antibiotic agents. One of the leading strategies is the use of antimicrobial peptides (AMPs), cationic and hydrophobic innate immune defense peptides. A major target of AMPs is the bacterial membrane. Notably, accumulating data suggest that AMPs can activate the two-component systems (TCSs) of Gram-negative bacteria. These include PhoP-PhoQ (PhoPQ) and PmrA-PmrB (PmrAB), responsible for remodeling of the bacterial cell surface. To better understand this mechanism, we utilized bacteria deficient either in one system alone or in both and biophysical tools including fluorescence spectroscopy, single-cell atomic force microscopy, electron microscopy, and mass spectrometry (Moskowitz, S. M.;et al. Antimicrob. Agents Chemother. 2012, 56, 1019-1030; Cheng, H. Y.;et al. J. Biomed. Sci. 2010, 17, 60). Our data suggested that the two systems have opposing effects on the properties of Salmonella enterica. The knockout of PhoPQ made the bacteria more susceptible to AMPs by making the surface less rigid, more polarized, and permeable with a slightly more negatively charged cell wall. In addition, the periplasmic space is thinner. In contrast, the knockout of PmrAB did not affect its susceptibility, while it made the bacterial outer layer very rigid, less polarized, and less permeable than the other two mutants, with a negatively charged cell wall similar to the WT. Overall, the data suggest that the coexistence of systems with opposing effects on the biophysical properties of the bacteria contribute to their membrane flexibility, which, on the one hand, is important to accommodate changing environments and, on the other hand, may inhibit the development of meaningful resistance to AMPs.
-
(2021) Biophysical Journal. 120, 18, p. 4002-4012 Abstract
Leukocyte microvilli are elastic actin-rich projections implicated in rapid sensing and penetration across glycocalyx barriers. Microvilli are critical for the capture and arrest of flowing lymphocytes by high endothelial venules, the main lymph node portal vessels. T lymphocyte arrest involves subsecond activation of the integrin LFA-1 by the G-protein-coupled receptor CCR7 and its endothelial-displayed ligands, the chemokines CCL21 and CCL19. The topographical distribution of CCR7 and of LFA-1 in relation to lymphocyte microvilli has never been elucidated. We applied the recently developed microvillar cartography imaging technique to determine the topographical distribution of CCR7 and LFA-1 with respect to microvilli on peripheral blood T lymphocytes. We found that CCR7 is clustered on the tips of T cell microvilli. The vast majority of LFA-1 molecules were found on the cell body, likely assembled in macroclusters, but a subset of LFA-1, 5% of the total, were found scattered within 20 nm from the CCR7 clusters, implicating these LFA-1 molecules as targets for inside-out activation signals transmitted within a fraction of a second by chemokine-bound CCR7. Indeed, RhoA, the key GTPase involved in rapid LFA-1 affinity triggering by CCR7, was also found to be clustered near CCR7. In addition, we observed that the tyrosine kinase JAK2 controls CCR7-mediated LFA-1 affinity triggering and is also highly enriched on tips of microvilli. We propose that tips of lymphocyte microvilli are novel signalosomes for subsecond CCR7-mediated inside-out signaling to neighboring LFA-1 molecules, a critical checkpoint in LFA-1-mediated lymphocyte arrest on high endothelial venules.
-
(2021) Chemistry of Materials. 33, 10, p. 3534-3542 Abstract
Many organisms orchestrate the controlled precipitation of minerals. This physiological process takes place at ambient conditions, using soluble ions as building blocks. A widespread strategy for such crystallization processes is using a multistep route, where the initial phase is metastable and gradually transforms into the mature mineral phase. Even though the maturation of these intermediate phases has been intensively studied, it remains unclear how the initial, far from equilibrium phase can form within the cellular context. A model system for controlled biomineralization is the production of coccoliths by marine microalgae. Coccoliths are calcium carbonate crystalline arrays that form within the intracellular environment, at very low calcium concentrations. Here, we used coccolith-derived and synthetic polymers to study, in vitro, the chemical interactions between calcium ions and organic macromolecules that precede coccolith formation. We used in situ analyses, including state-of-the-art cryo-electron tomography and liquid-cell atomic force microscopy, to study the interactions in bulk solution and on organic surfaces simultaneously. The results unveil a chemical process in which a functional surface induces the precipitation of a polymerCa dense phase, or a coacervate, at chemical conditions where precipitation in solution is kinetically inhibited. This strategy demonstrates how organisms can form dense Ca-rich phases from the submillimolar concentration of calcium within organelles. This Ca-rich phase can then transform into a mineral precursor in a subsequent step, without posing challenges to cellular homeostasis.
-
(2021) Cancer Research. 81, 7, p. 1639-1653 Abstract[All authors]
Gastric cancer is the third most lethal cancer worldwide, and evaluation of the genomic status of gastric cancer cells has not translated into effective prognostic or therapeutic strategies. We therefore hypothesize that outcomes may depend on the tumor microenvironment (TME), in particular, cancerassociated fibroblasts (CAF). However, very little is known about the role of CAFs in gastric cancer. To address this, we mapped the transcriptional landscape of human gastric cancer stroma by microdissection and RNA sequencing of CAFs from patients with gastric cancer. A stromal gene signature was associated with poor disease outcome, and the transcription factor heat shock factor 1 (HSF1) regulated the signature. HSF1 upregulated inhibin subunit beta A and thrombospondin 2, which were secreted in CAF-derived extracellular vesicles to the TME to promote cancer. Together, our work provides the first transcriptional map of human gastric cancer stroma and highlights HSF1 and its transcriptional targets as potential diagnostic and therapeutic targets in the genomically stable tumor microenvironment.
-
(2021) mBio. 12, 2, 03674-20. Abstract[All authors]
Protein secretion as well as the assembly of bacterial motility appendages are central processes that substantially contribute to fitness and survival. This study highlights distinctive features of the mechanism that serves these functions in cyanobacteria, which are globally prevalent photosynthetic prokaryotes that significantly contribute to primary production. Our studies of biofilm development in the cyanobacterium Synechococcus elongatus uncovered a novel component required for the biofilm self-suppression mechanism that operates in this organism. This protein, which is annotated as \u201chypothetical,\u201d is denoted EbsA (essential for biofilm self-suppression A) here. EbsA homologs are highly conserved and widespread in diverse cyanobacteria but are not found outside this clade. We revealed a tripartite complex of EbsA, Hfq, and the ATPase homolog PilB (formerly called T2SE) and demonstrated that each of these components is required for the assembly of the hairlike type IV pili (T4P) appendages, for DNA competence, and affects the exoproteome in addition to its role in biofilm self-suppression. These data are consistent with bioinformatics analyses that reveal only a single set of genes in S. elongatus to serve pilus assembly or protein secretion; we suggest that a single complex is involved in both processes. A phenotype resulting from the impairment of the EbsA homolog in the cyanobacterium Synechocystis sp. strain PCC 6803 implies that this feature is a general cyanobacterial trait. Moreover, comparative exoproteome analyses of wild-type and mutant strains of S. elongatus suggest that EbsA and Hfq affect the exoproteome via a process that is independent of PilB, in addition to their involvement in a T4P/secretion machinery.
2020
-
(2020) Science. 370, 6514, p. 335-338 Abstract
The lubrication of hydrogels arises from fluid or solvated surface phases. By contrast, the lubricity of articular cartilage, a complex biohydrogel, has been at least partially attributed to nonfluid, lipid-exposing boundary layers. We emulated this behavior in synthetic hydrogels by incorporating trace lipid concentrations to create a molecularly thin, lipid-based boundary layer that renews continuously. We observed a 80% to 99.3% reduction in friction and wear relative to the lipid-free gel, over a wide range of conditions. This effect persists when the gels are dried and then rehydrated. Our approach may provide a method for sustained, extreme lubrication of hydrogels in applications from tissue engineering to clinical diagnostics.
-
(2020) Nature Chemical Biology. 16, 9, p. 939-945 Abstract[All authors]
Protein self-organization is a hallmark of biological systems. Although the physicochemical principles governing protein-protein interactions have long been known, the principles by which such nanoscale interactions generate diverse phenotypes of mesoscale assemblies, including phase-separated compartments, remain challenging to characterize. To illuminate such principles, we create a system of two proteins designed to interact and form mesh-like assemblies. We devise a new strategy to map high-resolution phase diagrams in living cells, which provide self-assembly signatures of this system. The structural modularity of the two protein components allows straightforward modification of their molecular properties, enabling us to characterize how interaction affinity impacts the phase diagram and material state of the assemblies in vivo. The phase diagrams and their dependence on interaction affinity were captured by theory and simulations, including out-of-equilibrium effects seen in growing cells. Finally, we find that cotranslational protein binding suffices to recruit a messenger RNA to the designed micron-scale structures.
-
(2020) Angewandte Chemie - International Edition. 59, 34, p. 14593-14601 Abstract[All authors]
The growth of spontaneously twisted crystals is a common but poorly understood phenomenon. An analysis of the formation of twisted crystals of a metastable benzamide polymorph (form II) crystallizing from highly supersaturated aqueous and ethanol solutions is given here. Benzamide, the first polymorphic molecular crystal reported (1832), would have been the first helicoidal crystal observed had the original authors undertaken an analysis by light microscopy. Polymorphism and twisting frequently concur as they are both associated with high thermodynamic driving forces for crystallization. Optical and electron microscopies as well as electron and powder X-ray diffraction reveal a complex lamellar structure of benzamide form II needle-like crystals. The internal stress produced by the overgrowth of lamellae is shown to be able to create a twist moment that is responsible for the observed non-classical morphologies.
-
(2020) Journal of Structural Biology. 210, 1, 107465. Abstract
The formation of coccoliths, intricate calcium carbonate scales that cover the cells of unicellular marine microalgae, is a highly regulated biological process. For decades, scientists have tried to elucidate the cellular, chemical, and structural mechanisms that control the precise mineralogy and shape of the inorganic crystals. Transmission electron microscopy was pivotal in characterizing some of the organelles that orchestrate this process. However, due to the difficulties in preserving soluble inorganic phases during sample preparation, only recently, new intracellular ion-pools were detected using state-of-the-art cryo X-ray and electron microscopy techniques. Here, we combine a completely non-aqueous sample preparation procedure and room temperature electron microscopy, to investigate the presence, cellular location, and composition, of mineral phases inside mineral forming microalga species. This methodology, which fully preserves the forming coccoliths and the recently identified Ca-P-rich bodies, allowed us to identify a new class of ion-rich compartments that have complex internal structure. In addition, we show that when carefully choosing heavy metal stains, elemental analysis of the mineral phases can give accurate chemical signatures of the inorganic phases. Applying this approach to mineral forming microalgae will bridge the gap between the low-preservation power for inorganic phases of conventional chemical-fixation based electron microscopy, and the low-yield of advanced cryo techniques.
