Publications
Mimivirus bradfordmassiliense (Mimivirus) is a giant virus that infects Acanthamoeba species opportunistic human pathogens. Long- and short-read sequencing were used to generate a de novo transcriptome of the host and followed the dynamics of both host and virus transcriptomes over the course of infection. The assembled transcriptome of the host included 22,604 transcripts and 13,043 genes, with N50 = 2,372 nucleotides. Functional enrichment analysis revealed major changes in the host transcriptome, namely, enrichment in downregulated genes associated with cytoskeleton homeostasis and DNA replication, repair, and nucleotide synthesis. These modulations, together with those implicated by other enriched processes, indicate cell cycle arrest, which was demonstrated experimentally. We also observed upregulation of host genes associated with transcription, secretory pathways and, as reported here for the first time, peroxisomes and the ubiquitin-proteasome system. In Mimivirus, the early stages of infection were marked by upregulated genes related to DNA replication, transcription, translation, and nucleotide metabolism, and in later stages, enrichment in genes associated with lipid metabolism, carbohydrates, and proteases. Some of the changes observed in the amoebal transcriptome likely point to Mimivirus infection causing dismantling of host cytoskeleton and translocation of endoplasmic reticulum membranes to viral factory areas.
Correction to: Nature Plantshttps://doi.org/10.1038/s41477-024-01628-9, published online 23 February 2024 In the version of the article initially published, there was an error in the protein orientations in Fig. 6, where the bulk orientation of the PSI did not face the stroma. This has now been amended in the HTML and PDF versions of the article.
The balance between linear electron transport (LET) and cyclic electron transport (CET) plays an essential role in plant adaptation and protection against photo-induced damage. This balance is largely maintained by phosphorylation-driven alterations in the PSIILHCII assembly and thylakoid membrane stacking. During the dark-to-light transition, plants shift this balance from CET, which prevails to prevent overreduction of the electron transport chain and consequent photo-induced damage, towards LET, which enables efficient CO2 assimilation and biomass production. Using freeze-fracture cryo-scanning electron microscopy and transmission electron microscopy of Arabidopsis leaves, we reveal unique membrane regions possessing characteristics of both stacked and unstacked regions of the thylakoid network that form during this transition. A notable consequence of the morphological attributes of these regions, which we refer to as stacked thylakoid doublets, is an overall increase in the proximity and connectivity of the two photosystems (PSI and PSII) that drive LET. This, in turn, reduces diffusion distances and barriers for the mobile carriers that transfer electrons between the two PSs, thereby maximizing LET and optimizing the plants ability to utilize light energy. The mechanics described here for the shift between CET and LET during the dark-to-light transition are probably also used during chromatic adaptation mediated by state transitions.
Cellular lineage tracking provides a means to observe population makeup at the clonal level, allowing exploration of heterogeneity, evolutionary and developmental processes and individual clones' relative fitness. It has thus contributed significantly to understanding microbial evolution, organ differentiation and cancer heterogeneity, among others. Its use, however, is limited because existing methods are highly specific, expensive, labour-intensive, and, critically, do not allow the repetition of experiments. To address these issues, we developed gUMI-BEAR (genomic Unique Molecular Identifier Barcoded Enriched Associated Regions), a modular, cost-effective method for tracking populations at high resolution. We first demonstrate the system's application and resolution by applying it to track tens of thousands of Saccharomyces cerevisiae lineages growing together under varying environmental conditions applied across multiple generations, revealing fitness differences and lineage-specific adaptations. Then, we demonstrate how gUMI-BEAR can be used to perform parallel screening of a huge number of randomly generated variants of the Hsp82 gene. We further show how our method allows isolation of variants, even if their frequency in the population is low, thus enabling unsupervised identification of modifications that lead to a behaviour of interest.
Grass pea (Lathyrus sativus L.) is a grain legume commonly grown in Asia and Africa for food and forage. It is a highly nutritious and robust crop, capable of surviving both droughts and floods. However, it produces a neurotoxic compound, β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP), which can cause a severe neurological disorder when consumed as a primary diet component. While the catalytic activity associated with β-ODAP formation was demonstrated more than 50 years ago, the enzyme responsible for this activity has not been identified. Here, we report on the identity, activity, 3D structure, and phylogenesis of this enzyme β-ODAP synthase (BOS). We show that BOS belongs to the BAHD superfamily of acyltransferases and is structurally similar to hydroxycinnamoyl transferases. Employing molecular docking, we propose a mechanism for its catalytic activity, and using heterologous expression in tobacco leaves (N. benthamiana), we demonstrate that expression of BOS in the presence of its substrates is sufficient for β-ODAP production in vivo. The identification of BOS may pave the way towards engineering β-ODAP-free grass pea cultivars, which are safe for human and animal consumption.
A group of vascular plants called homoiochlorophyllous resurrection plants evolved unique capabilities to protect their photosynthetic machinery against desiccation-induced damage. This study examined whether the ontogenetic status of the resurrection plant Craterostigma pumilum has an impact on how the plant responds to dehydration at the thylakoid membrane level to prepare cells for the desiccated state. Thus, younger plants (6 months) counterparts. Ultrastructural analysis provided evidence that younger plants suppressed senescence-like programs that are realized in older plants. During dehydration, older plants degrade specific subunits of the photosynthetic apparatus such as the D1 subunit of PSII and subunits of the cytochrome b6f complex. The latter leads to a controlled down-regulation of linear electron transport. In contrast, younger plants increased photoprotective high-energy quenching mechanisms and maintained a high capability to replace damaged D1 subunits. It follows that depending on the ontogenetic state, either more degradation-based or more photoprotective mechanisms are employed during dehydration of Craterostigma pumilum.
Oxalic acid is a small metabolite found in many plants. It serves as protection from herbivores, a chelator of metal ions, a regulator of calcium levels, and additional tasks. However, it is also a strong di-carboxylic acid that can compromise plant viability by reducing cellular pH. Several metabolic pathways have evolved to control oxalate levels in plants by enzymatic degradation. Among them is the pathway that utilizes oxalyl-CoA synthetase (OCS, EC 6.2.1.8) and ATP to convert oxalate to oxalyl-CoA. Oxalyl-CoA can then be degraded to CO or utilized as a precursor for the synthesis of other compounds. In grass pea (Lathyrus sativus L.), a grain legume grown in Asia and Africa for human and animal consumption, the neurotoxic compound β-N-oxalyl-l-α,β-diaminopropionic acid (β-ODAP) is synthesized from oxalyl-CoA and L-α,β-diaminopropionic acid (L-DAPA). Here, we report on the identification and characterization of oxalyl CoA-synthetase from grass pea (LsOCS). The gene encoding OCS was amplified from grass pea, and then expressed and purified from cells as an untagged, monomeric protein of 56 kDa. Its catalytic efficiency with oxalate, K oxalate M = 71.5 ± 13.3 μM, V max = 8.2 ± 0.8 μmole min -1 mg -1, was similar to that of OCS homologs from Arabidopsis thaliana (AtAAE3) and Medicago truncatula (MtAAE3). The enzyme was crystalized in complex with AMP and is the first OCS whose structure was determined in the thioester-forming conformation. Finally, we propose that substituting OCS with an oxalate oxidase or decarboxylase may reduce the levels of β-ODAP in grass pea.
Resurrection plants are a polyphyletic group of angiosperms which display true desiccation tolerance (DT) - the ability to survive near complete loss of cellular water for extended periods while recovering metabolic competence upon watering. This is achieved by employing tailored protection behaviours depending on the relative state of (de)hydration. Recent work has raised interest in desiccation-associated changes related to tissue destiny in desiccation tolerant vegetative tissues. Homoiochlorophyllous species, such as those in the Craterostigma genus, maintain their photosynthetic apparatus during the dehydration process, employing considerable protection thereof. In the current study, detailed phenotypic characterisation and pulse-amplitude modulated chlorophyll fluorometry were used to identify the critical water contents at which key physiological changes occur in leaves of Craterostigma pumilum and how this relates to desiccation-associated differentiation between Tip and Base tissues of leaf blades. This differentiation appeared to be realised only during early rehydration and after initial water movement through the leaf tissues. This work provides strong evidence for the existence of desiccation-associated tissue differentiation in C.pumilum and, potentially, other homoiochlorophyllous resurrection plants.
Information theoretic approaches are ubiquitous and effective in a wide variety of bioinformatics applications. In comparative genomics, alignment-free methods, based on short DNA words, or k-mers, are particularly powerful. We evaluated the utility of varying k-mer lengths for genome comparisons by analyzing their sequence space coverage of 5805 genomes in the KEGG GENOME database. In subsequent analyses on four k-mer lengths spanning the relevant range (11, 21, 31, 41), hierarchical clustering of 1634 genus-level representative genomes using pairwise 21- and 31-mer Jaccard similarities best recapitulated a phylogenetic/taxonomic tree of life with clear boundaries for superkingdom domains and high subtree similarity for named taxons at lower levels (family through phylum). By analyzing ~14.2M prokaryotic genome comparisons by their lowest-common-ancestor taxon levels, we detected many potential misclassification errors in a curated database, further demonstrating the need for wide-scale adoption of quantitative taxonomic classifications based on whole-genome similarity.
Plant photosynthetic (thylakoid) membranes are organized into complex networks that are differentiated into 2 distinct morphological and functional domains called grana and stroma lamellae. How the 2 domains join to form a continuous lamellar system has been the subject of numerous studies since the mid-1950s. Using different electron tomography techniques, we found that the grana and stroma lamellae are connected by an array of pitch-balanced right- and left-handed helical membrane surfaces of different radii and pitch. Consistent with theoretical predictions, this arrangement is shown to minimize the surface and bending energies of the membranes. Related configurations were proposed to be present in the rough endoplasmic reticulum and in dense nuclear matter phases theorized to exist in neutron star crusts, where the right- and left-handed helical elements differ only in their handedness. Pitch-balanced helical elements of alternating handedness may thus constitute a fundamental geometry for the efficient packing of connected layers or sheets.
Upon exposure to light, plant cells quickly acquire photosynthetic competence by converting pale etioplasts into green chloroplasts. This developmental transition involves the de novo biogenesis of the thylakoid system and requires reprogramming of metabolism and gene expression. Etioplast-to-chloroplast differentiation involves massive changes in plastid ultrastructure, but how these changes are connected to specific changes in physiology, metabolism, and expression of the plastid and nuclear genomes is poorly understood. Here, we describe a new experimental system in the dicotyledonous model plant tobacco (Nicotiana tabacum) that allows us to study the leaf deetiolation process at the systems level. We have determined the accumulation kinetics of photosynthetic complexes, pigments, lipids, and soluble metabolites and recorded the dynamic changes in plastid ultrastructure and in the nuclear and plastid transcriptomes. Our data describe the greening process at high temporal resolution, resolve distinct genetic and metabolic phases during deetiolation, and reveal numerous candidate genes that may be involved in light-induced chloroplast development and thylakoid biogenesis.
The earliest visual changes of leaf senescence occur in the chloroplast as chlorophyll is degraded and photosynthesis declines. Yet, a comprehensive understanding of the sequence of catabolic events occurring in chloroplasts during natural leaf senescence is still missing. Here, we combined confocal and electron microscopy together with proteomics and biochemistry to follow structural and molecular changes during Arabidopsis leaf senescence. We observed that initiation of chlorophyll catabolism precedes other breakdown processes. Chloroplast size, stacking of thylakoids, and efficiency of PSII remain stable until late stages of senescence, whereas the number and size of plastoglobules increase. Unlike catabolic enzymes, whose level increase, the level of most proteins decreases during senescence, and chloroplast proteins are overrepresented among these. However, the rate of their disappearance is variable, mostly uncoordinated and independent of their inherent stability during earlier developmental stages. Unexpectedly, degradation of chlorophyll-binding proteins lags behind chlorophyll catabolism. Autophagy and vacuole proteins are retained at relatively high levels, highlighting the role of extra-plastidic degradation processes especially in late stages of senescence. The observation that chlorophyll catabolism precedes all other catabolic events may suggest that this process enables or signals further catabolic processes in chloroplasts.