-
(2020) Cell Reports. 30, 10, p. 3434-3447 766196. Abstract[All authors]
T cell surfaces are covered with microvilli, actin-rich and flexible protrusions. We use super-resolution microscopy to show that ≥90% of T cell receptor (TCR) complex molecules TCRαβ and TCRζ, as well as the co-receptor CD4 (cluster of differentiation 4) and the co-stimulatory molecule CD2, reside on microvilli of resting human T cells. Furthermore, TCR proximal signaling molecules involved in the initial stages of the immune response, including the protein tyrosine kinase Lck (lymphocyte-specific protein tyrosine kinase) and the key adaptor LAT (linker for activation of T cells), are also enriched on microvilli. Notably, phosphorylated proteins of the ERM (ezrin, radixin, and moesin) family colocalize with TCRαβ as well as with actin filaments, implying a role for one or more ERMs in linking the TCR complex to the actin cytoskeleton within microvilli. Our results establish microvilli as key signaling hubs, in which the TCR complex and its proximal signaling molecules and adaptors are preassembled prior to activation in an ERM-dependent manner, facilitating initial antigen sensing.
-
(2020) Bone. 130, 115086. Abstract
Endochondral ossification in the growth plate of long bones involves cartilage mineralization, bone formation and the budding vasculature. Many of these processes take place in a complex and dynamic zone, the provisional ossification zone, of the growth plate. Here we investigate aspects of mineralization in 2D and 3D in the provisional ossification zone at different length scales using samples preserved under cryogenic or fully hydrated conditions. We use confocal light microscopy, cryo-SEM and micro-CT in the phase contrast mode. We show in 9 week old BALB/c mice the presence of vesicles containing mineral particles in the blood serum, as well as mineral particles without membranes integrated with the blood vessel walls. We also observe labeled mineral particles within cells associated with bone formation, but not in the hypertrophic cartilage cells that are involved with cartilage mineralization. High resolution micro-CT images of fresh hydrated tibiae, show that there are open continuous pathways between the blood vessel extremities and the hypertrophic chondrocyte zone. As the blood vessel extremities, the mineralizing cartilage and the forming bone are all closely associated within this narrow zone, we raise the possibility that in addition to ion transport, mineral necessary for both cartilage and bone formation is also transported through the vasculature.
-
(2020) Nature Communications. 11, 409. Abstract[All authors]
The Golgi is a dynamic organelle whose correct assembly is crucial for cellular homeostasis. Perturbations in Golgi structure are associated with numerous disorders from neurodegeneration to cancer. However, whether and how dispersal of the Golgi apparatus is actively regulated under stress, and the consequences of Golgi dispersal, remain unknown. Here we demonstrate that 26S proteasomes are associated with the cytosolic surface of Golgi membranes to facilitate Golgi Apparatus-Related Degradation (GARD) and degradation of GM130 in response to Golgi stress. The degradation of GM130 is dependent on p97/VCP and 26S proteasomes, and required for Golgi dispersal. Finally, we show that perturbation of Golgi homeostasis induces cell death of multiple myeloma in vitro and in vivo, offering a therapeutic strategy for this malignancy. Taken together, this work reveals a mechanism of Golgi-localized proteasomal degradation, providing a functional link between proteostasis control and Golgi architecture, which may be critical in various secretion-related pathologies.
2019
-
(2019) Development. 146, 23, dev177790. Abstract
To maintain body homeostasis, endocrine systems must detect and integrate blood-borne peripheral signals. This is mediated by fenestrae, specialized permeable pores in the endothelial membrane. Plasmalemma vesicle-associated protein (Plvap) is located in the fenestral diaphragm and is thought to play a role in the passage of proteins through the fenestrae. However, this suggested function has yet to be demonstrated directly. We studied the development of fenestrated capillaries in the hypophysis, a major neuroendocrine interface between the blood and brain. Using a transgenic biosensor to visualize the vascular excretion of the genetically tagged plasma protein DBP-EGFP, we show that the developmental acquisition of vascular permeability coincides with differential expression of zebrafish plvap orthologs in the hypophysis versus brain. Ultrastructural analysis revealed that plvapb mutants display deficiencies in fenestral diaphragms and increased density of hypophyseal fenestrae. Measurements of DBP-EGFP extravasation in plvapb mutants provided direct proof that Plvap limits the rate of blood-borne protein passage through fenestrated endothelia. We present the regulatory role of Plvap in the development of blood-borne protein detection machinery at a neuroendocrine interface through which hormones are released to the general circulation.
-
(2019) Silicon. 11, 5, p. 2377-2383 Abstract
Purpose - Silicon (Si) is an abundant element in the earth's crust and is available to plants as silicic acid. Silicon uptake by plants is correlated with increased tolerance to various biotic and abiotic stresses. However, cellular mechanisms responsible for its beneficial effects are still unknown. Even its cellular import mechanisms are not well understood. We thus aimed to characterize silicon localization within minimally differentiated Zea mays (Black Mexican Sweet) cells in suspension. Methods - Cells were grown in a medium containing silicon, and the mRNA levels of silicon transporters were measured by real-time PCR. Cells were separated into an insoluble (mainly walls and starch) and a cytoplasmic fraction. Soluble and total silicon was measured by inductively-coupled-plasma - atomic-emission-spectroscopy. Silicon distribution was assessed by transmission electron microscopy. The cell walls were analyzed chemically, and by Raman micro-spectroscopy and thermal gravimetric analysis. Results - Silicon treatment reduced the levels of silicon transporters transcripts, without affecting cell proliferation. About 70 % of the silicon was localized in the cytoplasm, mostly in vesicles. We found indications that silicon affected the secondary structure of proteins and thermally stabilized starch. Silicon was loosely bound, and diffused out of the cells within 24 hours. Conclusions - Our results show that silicon binds spontaneously to cell walls/starch and accumulates in cytoplasm vesicles. These processes allow the cells to accumulate silicon against its concentration gradient in solution. However, cellular intake acts against reversible diffusion processes, probably through the aquaporin silicon channels (Lsi1, Lsi6) that exchange the cellular silicon with the surrounding medium.
-
(2019) Proceedings of the National Academy of Sciences of the United States of America. 116, 44, p. 22366-22375 Abstract
Plant photosynthetic (thylakoid) membranes are organized into complex networks that are differentiated into 2 distinct morphological and functional domains called grana and stroma lamellae. How the 2 domains join to form a continuous lamellar system has been the subject of numerous studies since the mid-1950s. Using different electron tomography techniques, we found that the grana and stroma lamellae are connected by an array of pitch-balanced right- and left-handed helical membrane surfaces of different radii and pitch. Consistent with theoretical predictions, this arrangement is shown to minimize the surface and bending energies of the membranes. Related configurations were proposed to be present in the rough endoplasmic reticulum and in dense nuclear matter phases theorized to exist in neutron star crusts, where the right- and left-handed helical elements differ only in their handedness. Pitch-balanced helical elements of alternating handedness may thus constitute a fundamental geometry for the efficient packing of connected layers or sheets.
-
(2019) eLife. 8, e45650. Abstract
The regulation of neuropeptide level at the site of release is essential for proper neurophysiological functions. We focused on a prominent neuropeptide, oxytocin (OXT) in the zebrafish as an in vivo model to visualize and quantify OXT content at the resolution of a single synapse. We found that OXT-loaded synapses were enriched with polymerized actin. Perturbation of actin filaments by either cytochalasin-D or conditional Cofilin expression resulted in decreased synaptic OXT levels. Genetic loss of robo2 or slit3 displayed decreased synaptic OXT content and robo2 mutants displayed reduced mobility of the actin probe Lifeact-EGFP in OXT synapses. Using a novel transgenic reporter allowing real-time monitoring of OXT-loaded vesicles, we show that robo2 mutants display slower rate of vesicles accumulation. OXT-specific expression of dominant-negative Cdc42, which is a key regulator of actin dynamics and a downstream effector of Robo2, led to a dose-dependent increase in OXT content in WT, and a dampened effect in robo2 mutants. Our results link Slit3-Robo2-Cdc42, which controls local actin dynamics, with the maintenance of synaptic neuropeptide levels.
-
(2019) Environmental and Experimental Botany. 157, p. 100-111 Abstract
The vegetative tissues of resurrection plants are able to withstand severe protoplasmic dehydration and revive quickly upon rehydration. Resurrection species defined as homoiochlorophyllous retain most or part of their chlorophyll and photosynthetic complement in the dry state, and rely on various mechanisms to protect themselves against photo-damage. In this study, we investigated the changes in chlorophyll distribution, light absorption gradients as well as the alterations in ultrastructure that take place during dehydration of the homoiochlorophyllous species Craterostigma pumilum. Chlorophyll fluorescence profiles show that light absorption is attenuated in dry leaves, likely minimizing generation of reactive oxygen species. These are accompanied by changes that take place in the supramolecular organization of the photosynthetic protein complexes, and ordered functional adjustments of the photosynthetic apparatus, further lessening the excitation and electron pressures. Albeit these, the ultrastructural studies reveal that chloroplasts in dehydrated leaf tissues exhibit features indicative of oxidative stress, which are also reminiscent of senescing chloroplasts. These include mass proliferation of plastoglobules, variable degrees of thylakoid dismantling, as well as chloroplast fragmentation and seemingly vacuolar degradation of such fragments. In addition, unique vesicular structures between the two chloroplast envelope membranes were visualized, some of which appeared to detach from chloroplasts, likely en route to degradation. Together, the data indicate that homoiochlorophyllous resurrection species handle photo-induced damage during dehydration on two levels. Minimization of photo-damage is achieved by attenuation of light absorption and other photo-protective mechanisms. When this is insufficient and significant damage does occur, elimination of damaged components takes place via processes resembling senescence. Nevertheless, these processes are reversible, enabling the plants to avoid the terminal steps of senescence and, hence, to recover.