The vegetative tissues of resurrection plants are able to withstand severe protoplasmic dehydration and revive quickly upon rehydration. Resurrection species defined as homoiochlorophyllous retain most or part of their chlorophyll and photosynthetic complement in the dry state, and rely on various mechanisms to protect themselves against photo-damage. In this study, we investigated the changes in chlorophyll distribution, light absorption gradients as well as the alterations in ultrastructure that take place during dehydration of the homoiochlorophyllous species Craterostigma pumilum. Chlorophyll fluorescence profiles show that light absorption is attenuated in dry leaves, likely minimizing generation of reactive oxygen species. These are accompanied by changes that take place in the supramolecular organization of the photosynthetic protein complexes, and ordered functional adjustments of the photosynthetic apparatus, further lessening the excitation and electron pressures. Albeit these, the ultrastructural studies reveal that chloroplasts in dehydrated leaf tissues exhibit features indicative of oxidative stress, which are also reminiscent of senescing chloroplasts. These include mass proliferation of plastoglobules, variable degrees of thylakoid dismantling, as well as chloroplast fragmentation and seemingly vacuolar degradation of such fragments. In addition, unique vesicular structures between the two chloroplast envelope membranes were visualized, some of which appeared to detach from chloroplasts, likely en route to degradation. Together, the data indicate that homoiochlorophyllous resurrection species handle photo-induced damage during dehydration on two levels. Minimization of photo-damage is achieved by attenuation of light absorption and other photo-protective mechanisms. When this is insufficient and significant damage does occur, elimination of damaged components takes place via processes resembling senescence. Nevertheless, these processes are reversible, enabling the plants to avoid the terminal steps of senescence and, hence, to recover.
Previous studies conducted on flexible loop regions in proteins revealed that the energetic consequences of changing loop length predominantly arise from the entropic cost of ordering a loop during folding. However, in an earlier study of human acylphosphatase (hmAcP) using experimental and computational approaches, we showed that thermodynamic stabilization upon loop truncation can be attributed mainly to the increased entropy of the folded state. Here, using
15N NMR spectroscopy, we studied the effect of loop truncation on hmAcP backbone dynamics on the picosecond-nanosecond timescale with the aim of confirming the effect of folded state entropy on protein stability. NMR-relaxation-derived N-H squared generalized order parameters reveal that loop truncation results in a significant increase in protein conformational flexibility. Comparison of these results with previously acquired all-atom molecular dynamics simulation, analyzed here in terms of squared generalized NMR order parameters, demonstrates general agreement between the two methods. The NMR study not only provides direct evidence for the enhanced conformational entropy of the folded state of hmAcP upon loop truncation but also gives a quantitative measure of the observed effects.
Deg proteases are involved in protein quality control in prokaryotes. Of the three Arabidopsis (Arabidopsis thaliana) homologs, Deg1, Deg5, and Deg8, located in the thylakoid lumen, Deg1 forms a homohexamer, whereas Deg5 and Deg8 form a heterocomplex. Both Deg1 and Deg5-Deg8 were shown separately to degrade photosynthetic proteins during photoinhibition. To investigate whether Deg1 and Deg5-Deg8 are redundant, a full set of Arabidopsis Deg knockout mutants were generated and their phenotypes were compared. Under all conditions tested, deg1 mutants were affected more than the wild type and deg5 and deg8 mutants. Moreover, overexpression of Deg5-Deg8 could only partially compensate for the loss of Deg1. Comparative proteomics of deg1 mutants revealed moderate up-regulation of thylakoid proteins involved in photoprotection, assembly, repair, and housekeeping and down-regulation of those that form photosynthetic complexes. Quantification of protein levels in the wild type revealed that Deg1 was 2-fold more abundant than Deg5-Deg8. Moreover, recombinant Deg1 displayed higher in vitro proteolytic activity. Affinity enrichment assays revealed that Deg1 was precipitated with very few interacting proteins, whereas Deg5-Deg8 was associated with a number of thylakoid proteins, including D1, OECs, LHCBs, Cyt b6f, and NDH subunits, thus implying that Deg5-Deg8 is capable of binding substrates but is unable to degrade them efficiently. This work suggests that differences in protein abundance and proteolytic activity underlie the differential importance of Deg1 and Deg5-Deg8 protease complexes observed in vivo.
FtsZ proteins of the FtsZ1 and FtsZ2 families play important roles in the initiation and progression of plastid division in plants and green algae. Arabidopsis possesses a single FTSZ1 member and two FTSZ2 members, FTSZ2-1 and FTSZ2-2. The contribution of these to chloroplast division and partitioning has been mostly investigated in leaf mesophyll tissues. Here, we assessed the involvement of the three FtsZs in plastid division at earlier stages of chloroplast differentiation. To this end, we studied the effect of the absence of specific FtsZ proteins on plastids in the vegetative shoot apex, where the proplastid-to-chloroplast transition takes place. We found that the relative contribution of the two major leaf FtsZ isoforms, FtsZ1 and FtsZ2-1, to the division process varies with cell lineage and position within the shoot apex. While FtsZ2-1 dominates division in the L1 and L3 layers of the shoot apical meristem (SAM), in the L2 layer, FtsZ1 and FtsZ2-1 contribute equally toward the process. Depletion of the third isoform, FtsZ2-2, generally resulted in stronger effects in the shoot apex than those observed in mature leaves. The implications of these findings, along with additional observations made in this work, to our understanding of the mechanisms and regulation of plastid proliferation in the shoot apex are discussed.