2018
-
(2018) Acta Biomaterialia. 77, p. 342-351 Abstract
Quantifying ion concentrations and mapping their intracellular distributions at high resolution can provide much insight into the formation of biomaterials. The key to achieving this goal is cryo-fixation, where the biological materials, tissues and associated solutions are rapidly frozen and preserved in a vitreous state. We developed a correlative cryo-Scanning Electron Microscopy (SEM)/Energy Dispersive Spectroscopy (EDS) protocol that provides quantitative elemental analysis correlated with spatial imaging of cryo-immobilized specimens. We report the accuracy and sensitivity of the cryo-EDS method, as well as insights we derive on biomineralization pathways in a foraminifer. Foraminifera are marine protozoans that produce Mg-containing calcitic shells and are major calcifying organisms in the oceans. We use the cryo-SEM/EDS correlative method to characterize unusual Mg and Ca-rich particles in the cytoplasm of a benthic foraminifer. The Mg/Ca ratio of these particles is consistently lower than that of seawater, the source solution for these ions. We infer that these particles are involved in Ca ion supply to the shell. We document the internal structure of the MgCa particles, which in some cases include a separate Si rich core phase. This approach to mapping ion distribution in cryo-preserved specimens may have broad applications to other mineralized biomaterials.Statement of significanceIons are an integral part of life, and some ions play fundamental roles in cell metabolism. Determining the concentrations of ions in cells and between cells, as well as their distributions at high resolution can provide valuable insights into ion uptake, storage, functions and the formation of biomaterials. Here we present a new cryo-SEM/EDS protocol that allows the mapping of different ion distributions in solutions and biological samples that have been cryo-preserved. We demonstrate the value of this novel approach by characterizing a novel biogenic mineral phase rich in Mg found in foraminifera, single celled marine organisms. This method has wide applicability in biology, and especially in understanding the formation and function of mineral-containing hard tissues. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
-
(2018) Cellular Imaging. Hanssen E.(eds.). Cham: . p. 33-60 (trueBiological and Medical Physics, Biomedical Engineering). Abstract
STEM modality provides major advantages for electron tomography of thicker (>300 nm) biological specimens, both for plastic-embedded, heavy-metal stained samples, and for vitrified, unstained cells. With the proliferation of modern TEM microscopes that allow for switching between TEM and STEM modes with relative ease, we expect the use of STEM tomography to increase. The concepts for STEM imaging are significantly different than for TEM, and therefore we will describe in detail the STEM imaging modality, followed by STEM tomography concepts and applications.
-
(2018) ACS Nano. 12, 1, p. 317-326 Abstract
Designing supramolecular nanotubes (SNTs) with distinct dimensions and properties is highly desirable, yet challenging, since structural control strategies are lacking. Furthermore, relatively complex building blocks are often employed in SNT self-assembly. Here, we demonstrate that symmetric bolaamphiphiles having a hydrophobic core comprised of two perylene diimide moieties connected via a bipyridine linker and bearing polyethylene glycol (PEG) side chains can self-assemble into diverse molecular nanotubes. The structure of the nanotubes can be controlled by assembly conditions (solvent composition and temperature) and a PEG chain length. The resulting nanotubes differ both in diameter and cross section geometry, having widths of 3 nm (triangular-like cross-section), 4 nm (rectangular), and 5 nm (hexagonal). Molecular dynamics simulations provide insights into the stability of the tubular superstructures and their initial stages of self-assembly, revealing a key role of oligomerization via side-by-side aromatic interactions between bis-aromatic cores. Probing electronic and photonic properties of the nanotubes revealed extended electron delocalization and photoinduced charge separation that proceeds via symmetry breaking, a photofunction distinctly different from that of the fibers assembled from the same molecules. A high degree of structural control and insights into SNT self-assembly advance design approaches toward functional organic nanomaterials.
2017
-
(2017) PLoS Pathogens. 13, 8, e1006562. Abstract
A fundamental stage in viral infection is the internalization of viral genomes in host cells. Although extensively studied, the mechanisms and factors responsible for the genome internalization process remain poorly understood. Here we report our observations, derived from diverse imaging methods on genome internalization of the large dsDNA Paramecium bursaria chlorella virus-1 (PBCV-1). Our studies reveal that early infection stages of this eukaryotic-infecting virus occurs by a bacteriophage-like pathway, whereby PBCV-1 generates a hole in the host cell wall and ejects its dsDNA genome in a linear, base-pair-by-base-pair process, through a membrane tunnel generated by the fusion of the virus internal membrane with the host membrane. Furthermore, our results imply that PBCV-1 DNA condensation that occurs shortly after infection probably plays a role in genome internalization, as hypothesized for the infection of some bacteriophages. The subsequent perforation of the host photosynthetic membranes presumably enables trafficking of viral genomes towards host nuclei. Previous studies established that at late infection stages PBCV-1 generates cytoplasmic organelles, termed viral factories, where viral assembly takes place, a feature characteristic of many large dsDNA viruses that infect eukaryotic organisms. PBCV-1 thus appears to combine a bacteriophage-like mechanism during early infection stages with a eukaryotic-like infection pathway in its late replication cycle.
-
(2017) Environmental Microbiology. 19, 7, p. 2862-2872 Abstract
The hair-like cell appendages denoted as type IV piliare crucial for biofilm formation in diverse eubacteria. The protein complex responsible for type IV pilus assembly is homologous with the type II proteinsecretion complex. In the cyanobacterium Synechococcus elongatus PCC 7942, the gene Synpcc7942_2071 encodes an ATPase homologue of type II/type IV systems. Here, we report that inactivation of Synpcc7942_2071 strongly affected the suite of proteins present in the extracellular milieu (exo-proteome) and eliminated pili observable by electron microscopy. These results support a role for this gene product in protein secretion as well as in pili formation. As we previously reported, inactivation of Synpcc7942_2071 enables biofilm formation and suppresses the planktonic growth of S. elongatus. Thus, pili are dispensable for biofilm development in this cyanobacterium, in contrast to their biofilm-promoting function in type IV pili-producing heterotrophic bacteria. Nevertheless, pili removal is not required for biofilm formation as evident by a piliated mutant of S. elongatus that develops biofilms. We show that adhesion and timing of biofilm development differ between the piliated and non-piliated strains. The study demonstrates key differences in the process of biofilm formation between cyanobacteria and well-studied type IV pili-producing heterotrophic bacteria.
-
(2017) BMC Biology. 15, 38. Abstract
Background: The merging of genomes in inter-specific hybrids can result in novel phenotypes, including increased growth rate and biomass yield, a phenomenon known as heterosis. Heterosis is typically viewed as the opposite of hybrid incompatibility. In this view, the superior performance of the hybrid is attributed to heterozygote combinations that compensate for deleterious mutations accumulating in each individual genome, or lead to new, over-dominating interactions with improved performance. Still, only fragmented knowledge is available on genes and processes contributing to heterosis.Results: We describe a budding yeast hybrid that grows faster than both its parents under different environments. Phenotypically, the hybrid progresses more rapidly through cell cycle checkpoints, relieves the repression of respiration in fast growing conditions, does not slow down its growth when presented with ethanol stress, and shows increased signs of DNA damage. A systematic genetic screen identified hundreds of S. cerevisiae alleles whose deletion reduced growth of the hybrid. These growth-affecting alleles were condition-dependent, and differed greatly from alleles that reduced the growth of the S. cerevisiae parent.Conclusions: Our results define a budding yeast hybrid that is perturbed in multiple regulatory processes but still shows a clear growth heterosis. We propose that heterosis results from incompatibilities that perturb regulatory mechanisms, which evolved to protect cells against damage or prepare them for future challenges by limiting cell growth.
[All authors] -
(2017) ANGEWANDTE CHEMIE-INTERNATIONAL EDITION. 56, 8, p. 2203-2207 Abstract
Aqua materials that contain water as their major component and are as robust as conventional plastics are highly desirable. Yet, the ability of such systems to withstand harsh conditions, for example, high pressures typical of industrial applications has not been demonstrated. We show that a hydrogel- like membrane self-assembled from an aromatic amphiphile and colloidal Nafion is capable of purifying water from organic molecules, including pharmaceuticals, and heavy metals in a very wide range of concentrations. Remarkably, the membrane can sustain high pressures, retaining its function. The robustness and functionality of the water-based self-assembled array advances the idea that aqua materials can be very strong and suitable for demanding industrial applications.
2016
-
(2016) Journal of the American Chemical Society. 138, 45, p. 14931-14940 Abstract
We have developed a high resolution correlative method involving cryo-soft X-ray tomography (cryo-SXT) and stochastic optical reconstruction microscopy (STORM), which provides information in three dimensions on large cellular volumes at 70 nm resolution. Cryo-SXT morphologically identified and localized aggregations of carbon-rich materials. STORM identified specific markers on the desired epitopes, enabling colocalization between the identified objects, in this case cholesterol crystals, and the cellular environment. The samples were studied under ambient and cryogenic conditions without dehydration or heavy metal staining. The early events of cholesterol crystal development were investigated in relation to atherosclerosis, using as model macrophage cell cultures enriched with LDL particles. Atherosclerotic plaques build up in arteries in a slow process involving cholesterol crystal accumulation. Cholesterol crystal deposition is a crucial stage in the pathological cascade. Our results show that cholesterol crystals can be identified and imaged at a very early stage on the cell plasma membrane and in intracellular locations. This technique can in principle be applied to other biological samples where specific molecular identification is required in conjunction with high resolution 3D-imaging.
-
(2016) Jove-Journal Of Visualized Experiments. 2016, 112, e54066. Abstract
Cryo-scanning electron microscopy (SEM) of freeze-fractured samples allows investigation of biological structures at near native conditions. Here, we describe a technique for studying the supramolecular organization of photosynthetic (thylakoid) membranes within leaf samples. This is achieved by high-pressure freezing of leaf tissues, freeze-fracturing, double-layer coating and finally cryo-SEM imaging. Use of the double-layer coating method allows acquiring high magnification (>100,000X) images with minimal beam damage to the frozen-hydrated samples as well as minimal charging effects. Using the described procedures we investigated the alterations in supramolecular distribution of photosystem and lightharvesting antenna protein complexes that take place during dehydration of the resurrection plant Craterostigma pumilum, in situ.
-
(2016) Bone. 83, p. 65-72 Abstract[All authors]
During bone formation in embryos, large amounts of calcium and phosphate are taken up and transported to the site where solid mineral is first deposited. The initial mineral forms in vesicles inside osteoblasts and is deposited as a highly disordered calcium phosphate phase. The mineral is then translocated to the extracellular space where it penetrates the collagen matrix and crystallizes. To date little is known about the transport mechanisms of calcium and phosphate in the vascular system, especially when high transport rates are needed and the concentrations of these ions in the blood serum may exceed the solubility product of the mineral phase. Here we used a rapidly growing biological model, the chick embryo, to study the bone mineralization pathway taking advantage of the fact that large amounts of bone mineral constituents are transported. Cryo scanning electron microscopy together with cryo energy dispersive X-ray spectroscopy and focused-ion beam imaging in the serial surface view mode surprisingly reveal the presence of abundant vesicles containing small mineral particles in the lumen of the blood vessels. Morphologically similar vesicles are also found in the cells associated with bone formation. This observation directly implicates the vascular system in solid mineral distribution, as opposed to the transport of ions in solution. Mineral particle transport inside vesicles implies that far larger amounts of the bone mineral constituents can be transported through the vasculature, without the danger of ectopic precipitation. This introduces a new stage into the bone mineral formation pathway, with the first mineral being formed far from the bone itself.
-
(2016) Cellular Microbiology. 18, 1, p. 3-16 Abstract
The increasing interest in cytoplasmic factories generated by eukaryotic-infecting viruses stems from the realization that these highly ordered assemblies may contribute fundamental novel insights to the functional significance of order in cellular biology. Here, we report the formation process and structural features of the cytoplasmic factories of the large dsDNA virus Paramecium bursaria chlorella virus 1 (PBCV-1). By combining diverse imaging techniques, including scanning transmission electron microscopy tomography and focused ion beam technologies, we show that the architecture and mode of formation of PBCV-1 factories are significantly different from those generated by their evolutionary relatives Vaccinia and Mimivirus. Specifically, PBCV-1 factories consist of a network of single membrane bilayers acting as capsid templates in the central region, and viral genomes spread throughout the host cytoplasm but excluded from the membrane-containing sites. In sharp contrast, factories generated by Mimivirus have viral genomes in their core, with membrane biogenesis region located at their periphery. Yet, all viral factories appear to share structural features that are essential for their function. In addition, our studies support the notion that PBCV-1 infection, which was recently reported to result in significant pathological outcomes in humans and mice, proceeds through a bacteriophage-like infection pathway.
2015
-
(2015) Proceedings of the National Academy of Sciences of the United States of America. 112, 44, p. E6028-E6037 Abstract
Predators feed on prey to acquire the nutrients necessary to sustain their survival, growth, and replication. In Bdellovibrio bacteriovorus, an obligate predator of Gram-negative bacteria, cell growth and replication are tied to a shift from a motile, free-living phase of search and attack to a sessile, intracellular phase of growth and replication during which a single prey cell is consumed. Engagement and sustenance of growth are achieved through the sensing of two unidentified prey-derived cues. We developed a novel ex vivo cultivation system for B. bacteriovorus composed of prey ghost cells that are recognized and invaded by the predator. By manipulating their content, we demonstrated that an early cue is located in the prey envelope and a late cue is found within the prey soluble fraction. These spatially and temporally separated cues elicit discrete and combinatory regulatory effects on gene transcription. Together, they delimit a poorly characterized transitory phase between the attack phase and the growth phase, during which the bdelloplast (the invaded prey cell) is constructed. This transitory phase constitutes a checkpoint in which the late cue presumably acts as a determinant of the prey's nutritional value before the predator commits. These regulatory adaptations to a unique bacterial lifestyle have not been reported previously.
-
(2015) The Journal of Cell Biology. 211, 1, p. 191-203 Abstract
Fusion of individual myoblasts to form multinucleated myofibers constitutes a widely conserved program for growth of the somatic musculature. We have used electron microscopy methods to study this key form of cell-cell fusion during development of the indirect flight muscles (IFMs) of Drosophila melanogaster. We find that IFM myoblast-myotube fusion proceeds in a stepwise fashion and is governed by apparent cross talk between transmembrane and cytoskeletal elements. Our analysis suggests that cell adhesion is necessary for bringing myoblasts to within a minimal distance from the myotubes. The branched actin polymerization machinery acts subsequently to promote tight apposition between the surfaces of the two cell types and formation of multiple sites of cell-cell contact, giving rise to nascent fusion pores whose expansion establishes full cytoplasmic continuity. Given the conserved features of IFM myogenesis, this sequence of cell interactions and membrane events and the mechanistic significance of cell adhesion elements and the actin-based cytoskeleton are likely to represent general principles of the myoblast fusion process.
-
(2015) Cell Reports. 12, 1, p. 7-14 Abstract
Communication between organelles is crucial for eukaryotic cells to function as one coherent unit. Animportant means of communication is through membrane contact sites, where two organelles come into close proximity allowing the transport of lipids and small solutes between them. Contact sites are dynamic in size and can change in response to environmental or cellular stimuli; however, how this is regulated has been unclear. Here, we show that Saccharomyces cerevisiae Lam6 resides in several central contact sites: ERMES (ER/mitochondria encounter structure), vCLAMP (vacuole and mitochondria patch), and NVJ (nuclear vacuolar junction). Weshow that Lam6 is sufficient for expansion of contact sites under physiological conditions and necessary for coordination of contact site size. Given that Lam6 is part of a large protein family and is conserved in vertebrates, our work opens avenues for investigating the underlying principles of organelle communication.
-
(2015) Journal of the American Chemical Society. 137, 23, p. 7429-7440 Abstract
The unique properties of carbon nanotubes (CNT) are advantageous for emerging applications. Yet, the CNT insolubility hampers their potential. Approaches based on covalent and noncovalent methodologies have been tested to realize stable dispersions of CNTs. Noncovalent approaches are of particular interest as they preserve the CNTs structures and properties. We report on hybrids, in which perylene diimide (PDI) amphiphiles are noncovalently immobilized onto single wall carbon nanotubes (SWCNT). The resulting hybrids were dispersed and exfoliated both in water and organic solvents in the presence of two different PDI derivatives, PP2b and PP3a. The dispersions were investigated using cryogenic transmission electron microscopy (cryo-TEM), providing unique structural insights into the exfoliation. A helical arrangement of PP2b assemblies on SWCNTs dominates in aqueous dispersions, while a single layer of PP2b and PP3a was found on SWCNTs in organic dispersions. The dispersions were probed by steady-state and time-resolved spectroscopies, revealing appreciable charge redistribution in the ground state, and an efficient electron transfer from SWCNTs to PDIs in the excited state. We also fabricated hybrid materials from the PP2b/SWCNT dispersions. A supramolecular membrane was prepared from aqueous dispersions and used for size-selective separation of gold nanoparticles. Hybrid buckypaper films were prepared from the organic dispersions. In the latter, high conductivity results from enhanced electronic communication and favorable morphology within the hybrid material. Our findings shed light onto SWCNT/dispersant molecular interactions, and introduce a versatile approach toward universal solution processing of SWCNT-based materials.
-
(2015) Nature Communications. 6, 7193. Abstract
Cell-wall peptidoglycan (PG) of Gram-positive bacteria is a strong and elastic multi-layer designed to resist turgor pressure and determine the cell shape and growth. Despite its crucial role, its architecture remains largely unknown. Here using high-resolution multiparametric atomic force microscopy (AFM), we studied how the structure and elasticity of PG change when subjected to increasing turgor pressure in live Group B Streptococcus. We show a new net-like arrangement of PG, which stretches and stiffens following osmotic challenge. The same structure also exists in isogenic mutants lacking surface appendages. Cell aging does not alter the elasticity of the cell wall, yet destroys the net architecture and exposes single segmented strands with the same circumferential orientation as predicted for intact glycans. Together, we show a new functional PG architecture in live Gram-positive bacteria.
-
(2015) Plant Physiology. 167, 4, p. 1554-1565 Abstract
During desiccation, homoiochlorophyllous resurrection plants retain most of their photosynthetic apparatus, allowing them to resume photosynthetic activity quickly upon water availability. These plants rely on various mechanisms to prevent the formation of reactive oxygen species and/or protect their tissues from the damage they inflict. In this work, we addressed the issue of how homoiochlorophyllous resurrection plants deal with the problem of excessive excitation/electron pressures during dehydration using Craterostigma pumilum as a model plant. To investigate the alterations in the supramolecular organization of photosynthetic protein complexes, we examined cryoimmobilized, freeze-fractured leaf tissues using (cryo)scanning electron microscopy. These examinations revealed rearrangements of photosystem II (PSII) complexes, including a lowered density during moderate dehydration, consistent with a lower level of PSII proteins, as shown by biochemical analyses. The latter also showed a considerable decrease in the level of cytochrome f early during dehydration, suggesting that initial regulation of the inhibition of electron transport is achieved via the cytochrome b6f complex. Upon further dehydration, PSII complexes are observed to arrange into rows and semicrystalline arrays, which correlates with the significant accumulation of sucrose and the appearance of inverted hexagonal lipid phases within the membranes. As opposed to PSII and cytochrome f, the light-harvesting antenna complexes of PSII remain stable throughout the course of dehydration. Altogether, these results, along with photosynthetic activity measurements, suggest that the protection of retained photosynthetic components is achieved, at least in part, via the structural rearrangements of PSII and (likely) light-harvesting antenna complexes into a photochemically quenched state.
2014
-
(2014) Journal of the American Chemical Society. 136, 26, p. 9443-9452 Abstract
Achieving supramolecular polymerization based on strong yet reversible bonds represents a significant challenge. A solution may be offered by perfluoroalkyl groups, which have remarkable hydrophobicity. We tested the idea that a perfluorooctyl chain attached to a perylene diimide amphiphile can dramatically enhance the strength of supramolecular bonding in aqueous environments. Supramolecular structures and polymerization thermodynamics of this fluorinated compound (1-F) were studied in comparison to its non-fluorinated analogue (1-H). Depending on the amount of organic cosolvent, 1-F undergoes cooperative or isodesmic aggregation. The switching between two polymerization mechanisms results from a change in polymer structure, as observed by cryogenic electron microscopy. 1-F showed exceptionally strong noncovalent binding, with the largest directly measured association constant of 1.7 X 10(9) M-1 in 75:25 water/THF mixture (v/v). In pure water, the association constant of 1-F is estimated to be at least in the order of 10(15) M-1 (based on extrapolation), 3 orders of magnitude larger than that of 1-H. The difference in aggregation strength between 1-F and 1-H can be explained solely on the basis of the larger surface area of the fluorocarbon group, rather than a unique nature of fluorocarbon hydrophobicity. However, differences in aggregation mechanism and cooperativity exhibited by 1-F appear to result from specific fluorocarbon conformational rigidity.
-
(2014) Plant Physiology. 164, 4, p. 2139-2156 Abstract
The halotolerant microalgae Dunaliella bardawil accumulates under nitrogen deprivation two types of lipid droplets: plastoglobuli rich in beta-carotene (beta C-plastoglobuli) and cytoplasmatic lipid droplets (CLDs). We describe the isolation, composition, and origin of these lipid droplets. Plastoglobuli contain beta-carotene, phytoene, and galactolipids missing in CLDs. The two preparations contain different lipid-associated proteins: major lipid droplet protein in CLD and the Prorich carotene globule protein in beta C-plastoglobuli. The compositions of triglyceride (TAG) molecular species, total fatty acids, and sn-1+ 3 and sn-2 positions in the two lipid pools are similar, except for a small increase in palmitic acid in plastoglobuli, suggesting a common origin. The formation of CLD TAG precedes that of beta C-plastoglobuli, reaching a maximum after 48 h of nitrogen deprivation and then decreasing. Palmitic acid incorporation kinetics indicated that, at early stages of nitrogen deprivation, CLD TAG is synthesized mostly from newly formed fatty acids, whereas in beta C-plastoglobuli, a large part of TAG is produced from fatty acids of preformed membrane lipids. Electron microscopic analyses revealed that CLDs adhere to chloroplast envelope membranes concomitant with appearance of small beta C-plastoglobuli within the chloroplast. Based on these results, we propose that CLDs in D. bardawil are produced in the endoplasmatic reticulum, whereas beta C-plastoglobuli are made, in part, from hydrolysis of chloroplast membrane lipids and in part, by a continual transfer of TAG or fatty acids derived from CLD.