In dicots, the key developmental process by which immature plastids differentiate into photosynthetically competent chloroplasts commences in the shoot apical meristem (SAM), within the shoot apex. Using laser-capture microdissection and single-cell RNA sequencing methodology, we studied the changes in the transcriptome along the chloroplast developmental pathway in the shoot apex of tomato seedlings. The analysis revealed the presence of transcripts for different chloroplast functions already in the stem cell-containing region of the SAM. Thereafter, an en masse up-regulation of genes encoding for various proteins occurs, including chloroplast ribosomal proteins and proteins involved in photosynthesis, photoprotection and detoxification of reactive oxygen species. The results highlight transcriptional events that operate during chloroplast biogenesis, leading to the rapid establishment of photosynthetic competence.
Phycobilisomes, the light-harvesting antennas of cyanobacteria, can adapt to a wide range of environments thanks to a composition and function response to stress conditions. We study how structural changes influence excitation transfer in these supercomplexes. Specifically, we show the influence of the rod length on the photon absorption and subsequent excitation transport to the core. Despite the fact that the efficiency of individual disks on the rod decreases with increasing rod length, we find an optimal length for which the average rod efficiency is maximal. Combining this study with experimental structural measurements, we propose models for the arrangement of the phycobiliproteins inside the thylakoid membranes, evaluate the importance of rod length, and predict the corresponding transport properties for different cyanobacterial species. This analysis, which links the functional and structural properties of full phycobilisome complexes, thus provides further rationales to help resolve their exact structure.
In this paper we propose an energy dissipation mechanism that is completely reliant on changes in the aggregation state of the phycobilisome light-harvesting antenna components. All photosynthetic organisms regulate the efficiency of excitation energy transfer (EET) to fit light energy supply to biochemical demands. Not many do this to the extent required of desert crust cyanobacteria. Following predawn dew deposition, they harvest light energy with maximum efficiency until desiccating in the early morning hours. In the desiccated state, absorbed energy is completely quenched. Time and spectrally resolved fluorescence emission measurements of the desiccated desert crust Leptolyngbya ohadii strain identified (i) reduced EET between phycobilisome components, (ii) shorter fluorescence lifetimes, and (iii) red shift in the emission spectra, compared with the hydrated state. These changes coincide with a loss of the ordered phycobilisome structure, evident from small-angle neutron and X-ray scattering and cryo-transmission electron microscopy data. Based on these observations we propose a model where in the hydrated state the organized rod structure of the phycobilisome supports directional EET to reaction centers with minimal losses due to thermal dissipation. In the desiccated state this structure is lost, giving way to more random aggregates. The resulting EET path will exhibit increased coupling to the environment and enhanced quenching.
Differential signaling of the type I interferon receptor (IFNAR) has been correlated with the ability of its subunit, IFNAR1, to differentially recognize a large spectrum of different ligands, which involves intricate conformational re-arrangements of multiple interacting domains. To shed light onto the structural determinants governing ligand recognition, we compared the force-induced unfolding of the IFNAR1 ectodomain when bound to interferon and when free, using the atomic force microscope and steered molecular dynamics simulations. Unexpectedly, we find that IFNAR1 is easier to mechanically unfold when bound to interferon than when free. Analysis of the structures indicated that the origin of the reduction in unfolding forces is a conformational change in IFNAR1 induced by ligand binding.
The cyanobacterium Synechocystis PCC 6803 possesses three Rieske isoforms: PetC1, PetC2 and PetC3. While PetC1 and PetC2 have been identified as alternative subunits of the cytochrome b(6)f complex (ben, PetC3 was localized exclusively within the plasma membrane. The spatial separation of PetC3 from the photosynthetic and respiratory protein complexes raises doubt in its involvement in bioenergetic electron transfer.Here we report a detailed structural and functional characterization of the cyanobacterial PetC3 protein family indicating that PetC3 is not a component of the b(6)f and the photosynthetic electron transport as implied by gene annotation. Instead PetC3 has a distinct function in cell envelope homeostasis. Especially proteomic analysis shows that deletion of petC3 in Synechocystis PCC 6803 primarily affects cell envelope proteins including many nutrient transport systems. Therefore, the observed downregulation in the photosynthetic electron transport mainly caused by photosystem 2 inactivation-might constitute a stress adaptation. Comprehensive in silico sequence analyses revealed that PetC3 proteins are periplasmic lipoproteins tethered to the plasma membrane with a subclass consisting of soluble periplasmic proteins, i.e. their N-terminal domain is inconsistent with their integration into the b(6)f . For the first time, the structure of PetC3 was determined by X-ray crystallography at an atomic resolution revealing significant high similarities to non-b(6)f Rieske subunits in contrast to PetC1. These results suggest that PetC3 affects processes in the periplasmic compartment that only indirectly influence photosynthetic electron transport. For this reason, we suggest to rename "Photosynthetic electron transport Chain 3" (PetC3) proteins as "periplasmic Rieske proteins" (Prp).
Small proteins characterized by a double-glycine (GG) secretion motif, typical of secreted bacterial antibiotics, are encoded by the genomes of diverse cyanobacteria, but their functions have not been investigated to date. Using a biofilm-forming mutant of Synechococcus elongatus PCC 7942 and a mutational approach, we demonstrate the involvement of four small secreted proteins and their GG-secretion motifs in biofilm development. These proteins are denoted EbfG1-4 (enable biofilm formation with a GG-motif). Furthermore, the conserved cysteine of the peptidase domain of the Synpcc7942_1133 gene product (dubbed PteB for peptidase transporter essential for biofilm) is crucial for biofilm development and is required for efficient secretion of the GG-motif containing proteins. Transcriptional profiling of ebfG1-4 indicated elevated transcript levels in the biofilm-forming mutant compared to wild type (WT). However, these transcripts decreased, acutely but transiently, when the mutant was cultured in extracellular fluids from a WT culture, and biofilm formation was inhibited. We propose that WT cells secrete inhibitor(s) that suppress transcription of ebfG1-4, whereas secretion of the inhibitor(s) is impaired in the biofilm-forming mutant, leading to synthesis and secretion of EbfG1-4 and supporting the formation of biofilms.