-
(2014) Proceedings of the National Academy of Sciences of the United States of America. 111, 1, p. 39-44 Abstract
Sea urchin larvae have an endoskeleton consisting of two calcitic spicules. We reconstructed various stages of the formation pathway of calcium carbonate from calcium ions in sea water to mineral deposition and integration into the forming spicules. Monitoring calcium uptake with the fluorescent dye calcein shows that calcium ions first penetrate the embryo and later are deposited intracellularly. Surprisingly, calcium carbonate deposits are distributed widely all over the embryo, including in the primary mesenchyme cells and in the surface epithelial cells. Using cryo- SEM, we show that the intracellular calcium carbonate deposits are contained in vesicles of diameter 0.5-1.5 μm. Using the newly developed airSEM, which allows direct correlation between fluorescence and energy dispersive spectroscopy, we confirmed the presence of solid calcium carbonate in the vesicles. This mineral phase appears as aggregates of 20-30-nm nanospheres, consistent with amorphous calcium carbonate. The aggregates finally are introduced into the spicule compartment, where they integrate into the growing spicule.
2013
-
(2013) Langmuir. 29, 47, p. 14595-14602 Abstract
Crystallization of the malaria pigment hemozoin sequesters the toxic heme byproduct of hemoglobin digestion in Plasmodium-infected red blood cells (RBCs). Recently, we applied electron and X-ray imaging and diffraction methods to elucidate this process. We observed crystals oriented with their {100} faces at the inner membrane surface of the digestive vacuole (DV) of Plasmodium falciparum in parasitized RBCs. Modeling of the soft X-ray tomographic (SXT) images of a trophozoite-stage parasite indicated a 4-16 nm DV membrane thickness, suggesting a possible role for lipid multilayers. Here, we reanalyzed the trophozoite SXT images quantitatively via X-ray absorption to map the DV membrane thickness. Making use of the chemical structure and crystal density of the lipid, we found, predominantly, a bilayer 4.2 nm thick, and the remainder was interpreted as patches ∼8 nm thick. Image analysis of electron micrographs also yielded a 4-5 nm DV membrane thickness. The DV lipid membrane is thus mainly a bilayer, so induced hemozoin nucleation occurs primarily via the inner of the membrane's two leaflets. We argue that such a leaflet embodying mono- and di-acyl lipids with appropriate OH or NH bearing head groups may catalyse hemozoin nucleation by stereochemical and lattice match to the {100} crystal face, involving a two-dimensional nucleation aggregate of ∼100 molecules.
-
(2013) Journal of Biological Chemistry. 288, 35, p. 25659-25667 Abstract
Background: Genome-wide homology search is inconsistent with the emerging view of bacterial genome morphology. Results: Stress-induced genome condensation proceeds through nonrandom convergence of sister chromosomes that culminates in spatial proximity of homologous sites. Conclusion: Chromosome convergence enables repair of double strand DNA breaks. Significance: Exposure to diverse stressful conditions primes bacteria to cope with detrimental DNA lesions.
-
(2013) Biomaterials. 34, 22, p. 5465-5475 Abstract
Phosphatidylcholine (PC) vesicles have been shown to have remarkable boundary lubricating properties under physiologically-high pressures. Here we carry out a systematic study, using a surface force balance, of the normal and shear (frictional) forces between two opposing surfaces bearing different PC vesicles across water, to elucidate the origin of these properties. Small unilamellar vesicles (SUVs, diameters
-
(2013) Environmental Microbiology. 15, 6, p. 1786-1794 Abstract[All authors]
Biofilms are consortia of bacteria that are held together by an extracellular matrix. Cyanobacterial biofilms, which are highly ubiquitous and inhabit diverse niches, are often associated with biological fouling and cause severe economic loss. Information on the molecular mechanisms underlying biofilm formation in cyanobacteria is scarce. We identified a mutant of the cyanobacterium Synechococcus elongatus, which unlike the wild type, developed biofilms. This biofilm-forming phenotype is caused by inactivation of homologues of type II secretion /type IV pilus assembly systems and is associated with impairment of protein secretion. The conditioned medium from a wild-type culture represses biofilm formation by the secretion-mutants. This suggested that the planktonic nature of the wild-type strain is a result of a self-suppression mechanism, which depends on the deposition of a factor to the extracellular milieu. We also identified two genes that are essential for biofilm formation. Transcript levels of these genes are elevated in the mutant compared with the wild type, and are initially decreased in mutant cells cultured in conditioned medium of wild-type cells. The particular niche conditions will determine whether the inhibitor will accumulate to effective levels and thus the described mechanism allows switching to a sessile mode of existence.
-
(2013) PLoS Pathogens. 9, 5, Abstract
Although extensively studied, the structure, cellular origin and assembly mechanism of internal membranes during viral infection remain unclear. By combining diverse imaging techniques, including the novel Scanning-Transmission Electron Microscopy tomography, we elucidate the structural stages of membrane biogenesis during the assembly of the giant DNA virus Mimivirus. We show that this elaborate multistage process occurs at a well-defined zone localized at the periphery of large viral factories that are generated in the host cytoplasm. Membrane biogenesis is initiated by fusion of multiple vesicles, similar to 70 nm in diameter, that apparently derive from the host ER network and enable continuous supply of lipid components to the membrane-assembly zone. The resulting multivesicular bodies subsequently rupture to form large open single-layered membrane sheets from which viral membranes are generated. Membrane generation is accompanied by the assembly of icosahedral viral capsids in a process involving the hypothetical major capsid protein L425 that acts as a scaffolding protein. The assembly model proposed here reveals how multiple Mimivirus progeny can be continuously and efficiently generated and underscores the similarity between the infection cycles of Mimivirus and Vaccinia virus. Moreover, the membrane biogenesis process indicated by our findings provides new insights into the pathways that might mediate assembly of internal viral membranes in general.
-
(2013) PLoS ONE. 8, 5, e63188. Abstract
Membrane separation of biomolecules and their application in biocatalysis is becoming increasingly important for biotechnology, demanding the development of new biocompatible materials with novel properties. In the present study, an entirely noncovalent water-based material is used as a membrane for size-selective separation, immobilization, and biocatalytic utilization of proteins. The membrane shows stable performance under physiological conditions, allowing filtration of protein mixtures with a 150 kDa molecular weight cutoff (∼8 nm hydrodynamic diameter cutoff). Due to the biocompatibility of the membrane, filtered proteins stay functionally active and retained proteins can be partially recovered. Upon filtration, large enzymes become immobilized within the membrane. They exhibit stable activity when subjected to a constant flux of substrates for prolonged periods of time, which can be used to carry out heterogeneous biocatalysis. The noncovalent membrane material can be easily disassembled, purified, reassembled, and reused, showing reproducible performance after recycling. The robustness, recyclability, versatility, and biocompatibility of the supramolecular membrane may open new avenues for manipulating biological systems.
-
(2013) Journal of Structural Biology. 181, 1, p. 77-81 Abstract
Soft X-ray cryo-microscopy (cryo-XT) offers an ideal complement to electron cryo-microscopy (cryo-EM). Cryo-XT is applicable to samples more than an order of magnitude thicker than cryo-EM, albeit at a more modest resolution of tens of nanometers. Furthermore, the natural contrast obtained in the "water-window" by differential absorption by organic matter vs water yields detailed images of organelles, membranes, protein complexes, and other cellular components. Cryo-XT is thus ideally suited for tomography of eukaryotic cells. The increase in sample thickness places more stringent demands on sample preparation, however. The standard method for cryo-EM, i.e., plunging to a cryogenic fluid such as liquid ethane, is no longer ideally suited to obtain vitrification of thick samples for cryo-XT. High pressure freezing is an alternative approach, most closely associated with freeze-substitution and embedding, or with electron cryo-microscopy of vitreous sections (CEMOVIS). We show here that high pressure freezing can be adapted to soft X-ray tomography of whole vitrified samples, yielding a highly reliable method that avoids crystallization artifacts and potentially offers improved imaging conditions in samples not amenable to plunge-freezing.
2012
-
(2012) Journal of Phycology. 48, 5, p. 1209-1219 Abstract
Astaxanthin-rich oil globules in Haematococcus pluvialis display rapid light-induced peripheral migration that is unique to this organism and serves to protect the photosynthetic system from excessive light. We observed rapid light-induced peripheral migration that is associated with chlorophyll fluorescence quenching, whereas the recovery was slow. A simple assay to follow globule migration, based on chlorophyll fluorescence level has been developed. Globule migration was induced by high intensity blue light, but not by high intensity red light. The electron transport inhibitor dichlorophenyl-dimethylurea did not inhibit globule migration, whereas the quinone analog (dibromo-methyl-isopropylbenzoquinone), induced globule migration even at low light. Actin microfilament-directed toxins, such as cytochalasin B and latrunculin A, inhibited the light-induced globule migration, whereas toxins against microtubules were ineffective. Electron microscopic (EM) imaging confirmed the cytoplasmic localization and peripheral migration of globules upon exposure to very high light (VHL). Scanning EM of freeze-fractured cells also revealed globules within cytoplasmic bridges traversing the chloroplast, presumably representing the pathway of migration. Close alignments of globules with endoplasmic reticulum (ER) membranes were also observed following VHL illumination. We propose that light-induced globule migration is regulated by the redox state of the photosynthetic electron transport system. Possible mechanisms of actin-based globule migration are discussed.
-
(2012) PLoS Pathogens. 8, 9, Abstract
Cationic antimicrobial peptides (CAMPs) serve as the first line of defense of the innate immune system against invading microbial pathogens. Gram-positive bacteria can resist CAMPs by modifying their anionic teichoic acids (TAs) with D-alanine, but the exact mechanism of resistance is not fully understood. Here, we utilized various functional and biophysical approaches to investigate the interactions of the human pathogen Group B Streptococcus (GBS) with a series of CAMPs having different properties. The data reveal that: (i) D-alanylation of lipoteichoic acids (LTAs) enhance GBS resistance only to a subset of CAMPs and there is a direct correlation between resistance and CAMPs length and charge density; (ii) resistance due to reduced anionic charge of LTAs is not attributed to decreased amounts of bound peptides to the bacteria; and (iii) Dalanylation most probably alters the conformation of LTAs which results in increasing the cell wall density, as seen by Transmission Electron Microscopy, and reduces the penetration of CAMPs through the cell wall. Furthermore, Atomic Force Microscopy reveals increased surface rigidity of the cell wall of the wild-type GBS strain to more than 20-fold that of the dltA mutant. We propose that D-alanylation of LTAs confers protection against linear CAMPs mainly by decreasing the flexibility and permeability of the cell wall, rather than by reducing the electrostatic interactions of the peptide with the cell surface. Overall, our findings uncover an important protective role of the cell wall against CAMPs and extend our understanding of mechanisms of bacterial resistance.
-
(2012) Proceedings of the National Academy of Sciences of the United States of America. 109, 28, p. 11188-11193 Abstract
Heme detoxification is a critical step in the life cycle of malariaca-using parasites, achieved by crystallization into physiologically insoluble hemozoin. The mode of nucleation has profound implications for understanding the mechanism of action of antimalarial drugs that inhibit hemozoin growth. Several lines of evidence point to involvement of acylglycerol lipids in the nucleation process. Hemozoin crystals have been reported to form within lipid nanospheres; alternatively, it has been found in vitro that they are nucleated at an acylglycerol lipid-water interface.We have applied cryogenic soft X-ray tomography and three-dimensional electron microscopy to address the location and orientation of hemozoin crystals within the digestive vacuole (DV), as a signature of their nucleation and growth processes. Cryogenic soft X-ray tomography in the "water window" is particularly advantageous because contrast generation is based inherently on atomic absorption. We find that hemozoin nucleation occurs at the DV inner membrane, with crystallization occurring in the aqueous rather than lipid phase. The crystal morphology indicates a common {100} orientation facing the membrane as expected of templated nucleation. This is consistent with conclusions reached by X-ray fluorescence and diffraction in a companion work. Uniform dark spheres observed in the parasite were identified as hemoglobin transport vesicles. Their analysis supports a model of hemozoin nucleation primarily in the DV. Modeling of the contrast at the DV membrane indicates a 4-nm thickness with patches about three times thicker, possibly implicated in the nucleation.
-
(2012) Plant Cell. 24, 3, p. 1143-1157 Abstract
Chloroplasts of higher plants develop from proplastids, which are undifferentiated plastids that lack photosynthetic (thylakoid) membranes. In flowering plants, the proplastid-chloroplast transition takes place at the shoot apex, which consists of the shoot apical meristem (SAM) and the flanking leaf primordia. It has been believed that the SAM contains only proplastids and that these become chloroplasts only in the primordial leaves. Here, we show that plastids of the SAM are neither homogeneous nor necessarily null. Rather, their developmental state varies with the specific region and/or layer of the SAM in which they are found. Plastids throughout the L1 and L3 layers of the SAM possess fairly developed thylakoid networks. However, many of these plastids eventually lose their thylakoids during leaf maturation. By contrast, plastids at the central, stem cell-harboring region of the L2 layer of the SAM lack thylakoid membranes; these appear only at the periphery, near the leaf primordia. Thus, plastids in the SAM undergo distinct differentiation processes that, depending on their lineage and position, lead to either development or loss of thylakoid membranes. These processes continue along the course of leaf maturation.
-
(2012) Environmental Microbiology. 14, 3, p. 680-690 Abstract
While tightly regulated, bacterial cell morphology may change substantially in response to environmental cues. Here we describe such changes in the cyanobacterium Synechococcus sp. strain PCC7942. Once maintained in stationary phase, these rod-shaped organisms stop dividing and elongate up to 50-fold. Increase in cell length of a thymidine-auxotroph strain upon thymidine starvation implies that inhibition of DNA replication underlies cell elongation. Elongation occurs under conditions of limiting phosphorus but sufficient nitrogen levels. Once proliferative conditions are restored, elongated cells divide asymmetrically instead of exhibiting the typical fission characterized by mid-cell constriction. The progeny are of length characteristic of exponentially growing cells and are proficient of further proliferation. We propose that the ability to elongate under conditions of cytokinesis arrest together with the rapid induction of cell division upon nutrient repletion represents a beneficial cellular mechanism operating under specific nutritional conditions.
2011
-
(2011) Proceedings of the National Academy of Sciences of the United States of America. 108, 50, p. 20248-20253 Abstract
The machinery that conducts the light-driven reactions of oxygenic photosynthesis is hosted within specialized paired membranes called thylakoids. In higher plants, the thylakoids are segregated into two morphological and functional domains called grana and stroma lamellae. A large fraction of the luminal volume of the granal thylakoids is occupied by the oxygen-evolving complex of photosystem II. Electron microscopy data we obtained on dark- and light-adapted Arabidopsis thylakoids indicate that the granal thylakoid lumen significantly expands in the light. Models generated for the organization of the oxygen-evolving complex within the granal lumen predict that the light-induced expansion greatly alleviates restrictions imposed on protein diffusion in this compartment in the dark. Experiments monitoring the redox kinetics of the luminal electron carrier plastocyanin support this prediction. The impact of the increase in protein mobility within the granal luminal compartment in the light on photosynthetic electron transport rates and processes associated with the repair of photodamaged photosystem II complexes is discussed.
-
(2011) Journal of Structural Biology. 175, 1, p. 21-30 Abstract
Lipid microdomains, also called lipid rafts, consisting of sphingolipids and cholesterol, play important roles in membrane trafficking and in signaling. Despite years of study of the composition, size, half-life and dynamic organization of these domains, many open questions remain about their precise characteristics. To address some of these issues, we have developed a new experimental approach involving the use of specific monoclonal antibodies as recognition tools. One such antibody was raised against a homogeneous, mixed, ordered monolayer phase comprised of 60:40. mol% cholesterol:C16-ceramide, and has been used previously to demonstrate the existence of C16-ceramide/cholesterol domains in the membranes of cultured cells. We now use a combination of quantitative fluorescence microscopy, immuno-transmission electron microscopy and immuno-scanning cryo-electron microscopy, optimized for the study of intracellular lipid antigens. In a variety of cultured cells, C16-ceramide/cholesterol structural domains were found at high levels in late endosomes and in the trans-Golgi network, but were not found at statistically significant levels in early endosomes, lysosomes or the endoplasmic reticulum. We discuss the relevance of these results to understanding the role of lipid lateral organization in biological membranes.
-
(2011) Cellular Microbiology. 13, 7, p. 967-977 Abstract
The deadliest form of human malaria is caused by the protozoan parasite Plasmodium falciparum. The complex life cycle of this parasite is associated with tight transcriptional regulation of gene expression. Nuclear positioning and chromatin dynamics may play an important role in regulating P. falciparum virulence genes. We have applied an emerging technique of electron microscopy to construct a 3D model of the parasite nucleus at distinct stages of development within the infected red blood cell. We have followed the distribution of nuclear pores and chromatin throughout the intra-erythrocytic cycle, and have found a striking coupling between the distributions of nuclear pores and chromatin organization. Pore dynamics involve clustering, biogenesis, and division among daughter cells, while chromatin undergoes stage-dependent changes in packaging. Dramatic changes in heterochromatin distribution coincide with a previously identified transition in gene expression and nucleosome positioning during the mid-to-late schizont phase. We also found a correlation between euchromatin positioning at the nuclear envelope and the local distribution of nuclear pores, as well as a dynamic nuclear polarity during schizogony. These results suggest that cyclic patterns in gene expression during parasite development correlate with gross changes in cellular and nuclear architecture.
-
(2011) Nature Nanotechnology. 6, 3, p. 141-146 Abstract
Most practical materials are held together by covalent bonds, which are irreversible. Materials based on noncovalent interactions can undergo reversible self-assembly, which offers advantages in terms of fabrication, processing and recyclability, but the majority of noncovalent systems are too fragile to be competitive with covalent materials for practical applications, despite significant attempts to develop robust noncovalent arrays. Here, we report nanostructured supramolecular membranes prepared from fibrous assemblies in water. The membranes are robust due to strong hydrophobic interactions, allowing their application in the size-selective separation of both metal and semiconductor nanoparticles. A thin (12 μm) membrane is used for filtration (∼5 nm cutoff), and a thicker (45 μm) membrane allows for size-selective chromatography in the sub-5 nm domain. Unlike conventional membranes, our supramolecular membranes can be disassembled using organic solvent, cleaned, reassembled and reused multiple times.
-
(2011) Polymers for Advanced Technologies. 22, 1, p. 133-138 Abstract
Two-dimensional porous networks self-assembled in solution are rare, while maintaining the solution-phase network structure upon casting on solid supports presents a major challenge. We report on oligoarylacetylene bearing amphiphilic perylene diimide moieties that self-assemble into a two-dimensional porous network in aqueous solution that can be cast on surfaces, while maintaining the porous structure. The networks were characterized by cryogenic electron microscopy (cryo-TEM and cryo-SEM), and by atomic force microscopy, revealing formation of thin porous films (4-nm thick). The network can be cast on various solid surfaces, preserving its solution-phase structure. The design motif utilizing an oligoarylacetylene backbone with interacting amphiphilic pendants appears to be of wide utility for formation of novel assembly patterns. Copyright (C) 2010 John Wiley & Sons, Ltd.
2010
-
(2010) Journal Of Physical Chemistry B. 114, 45, p. 14389-14396 Abstract
We report on the synthesis of organic dye-metal nanoparticle hybrids from two thiol-derivatized perylenediimide (PDI) ligands and 1.5 nm gold nanoparticles. The hybrids form spherical nanostructures when cast from 40% methanol/chloroform solution and toluene. The spherical aggregates are in the size range 50-230 nm in 40% MeOH/CHCl3 mixture and 100-400 nm in toluene solution, as evidenced by transmission electron microscopy (TEM). Scanning electron microscopy (SEM) measurements show that these spherical aggregates are vesicles with a hollow interior. The π-π interactions of the perylenediimides are the predominant driving force leading to the aggregation of the hybrids, whereby the sizes of the nanospheres can be regulated via the PDI linker moiety and solvent choice. Femtosecond transient absorption studies of the hybrids reveal complex photophysical behavior involving electron transfer from the gold nanoparticles to the PDI moieties. This study shows that the formation of well-defined hybrid nanostructures as well as tuning their sizes can be achieved through employing a combination of the capping ligand choice and regulating the solvophobic interactions between the ligands.