Cryo-scanning electron microscopy (SEM) of freeze-fractured samples allows investigation of biological structures at near native conditions. Here, we describe a technique for studying the supramolecular organization of photosynthetic (thylakoid) membranes within leaf samples. This is achieved by high-pressure freezing of leaf tissues, freeze-fracturing, double-layer coating and finally cryo-SEM imaging. Use of the double-layer coating method allows acquiring high magnification (>100,000X) images with minimal beam damage to the frozen-hydrated samples as well as minimal charging effects. Using the described procedures we investigated the alterations in supramolecular distribution of photosystem and lightharvesting antenna protein complexes that take place during dehydration of the resurrection plant Craterostigma pumilum, in situ.
Two LHC-like proteins, Photosystem II Subunit S (PSBS) and Light-Harvesting Complex Stress-Related (LHCSR), are essential for triggering excess energy dissipation in chloroplasts of vascular plants and green algae, respectively. The mechanism of quenching was studied in Physcomitrella patens, an early divergent streptophyta (including green algae and land plants) in which both proteins are active. PSBS was localized in grana together with photosystem II (PSII), but LHCSR was located mainly in stroma-exposed membranes together with photosystem I (PSI), and its distribution did not change upon high-light treatment. The quenched conformation can be preserved by rapidly freezing the high-light-treated tissues in liquid nitrogen. When using green fluorescent protein as an internal standard, 77K fluorescence emission spectra on isolated chloroplasts allowed for independent assessment of PSI and PSII fluorescence yield. Results showed that both photosystems underwent quenching upon high-light treatment in the wild type in contrast to mutants depleted of LHCSR, which lacked PSI quenching. Due to the contribution of LHCII, P. patens had a PSI antenna size twice as large with respect to higher plants. Thus, LHCII, which is highly abundant in stroma membranes, appears to be the target of quenching by LHCSR.
Biological desert sand crusts are the foundation of desert ecosystems, stabilizing the sands and allowing colonization by higher order organisms. The first colonizers of the desert sands are cyanobacteria. Facing the harsh conditions of the desert, these organisms must withstand frequent desiccation hydration cycles, combined with high light intensities. Here, we characterize structural and functional modifications to the photosynthetic apparatus that enable a cyanobacterium, Leptolyngbya sp., to thrive under these conditions. Using multiple in vivo spectroscopic and imaging techniques, we identified two complementary mechanisms for dissipating absorbed energy in the desiccated state. The first mechanism involves the reorganization of the phycobilisome antenna system, increasing excitonic coupling between antenna components. This provides better energy dissipation in the antenna rather than directed exciton transfer to the reaction center. The second mechanism is driven by constriction of the thylakoid lumen which limits diffusion of plastocyanin to P-700. The accumulation of P-700(+) not only prevents light-induced charge separation but also efficiently quenches excitation energy. These protection mechanisms employ existing components of the photosynthetic apparatus, forming two distinct functional modes. Small changes in the structure of the thylakoid membranes are sufficient for quenching of all absorbed energy in the desiccated state, protecting the photosynthetic apparatus from photoinhibitory damage. These changes can be easily reversed upon rehydration, returning the system to its high photosynthetic quantum efficiency.
During desiccation, homoiochlorophyllous resurrection plants retain most of their photosynthetic apparatus, allowing them to resume photosynthetic activity quickly upon water availability. These plants rely on various mechanisms to prevent the formation of reactive oxygen species and/or protect their tissues from the damage they inflict. In this work, we addressed the issue of how homoiochlorophyllous resurrection plants deal with the problem of excessive excitation/electron pressures during dehydration using Craterostigma pumilum as a model plant. To investigate the alterations in the supramolecular organization of photosynthetic protein complexes, we examined cryoimmobilized, freeze-fractured leaf tissues using (cryo)scanning electron microscopy. These examinations revealed rearrangements of photosystem II (PSII) complexes, including a lowered density during moderate dehydration, consistent with a lower level of PSII proteins, as shown by biochemical analyses. The latter also showed a considerable decrease in the level of cytochrome f early during dehydration, suggesting that initial regulation of the inhibition of electron transport is achieved via the cytochrome b6f complex. Upon further dehydration, PSII complexes are observed to arrange into rows and semicrystalline arrays, which correlates with the significant accumulation of sucrose and the appearance of inverted hexagonal lipid phases within the membranes. As opposed to PSII and cytochrome f, the light-harvesting antenna complexes of PSII remain stable throughout the course of dehydration. Altogether, these results, along with photosynthetic activity measurements, suggest that the protection of retained photosynthetic components is achieved, at least in part, via the structural rearrangements of PSII and (likely) light-harvesting antenna complexes into a photochemically quenched state.
Overreduction of the photosynthetic electron transport chain may severely damage the photosynthetic apparatus as well as other constituents of the chloroplast and the cell. Here, we exposed Arabidopsis leaves to saturating light either under normal atmospheric conditions or under CO2 and O2limiting conditions, which greatly increase excitation and electron pressures by draining terminal electron acceptors. The two treatments were found to have very different, often opposing, effects on the structure of the thylakoid membranes, including the width of the granal lumenal compartment. Modulation of the latter is proposed to be related to movements of ions across the thylakoid membrane, which alter the relative osmolarity of the lumen and stroma and affect the partitioning of the proton motive force into its electrical and osmotic components. The resulting changes in thylakoid organization and lumenal width should facilitate the repair of photodamaged photosystem II complexes in response to light stress under ambient conditions, but are expected to inhibit the repair cycle when the light stress occurs concurrently with CO2 and O2 depletion. Under the latter conditions, the changes in thylakoid structure are predicted to complement other processes that restrict the flow of electrons into the highpotential chain, thus moderating the production of deleterious reactive oxygen species at photosystem I.