-
(2010) NMR in Biomedicine. 23, 5, p. 523-531 Abstract
The iron storage protein, ferritin, provides an important endogenous MRI contrast that can be used to determine the level of tissue iron. In recent years the impact of modulating ferritin expression on MRI contrast and relaxation rates was evaluated by several groups, using genetically modified cells, viral gene transfer and transgenic animals. This paper reports the follow-up of transgenic mice that chronically over-expressed the heavy chain of ferritin (h-ferritin) in liver hepatocytes (liver-hfer mice) over a period of 2 years, with the aim of investigating the long-term effects of elevated level of h-ferritin on MR signal and on the well-being of the mice. Analysis revealed that aging liver-hfer mice, exposed to chronic elevated expression of h-ferritin, have increased R2 values compared to WT. As expected for ferritin, R2 difference was strongly enhanced at high magnetic field. Histological analysis of these mice did not reveal liver changes with prolonged over expression of ferritin, and no differences could be detected in other organs. Furthermore, dietary iron supplementation significantly affected MRI contrast, without affecting animal wellbeing, for both wildtype and ferritin over expressing transgenic mice. These results suggest the safety of ferritin over-expression, and support the use of h-ferritin as a reporter gene for MRI.
-
(2010) Proceedings of the National Academy of Sciences of the United States of America. 107, 14, p. 6316-6321 Abstract[All authors]
The continuously forming fin bony rays of zebrafish represent a simple bone model system in which mineralization is temporally and spatially resolved. The mineralized collagen fibrils of the fin bones are identical in structure to those found in all known bone materials. We study the continuous mineralization process within the tissue by using synchrotron microbeam x-ray diffraction and small-angle scattering, combined with cryo-scanning electron microscopy. The former provides information on the mineral phase and the mineral particles size and shape, whereas the latter allows high-resolution imaging of native hydrated tissues. The integration of the two techniques demonstrates that new mineral is delivered and deposited as packages of amorphous calcium phosphate nanospheres, which transform into platelets of crystalline apatite within the collagen matrix.
-
(2010) Advanced Functional Materials. 20, 2, p. 320-329 Abstract
Biological photonic systems composed of anhydrous guanine crystals evolved separately in several taxonomie groups. Here, two such systems found in fish and spiders, both of which make use of anhydrous guanine crystal plates to produce structural colors, are examined. Measurements of the photoniccrystal structures using cryo-SEM show that the crystal plates in both fish skin and spider integument are ∼20-nm thick. The reflective unit in the fish comprises stacks of single plates alternating with ∼ 230-nm-thick cytoplasm layers. In the spiders the plates are formed as doublet crystals, cemented by 30-nm layers of amorphous guanine, and are stacked with ∼200nm of cytoplasm between crystal doublets. They achieve light reflective properties through the control of crystal morphology and stack dimensions, reaching similar efficiencies of light reflectivity in both fish skin and spider integument. The structure of guanine plates in spiders are compared with the more common situation in which guanine occurs in the form of relatively unorganized prismatic crystals, yielding a matt white coloration.
2009
-
(2009) Biophysical Journal. 97, 9, p. 2419-2428 Abstract
The assembly and budding of a new virus is a fundamental step in retroviral replication. Yet, despite substantial progress in the structural and biochemical characterization of retroviral budding, the underlying physical mechanism remains poorly understood, particularly with respect to the mechanism by which the virus overcomes the energy barrier associated with the formation of high membrane curvature during viral budding. Using atomic force, fluorescence, and transmission electron microscopy, we find that both human immunodeficiency virus and Moloney murine leukemia virus remodel the actin cytoskeleton of their host. These actin-filamentous structures assemble simultaneously with or immediately after the beginning of budding, and disappear as soon as the nascent virus is released from the cell membrane. Analysis of sections of cryopreserved virus-infected cells by transmission electron microscopy reveals similar actin filament structures emerging from every nascent virus. Substitution of the nucleocapsid domain implicated in actin binding by a leucine-zipper domain results in the budding of virus-like particles without remodeling of the cell's cytoskeleton. Notably, viruses carrying the modified nucleocapsid domains bud more slowly by an order of magnitude compared to the wild-type. The results of this study show that retroviruses utilize the cell cytoskeleton to expedite their assembly and budding.
-
(2009) Journal of the American Chemical Society. 131, 40, p. 14365-14373 Abstract
Design of an extensive supramolecular three-dimensional network that is both robust and adaptive represents a significant challenge. The molecular system PP2b based on a perylene diimide chromophore (PDI) decorated with polyethylene glycol groups self-assembles in aqueous media into extended supramolecular fibers that form a robust three-dimensional network resulting in gelation. The self-assembled systems were characterized by cryo-TEM, cryo-SEM, and rheological measurements. The gel possesses exceptional robustness and multiple stimuli-responsiveness. Reversible charging of PP2b allows for switching between the gel state and fluid solution that is accompanied by switching on and off the material's birefringence. Temperature triggered deswelling of the gel leads to the (reversible) expulsion of a large fraction of the aqueous solvent. The dual sensibility toward chemical reduction and temperature with a distinct and interrelated response to each of these stimuli is pertinent to applications in the area of adaptive functional materials. The gel also shows strong absorption of visible light and good exciton mobility (elucidated using femtosecond transient absorption), representing an advantageous light harvesting system.
-
(2009) Lipids In Photosynthesis. Wada H. & Murata N.(eds.). Vol. 30. p. 295-327 (trueAdvances in Photosynthesis and Respiration). Abstract
The primary events of oxygenic photosynthesis are carried out within intricate membrane lamellar systems called thylakoid networks. These networks, which are present in cyanobacteria, algae, and higher plants, accommodate all of the molecular complexes necessary for the light-driven reactions of photosynthesis and provide a medium for energy transduction. Here we describe the ultrastructure of thylakoid membranes and their three-dimensional organization in various organisms along the evolutionary tree. Along the way we discuss issues pertaining to the formation and maintenance of these membranes, the means by which they enable molecular traffic within and across them, and the manner by which they respond to short- and long-term variations in light conditions.
2008
-
-
(2008) Molecular Biology of the Cell. 19, 9, p. 3871-3884 Abstract
Lipid transport between intracellular organelles is mediated by vesicular and nonvesicular transport mechanisms and is critical for maintaining the identities of different cellular membranes. Nonvesicular lipid transport between the endoplasmic reticulum (ER) and the Golgi complex has been proposed to affect the lipid composition of the Golgi membranes. Here, we show that the integral ER-membrane proteins VAP-A and VAP-B affect the structural and functional integrity of the Golgi complex. Depletion of VAPs by RNA interference reduces the levels of phosphatidylinositol-4-phosphate (PI4P), diacylglycerol, and sphingomyelin in the Golgi membranes, and it leads to substantial inhibition of Golgi-mediated transport events. These effects are coordinately mediated by the lipid-transfer/binding proteins Nir2, oxysterol-binding protein (OSBP), and ceramide-transfer protein (CERT), which interact with VAPs via their FFAT motif. The effect of VAPs on PI4P levels is mediated by the phosphatidylinositol/ phosphatidylcholine transfer protein Nir2, which is required for Golgi targeting of OSBP and CERT and the subsequent production of diacylglycerol and sphingomyelin. We propose that Nir2, OSBP, and CERT function coordinately at the ER-Golgi membrane contact sites, thereby affecting the lipid composition of the Golgi membranes and consequently their structural and functional identities.
-
(2008) Journal of Structural Biology. 162, 2, p. 290-300 Abstract
A key to understanding control over mineral formation in mollusk shells is the microenvironment inside the pre-formed 3-dimensional organic matrix framework where mineral forms. Much of what is known about nacre formation is from observations of the mature tissue. Although these studies have elucidated several important aspects of this process, the structure of the organic matrix and the microenvironment where the crystal nucleates and grows are very difficult to infer from observations of the mature nacre. Here, we use environmental- and cryo-scanning electron microscopy to investigate the organic matrix structure at the onset of mineralization in the nacre of two mollusk species: the bivalves Atrina rigida and Pinctada margaritifera. These two techniques allow the visualization of hydrated biological materials coupled with the preservation of the organic matrix close to physiological conditions. We identified a hydrated gel-like protein phase filling the space between two interlamellar sheets prior to mineral formation. The results are consistent with this phase being the silk-like proteins, and show that mineral formation does not occur in an aqueous solution, but in a hydrated gel-like medium. As the tablets grow, the silk-fibroin is pushed aside and becomes sandwiched between the mineral and the chitin layer.
-
(2008) PLoS Biology. 6, 5, p. 1104-1114 Abstract
Icosahedral double-stranded DNA viruses use a single portal for genome delivery and packaging. The extensive structural similarity revealed by such portals in diverse viruses, as well as their invariable positioning at a unique icosahedral vertex, led to the consensus that a particular, highly conserved vertex-portal architecture is essential for viral DNA translocations. Here we present an exception to this paradigm by demonstrating that genome delivery and packaging in the virus Acanthamoeba polyphaga mimivirus occur through two distinct portals. By using high-resolution techniques, including electron tomography and cryo-scanning electron microscopy, we show that Mimivirus genome delivery entails a large-scale conformational change of the capsid, whereby five icosahedral faces open up. This opening, which occurs at a unique vertex of the capsid that we coined the ''stargate'', allows for the formation of a massive membrane conduit through which the viral DNA is released. A transient aperture centered at an icosahedral face distal to the DNA delivery site acts as a non-vertex DNA packaging portal. In conjunction with comparative genomic studies, our observations imply a viral packaging pathway akin to bacterial DNA segregation, which might be shared by diverse internal membrane-containing viruses.
-
(2008) EMBO Journal. 27, 7, p. 1134-1144 Abstract[All authors]
The mechanism of function of the bacterial flagellar switch, which determines the direction of flagellar rotation and is essential for chemotaxis, has remained an enigma for many years. Here we show that the switch complex associates with the membrane-bound respiratory protein fumarate reductase (FRD). We provide evidence that FRD binds to preparations of isolated switch complexes, forms a 1:1 complex with the switch protein FliG, and that this interaction is required for both flagellar assembly and switching the direction of flagellar rotation. We further show that fumarate, known to be a clockwise/switch factor, affects the direction of flagellar rotation through FRD. These results not only uncover a new component important for switching and flagellar assembly, but they also reveal that FRD, an enzyme known to be primarily expressed and functional under anaerobic conditions in Escherichia coli, nonetheless, has important, unexpected functions under aerobic conditions.
-
(2008) Plant Cell. 20, 4, p. 1029-1039 Abstract
Adaptability of oxygenic photosynthetic organisms to fluctuations in light spectral composition and intensity is conferred by state transitions, short-term regulatory processes that enable the photosynthetic apparatus to rapidly adjust to variations in light quality. In green algae and higher plants, these processes are accompanied by reversible structural rearrangements in the thylakoid membranes. We studied these structural changes in the thylakoid membranes of Arabidopsis thaliana chloroplasts using atomic force microscopy, scanning and transmission electron microscopy, and confocal imaging. Based on our results and on the recently determined three-dimensional structure of higher-plant thylakoids trapped in one of the two major light-adapted states, we propose a model for the transitions in membrane architecture. The model suggests that reorganization of the membranes involves fission and fusion events that occur at the interface between the appressed (granal) and nonappressed (stroma lamellar) domains of the thylakoid membranes. Vertical and lateral displacements of the grana layers presumably follow these localized events, eventually leading to macroscopic rearrangements of the entire membrane network.