A crucial component of protein homeostasis in cells is the repair of damaged proteins. The repair of oxygen-evolving photosystem II (PS II) supercomplexes in plant chloroplasts is a prime example of a very efficient repair process that evolved in response to the high vulnerability of PS II to photooxidative damage, exacerbated by high-light (HL) stress. Significant progress in recent years has unraveled individual components and steps that constitute the PS II repair machinery, which is embedded in the thylakoid membrane system inside chloroplasts. However, an open question is how a certain order of these repair steps is established and how unwanted back-reactions that jeopardize the repair efficiency are avoided. Here, we report that spatial separation of key enzymes involved in PS II repair is realized by subcompartmentalization of the thylakoid membrane, accomplished by the formation of stacked grana membranes. The spatial segregation of kinases, phosphatases, proteases, and ribosomes ensures a certain order of events with minimal mutual interference. The margins of the grana turn out to be the site of protein degradation, well separated from active PS II in grana core and de novo protein synthesis in unstacked stroma lamellae. Furthermore, HL induces a partial conversion of stacked grana core to grana margin, which leads to a controlled access of proteases to PS II. Our study suggests that the origin of grana in evolution ensures high repair efficiency, which is essential for PS II homeostasis.
The chromatophores of Rhodobacter (Rb.) sphaeroides represent a minimal bio-energetic system, which efficiently converts light energy into usable chemical energy. Despite extensive studies, several issues pertaining to the morphology and molecular architecture of this elemental energy conversion system remain controversial or unknown. To tackle these issues, we combined electron microscope tomography, immuno-electron microscopy and atomic force microscopy. We found that the intracellular Rb. sphaeroides chromatophores form a continuous reticulum rather than existing as discrete vesicles. We also found that the cytochrome bci complex localizes to fragile chromatophore regions, which most likely constitute the tubular structures that interconnect the vesicles in the reticulum. In contrast, the peripheral light-harvesting complex 2 (LH2) is preferentially hexagonally packed within the convex vesicular regions of the membrane network. Based on these observations, we propose that the bci complexes are in the inter-vesicular regions and surrounded by reaction center (RC) core complexes, which in turn are bounded by arrays of peripheral antenna complexes. This arrangement affords rapid cycling of electrons between the core and bci complexes while maintaining efficient excitation energy transfer from LH2 domains to the RCs.
Biofilms are consortia of bacteria that are held together by an extracellular matrix. Cyanobacterial biofilms, which are highly ubiquitous and inhabit diverse niches, are often associated with biological fouling and cause severe economic loss. Information on the molecular mechanisms underlying biofilm formation in cyanobacteria is scarce. We identified a mutant of the cyanobacterium Synechococcus elongatus, which unlike the wild type, developed biofilms. This biofilm-forming phenotype is caused by inactivation of homologues of type II secretion /type IV pilus assembly systems and is associated with impairment of protein secretion. The conditioned medium from a wild-type culture represses biofilm formation by the secretion-mutants. This suggested that the planktonic nature of the wild-type strain is a result of a self-suppression mechanism, which depends on the deposition of a factor to the extracellular milieu. We also identified two genes that are essential for biofilm formation. Transcript levels of these genes are elevated in the mutant compared with the wild type, and are initially decreased in mutant cells cultured in conditioned medium of wild-type cells. The particular niche conditions will determine whether the inhibitor will accumulate to effective levels and thus the described mechanism allows switching to a sessile mode of existence.
Entropic stabilization of native protein structures typically relies on strategies that serve to decrease the entropy of the unfolded state. Here we report, using a combination of experimental and computational approaches, on enhanced thermodynamic stability conferred by an increase in the configurational entropy of the folded state. The enhanced stability is observed upon modifications of a loop region in the enzyme acylphosphatase and is achieved despite significant enthalpy losses. The modifications that lead to increased stability, as well as those that result in destabilization, however, strongly compromise enzymatic activity, rationalizing the preservation of the native loop structure even though it does not provide the protein with maximal stability or kinetic foldability.
A dripping faucet is an example of an everyday system that exhibits surprisingly rich dynamics ranging from periodic to chaotic. Using a simple capacitive device, we experimentally demonstrate that the dynamics is determined by the degree of synchronization between two temporally disparate processes: the time at which a drop attains a critical mass and an oscillatory process that accompanies the formation of a drop. We present a full experimental phase-space reconstruction of the ensuing dynamics.
The process of oxygenic photosynthesis enabled and still sustains aerobic life on Earth. The most elaborate form of the apparatus that carries out the primary steps of this vital process is the one present in higher plants. Here, we review the overall composition and supramolecular organization of this apparatus, as well as the complex architecture of the lamellar system within which it is harbored. Along the way, we refer to the genetic, biochemical, spectroscopic and, in particular, microscopic studies that have been employed to elucidate the structure and working of this remarkable molecular energy conversion device. As an example of the highly dynamic nature of the apparatus, we discuss the molecular and structural events that enable it to maintain high photosynthetic yields under fluctuating light conditions. We conclude the review with a summary of the hypotheses made over the years about the driving forces that underlie the partition of the lamellar system of higher plants and certain green algae into appressed and non-appressed membrane domains and the segregation of the photosynthetic protein complexes within these domains.
While tightly regulated, bacterial cell morphology may change substantially in response to environmental cues. Here we describe such changes in the cyanobacterium Synechococcus sp. strain PCC7942. Once maintained in stationary phase, these rod-shaped organisms stop dividing and elongate up to 50-fold. Increase in cell length of a thymidine-auxotroph strain upon thymidine starvation implies that inhibition of DNA replication underlies cell elongation. Elongation occurs under conditions of limiting phosphorus but sufficient nitrogen levels. Once proliferative conditions are restored, elongated cells divide asymmetrically instead of exhibiting the typical fission characterized by mid-cell constriction. The progeny are of length characteristic of exponentially growing cells and are proficient of further proliferation. We propose that the ability to elongate under conditions of cytokinesis arrest together with the rapid induction of cell division upon nutrient repletion represents a beneficial cellular mechanism operating under specific nutritional conditions.
Chloroplasts of higher plants develop from proplastids, which are undifferentiated plastids that lack photosynthetic (thylakoid) membranes. In flowering plants, the proplastid-chloroplast transition takes place at the shoot apex, which consists of the shoot apical meristem (SAM) and the flanking leaf primordia. It has been believed that the SAM contains only proplastids and that these become chloroplasts only in the primordial leaves. Here, we show that plastids of the SAM are neither homogeneous nor necessarily null. Rather, their developmental state varies with the specific region and/or layer of the SAM in which they are found. Plastids throughout the L1 and L3 layers of the SAM possess fairly developed thylakoid networks. However, many of these plastids eventually lose their thylakoids during leaf maturation. By contrast, plastids at the central, stem cell-harboring region of the L2 layer of the SAM lack thylakoid membranes; these appear only at the periphery, near the leaf primordia. Thus, plastids in the SAM undergo distinct differentiation processes that, depending on their lineage and position, lead to either development or loss of thylakoid membranes. These processes continue along the course of leaf maturation.
Exposure of cyanobacterial or red algal cells to high light has been proposed to lead to excitonic decoupling of the phycobilisome antennae (PBSs) from the reaction centers. Here we show that excitonic decoupling of PBSs of Synechocystis sp. PCC 6803 is induced by strong light at wavelengths that excite either phycobilin or chlorophyll pigments. We further show that decoupling is generally followed by disassembly of the antenna complexes and/or their detachment from the thylakoid membrane. Based on a previously proposed mechanism, we suggest that local heat transients generated in the PBSs by non-radiative energy dissipation lead to alterations in thermo-labile elements, likely in certain rod and core linker polypeptides. These alterations disrupt the transfer of excitation energy within and from the PBSs and destabilize the antenna complexes and/or promote their dissociation from the reaction centers and from the thylakoid membranes. Possible implications of the aforementioned alterations to adaptation of cyanobacteria to light and other environmental stresses are discussed.
The machinery that conducts the light-driven reactions of oxygenic photosynthesis is hosted within specialized paired membranes called thylakoids. In higher plants, the thylakoids are segregated into two morphological and functional domains called grana and stroma lamellae. A large fraction of the luminal volume of the granal thylakoids is occupied by the oxygen-evolving complex of photosystem II. Electron microscopy data we obtained on dark- and light-adapted Arabidopsis thylakoids indicate that the granal thylakoid lumen significantly expands in the light. Models generated for the organization of the oxygen-evolving complex within the granal lumen predict that the light-induced expansion greatly alleviates restrictions imposed on protein diffusion in this compartment in the dark. Experiments monitoring the redox kinetics of the luminal electron carrier plastocyanin support this prediction. The impact of the increase in protein mobility within the granal luminal compartment in the light on photosynthetic electron transport rates and processes associated with the repair of photodamaged photosystem II complexes is discussed.
Aerobic life on Earth depends on oxygenic photosynthesis. This fundamentally important process is carried out within an elaborate membranous system, called the thylakoid network. In angiosperms, thylakoid networks are constructed almost from scratch by an intricate, light-dependent process in which lipids, proteins, and small organic molecules are assembled into morphologically and functionally differentiated, three-dimensional lamellar structures. In this review, we summarize the major events that occur during this complex, largely elusive process, concentrating on those that are directly involved in network formation and potentiation and highlighting gaps in our knowledge, which, as hinted by the title, are substantial.
Atomic force microscopy (AFM), developed in the late 1980s to explore atomic details on hard material surfaces, has evolved into a method capable of imaging fine structural details of biological samples. Its particular advantage in biology is that measurements can be carried out in aqueous and physiological environments, which opens the possibility to study the dynamics of biological processes in vivo. The additional potential of the AFM to measure ultralow forces at high lateral resolution has paved the way for measuring inter- and intramolecular forces of biomolecules on the single-molecule level. Molecular recognition studies using AFM open the possibility to detect specific ligand-receptor interaction forces and to observe molecular recognition of a single ligand-receptor pair. Applications include biotin avidin, antibody-antigen, nitrilotriacetate (NTA)-hexahistidine 6, and cellular proteins, either isolated or in cell membranes. The general strategy is to bind ligands to AFM tips and receptors to probe surfaces (or vice versa). In a force-distance cycle, the tip is first approached towards the surface, whereupon a single receptor-ligand complex is formed due to the specific ligand receptor recognition. During subsequent tip-surface retraction a temporarily increasing force is exerted on the ligand-receptor connection, thus reducing its lifetime until the interaction bond breaks at a critical (unbinding) force. Such experiments allow for estimation of affinity, rate constants, and structural data of the binding pocket. Comparing them with values obtained from ensemble-average techniques and binding energies is of particular interest. The dependences of unbinding force on the rate of load increase exerted on the receptor-ligand bond reveal details of the molecular dynamics of the recognition process and energy landscapes. Similar experimental strategies have also been used for studying intramolecular force properties of polymers and unfolding-refolding kinetics of filamentous proteins. Recognition recognition imaging imaging, developed by combing dynamic force microscopy force microscopy with force spectroscopy, allows for localization of receptor sites on surfaces with nanometer positional accuracy.