2007
-
(2007) Plant Physiology. 144, 3, p. 1407-1415 Abstract
Uptake of iron in the halotolerant alga Dunaliella salina is mediated by a transferrin-like protein ( TTf), which binds and internalizes Fe3(+) ions. Recently, we found that iron deficiency induces a large enhancement of iron binding, which is associated with accumulation of three other plasma membrane proteins that associate with TTf. In this study, we characterized the kinetic properties of iron binding and internalization and identified the site of iron internalization. Iron deficiency induces a 4-fold increase in Fe binding, but only 50% enhancement in the rate of iron uptake and also increases the affinity for iron and bicarbonate, a coligand for iron binding. These results indicate that iron deprivation leads to accumulation and modification of iron-binding sites. Iron uptake in iron-sufficient cells is preceded by an apparent time lag, resulting from prebound iron, which can be eliminated by unloading iron-binding sites. Iron is tightly bound to surface-exposed sites and hardly exchanges with medium iron. All bound iron is subsequently internalized. Accumulation of iron inhibits further iron binding and internalization. The vacuolar inhibitor bafilomycin inhibits iron uptake and internalization. Internalized iron was localized by electron microscopy within vacuolar structures that were identified as acidic vacuoles. Iron internalization is accompanied by endocytosis of surface proteins into these acidic vacuoles. A novel kinetic mechanism for iron uptake is proposed, which includes two pools of bound/compartmentalized iron separated by a rate-limiting internalization stage. The major parameter that is modulated by iron deficiency is the iron-binding capacity. We propose that excessive iron binding in iron-deficient cells serves as a temporary reservoir for iron that is subsequently internalized. This mechanism is particularly suitable for organisms that are exposed to large fluctuations in iron availability.
-
(2007) EMBO Journal. 26, 5, p. 1467-1473 Abstract
Cyanobacteria, the progenitors of plant and algal chloroplasts, enabled aerobic life on earth by introducing oxygenic photosynthesis. In most cyanobacteria, the photosynthetic membranes are arranged in multiple, seemingly disconnected, concentric shells. In such an arrangement, it is unclear how intracellular trafficking proceeds and how different layers of the photosynthetic membranes communicate with each other to maintain photosynthetic homeostasis. Using electron microscope tomography, we show that the photosynthetic membranes of two distantly related cyanobacterial species contain multiple perforations. These perforations, which are filled with particles of different sizes including ribosomes, glycogen granules and lipid bodies, allow for traffic throughout the cell. In addition, different layers of the photosynthetic membranes are joined together by internal bridges formed by branching and fusion of the membranes. The result is a highly connected network, similar to that of higher-plant chloroplasts, allowing water-soluble and lipid-soluble molecules to diffuse through the entire membrane network. Notably, we observed intracellular membrane-bounded vesicles, which were frequently fused to the photosynthetic membranes and may play a role in transport to these membranes.
2006
2005
-
(2005) Plant Cell. 17, 9, p. 2580-2586 Abstract
The light-harvesting and energy-transducing functions of the chloroplast are performed within an intricate lamellar system of membranes, called thylakoid membranes, which are differentiated into granum and stroma lamellar domains. Using dual-axis electron microscope tomography, we determined the three-dimensional organization of the chloroplast thylakoid membranes within cryo-immobilized, freeze-substituted lettuce (Lactuca sativa) leaves. We found that the grana are built of repeating units that consist of paired layers formed by bifurcations of stroma lamellar sheets, which fuse within the granum body. These units are rotated relative to each other around the axis of the granum cylinder. One of the layers that makes up the pair bends upwards at its edge and fuses with the layer above it, whereas the other layer bends in the opposite direction and merges with the layer below. As a result, each unit in the granum is directly connected to its neighbors as well as to the surrounding stroma lamellae. This highly connected morphology has important consequences for the formation and function of the thylakoid membranes as well as for their stacking/unstacking response to variations in light conditions.
2004
-
(2004) Journal of Bacteriology. 186, 11, p. 3525-3530 Abstract
Bacterial spores have long been recognized as the sturdiest known life forms on earth, revealing extraordinary resistance to a broad range of environmental assaults. A family of highly conserved spore-specific DNA-binding proteins, termed α/β-type small, acid-soluble spore proteins (SASP), plays a major role in mediating spore resistance. The mechanism by which these proteins exert their protective activity remains poorly understood, in part due to the lack of structural data on the DNA-SASP complex. By using cryoelectron microscopy, we have determined the structure of the helical complex formed between DNA and SspC, a characteristic member of the α/β-type SASP family. The protein is found to fully coat the DNA, forming distinct protruding domains, and to modify DNA structure such that it adopts a 3.2-nm pitch. The protruding SspC motifs allow for interdigitation of adjacent DNA-SspC filaments into a tightly packed assembly of nucleoprotein helices. By effectively sequestering DNA molecules, this dense assembly of filaments is proposed to enhance and complement DNA protection obtained by DNA saturation with the α/β-type SASP.
[All authors] -
(2004) Molecular Microbiology. 51, 2, p. 395-405 Abstract
The textbook view of the bacterial cytoplasm as an unstructured environment has been overturned recently by studies that highlighted the extent to which non-random organization and coherent motion of intracellular components are central for bacterial life-sustaining activities. Because such a dynamic order critically depends on continuous consumption of energy, it cannot be perpetuated in starved, and hence energy-depleted, stationary-state bacteria. Here, we show that, at the onset of the stationary state, bacterial chromatin undergoes a massive reorganization into ordered toroidal structures through a process that is dictated by the intrinsic properties of DNA and by the ubiquitous starvation-induced DMA-binding protein Dps. As starvation proceeds, the toroidal morphology acts as a structural template that promotes the formation of DNA-Dps crystalline assemblies through epitaxial growth. Within the resulting condensed assemblies, DNA is effectively protected by means of structural sequestration. We thus conclude that the transition from bacterial active growth to stationary phase entails a co-ordinated process, in which the energy-dependent dynamic order of the chromatin is sequentially substituted with an equilibrium crystalline order.
2003
-
(2003) Science. 299, 5604, p. 254-256 Abstract
The bacterium Deinococcus radiodurans survives ionizing irradiation and other DNA-damaging assaults at doses that are lethal to all other organisms. How D. radiodurans accurately reconstructs its genome from hundreds of radiationgenerated fragments in the absence of an intact template is unknown. Here we show that the D. radiodurans genome assumes an unusual toroidal morphology that may contribute to its radioresistance. We propose that, because of restricted diffusion within the tightly packed and laterally ordered DNA toroids, radiation-generated free DNA ends are held together, which may facilitate template-independent yet error-free joining of DNA breaks.
2002
-
(2002) Journal of Cell Biology. 159, 3, p. 403-410 Abstract
In Escherichia coli, ribosomes must interact with translocons on the membrane for the proper integration of newly synthesized membrane proteins, cotranslationally. Previous in vivo studies indicated that unlike the E. coli signal recognition particle (SRP), the SRP receptor FtsY is required for membrane targeting of ribosomes. Accordingly, a putative SRP-independent, FtsY-mediated ribosomal targeting pathway has been suggested (Herskovits, A.A., E.S. Bochkareva, and E. Bibi. 2000. Mol. Microbiol. 38:927-939). However, the nature of the early contact of ribosomes with the membrane, and the involvement of FtsY in this interaction are unknown. Here we show that in cells depleted of the SRP protein, Ffh or the translocon component SecE, the ribosomal targeting pathway is blocked downstream and unprecedented, membrane-bound FtsY-ribosomal complexes are captured. Concurrently, under these conditions, novel, ribosome-loaded intracellular membrane structures are formed. We propose that in the absence of a functional SRP or translocon, ribosomes remain jammed at their primary membrane docking site, whereas FtsY-dependent ribosomal targeting to the membrane continues. The accumulation of FtsY-ribosome complexes induces the formation of intracellular membranes needed for their quantitative accommodation. Our results with E. coli, in conjunction with recent observations made with the yeast Saccharomyces cerevisiae, raise the possibility that the SRP receptor-mediated formation of intracellular membrane networks is governed by evolutionarily conserved principles.
-
(2002) Nature Reviews Molecular Cell Biology. 3, 1, p. 50-60 Abstract
Much of the sophisticated chemistry of life is accomplished by multicomponent complexes, which act as molecular machines. Intrinsic to their accuracy and efficiency is the energy that is supplied by hydrolysis of nucleoside triphosphates. Conditions that deplete energy sources should therefore cause decay and death. But studies on organisms that are exposed to prolonged stress indicate that this fate could be circumvented through the formation of highly ordered intracellular assemblies. In these thermodynamically stable structures, vital components are protected by a physical sequestration that is independent of energy consumption.
2001
-
(2001) EMBO Journal. 20, 5, p. 1184-1191 Abstract
The enhanced stress resistance exhibited by starved bacteria represents a central facet of virulence, since nutrient depletion is regularly encountered by pathogens in their natural in vivo and ex vivo environments. Here we explore the notion that the regular stress responses, which are mediated by enzymatically catalyzed chemical transactions and promote endurance during the logarithmic growth phase, can no longer be effectively induced during starvation. We show that survival of bacteria in nutrient-depleted habitats is promoted by a novel strategy: finely tuned and fully reversible intracellular phase transitions. These nonenzymatic transactions, detected and studied in bacteria as well as in defined in vitro systems, result in DNA sequestration and generic protection within tightly packed and highly ordered assemblies. Since this physical mode of defense is uniquely independent of enzymatic activity or de novo protein synthesis, and consequently does not require energy consumption, it promotes virulence by enabling long-term bacterial endurance and enhancing antibiotic resistance in adverse habitats.
2000
-
(2000) Proceedings of the National Academy of Sciences of the United States of America. 97, 12, p. 6791-6796 Abstract
The inducible SOS response increases the ability of bacteria to cope with DNA damage through various DNA repair processes in which the RecA protein plays a central role. Here we present the first study of the morphological aspects that accompany the SOS response in Escherichia coli. We find that induction of the SOS system in wild-type bacteria results in a fast and massive intracellular coaggregation of RecA and DNA into a lateral macroscopic assembly. The coaggregates comprise substantial portions of both the cellular RecA and the DNA complement. The structural features of the coaggregates and their relation to in vitro RecA-DNA networks, as well as morphological studies of strains carrying RecA mutants, are all consistent with the possibility that the intracellular assemblies represent a functional entity in which RecA-mediated DNA repair and protection activities occur.