Single-molecule manipulation methods provide a powerful means to study protein transitions. Here we combined single-molecule force spectroscopy and steered molecular-dynamics simulations to study the mechanical properties and unfolding behavior of the small enzyme acylphosphatase (AcP). We find that mechanical unfolding of AcP occurs at relatively low forces in an all-or-none fashion and is decelerated in the presence of a ligand, as observed in solution measurements. The prominent energy barrier for the transition is separated from the native state by a distance that is unusually long for α/β proteins. Unfolding is initiated at the C-terminal strand (βT) that lies at one edge of the β-sheet of AcP, followed by unraveling of the strand located at the other. The central strand of the sheet and the two helices in the protein unfold last. Ligand binding counteracts unfolding by stabilizing contacts between an arginine residue (Arg-23) and the catalytic loop, as well as with βT of AcP, which renders the force-bearing units of the protein resistant to force. This stabilizing effect may also account for the decelerated unfolding of ligand-bound AcP in the absence of force.
Atomic force microscopy (AFM), developed in the late 1980s to explore atomic details on hard material surfaces, has evolved into a method capable of imaging fine structural details of biological samples. Its particular advantage in biology is that measurements can be carried out in aqueous and physiological environments, which opens the possibility to study the dynamics of biological processes in vivo. The additional potential of the AFM to measure ultralow forces at high lateral resolution has paved the way for measuring inter- and intramolecular forces of biomolecules on the single-molecule level. Molecular recognition studies using AFM open the possibility to detect specific ligandreceptor interaction forces and to observe molecular recognition of a single ligandreceptor pair. Applications include biotinavidin, antibodyantigen, nitrilotriacetate (NTA)hexahistidine 6, and cellular proteins, either isolated or in cell membranes.The general strategy is to bind ligands to AFM tips and receptors to probe surfaces (or vice versa). In a forcedistance cycle, the tip is first approached towards the surface, whereupon a single receptorligand complex is formed due to the specific ligand receptor recognition. During subsequent tipsurface retraction a temporarily increasing force is exerted on the ligandreceptor connection, thus reducing its lifetime until the interaction bond breaks at a critical (unbinding) force. Such experiments allow for estimation of affinity, rate constants, and structural data of the binding pocket. Comparing them with values obtained from ensemble-average techniques and binding energies is of particular interest. The dependences of unbinding force on the rate of load increase exerted on the receptorligand bond reveal details of the molecular dynamics of the recognition process and energy landscapes. Similar experimental strategies have also been used for studying intramolecular force properties of polymers and unfoldingrefolding kinetics of filamentous proteins. Recognition imaging, developed by combing dynamic force microscopy with force spectroscopy, allows for localization of receptor sites on surfaces with nanometer positional accuracy.
The extensive and multifaceted traffic between nucleus and cytoplasm is handled by a single type of macromolecular assembly called the nuclear pore complex (NPC). While being readily accessible to ions and metabolites, the NPC imposes stringent selectivity on the passage of proteins and RNA, tightly regulating their traffic between the two major cellular compartments. Here we discuss how shuttling carriers, which mediate the transport of macromolecules through NPCs, cross its permeability barrier. We also discuss the co-existence of receptor-mediated macromolecular transport with the passive diffusion of small molecules in the context of the various models suggested for the permeability barrier of the NPC. Finally, we speculate on how nuclear transport receptors negotiate the dependence of their NPC-permeating abilities on hydrophobic interactions with the necessity of avoiding these promiscuous interactions in the cytoplasm and nucleus.
To fulfil their function, nuclear pore complexes (NPCs) must discriminate between inert proteins and nuclear transport receptors (NTRs), admitting only the latter. This specific permeation is thought to depend on interactions between hydrophobic patches on NTRs and phenylalanine-glycine (FG) or related repeats that line the NPC. Here, we tested this premise directly by conjugating different hydrophobic amino-acid analogues to the surface of an inert protein and examining its ability to cross NPCs unassisted by NTRs. Conjugation of as few as four hydrophobic moieties was sufficient to enable passage of the protein through NPCs. Transport of the modified protein proceeded with rates comparable to those measured for the innate protein when bound to an NTR and was relatively insensitive both to the nature and density of the amino acids used to confer hydrophobicity. The latter observation suggests a non-specific, small, and pliant interaction network between cargo and FG repeats.
The investigation of native nuclear pore complexes (NPCs) with singlemolecule force spectroscopy requires stable and nondestructive attachment of the nuclear envelope. Modified, microstructured PDMS turns out to be perfectly suited for membrane preparation as it preserves structure and function of the entire NPC, as shown on p. 1553 by A. Ebner et al.
In eukaryotic cells the nucleus is separated from the cytoplasm by a double-membraned nuclear envelope (NE). Exchange of molecules between the two compartments is mediated by nuclear pore complexes (NPCs) that are embedded in the NE membranes. The translocation of molecules such as proteins and RNAs through the nuclear membrane is executed by transport shuttling factors (karyopherines). They thereby dock to particular binding sites located all over the NPC, the so-called phenylalanine-glycin nucleoporines (FG Nups). Molecular recognition force spectroscopy (MRFS) allows investigations of the binding at the single-molecule level. Therefore the AFM tip carries a ligand for example, a particular karyopherin whereas the nuclear membrane with its receptors is mounted on a surface. Hence, one of the first requirements to study the nucleo-cytoplasmatic transport mechanism using MRFS is the development of an optimized membrane preparation that preserves structure and function of the NPCs. In this study we present a stable non-destructive preparation method of Xenopus laevis nuclear envelopes. We use micro-structured polydimethylsiloxane (PDMS) that provides an ideal platform for immobilization and biological integrity due to its elastic, chemical and mechanical properties. It is a solid basis for studying molecular recognition, transport interactions, and translocation processes through the NPC. As a first recognition system we investigate the interaction between an important transport shuttling factor, importin β, and its binding sites on the NPC, the FG-domains.
The primary events of oxygenic photosynthesis are carried out within intricate membrane lamellar systems called thylakoid networks. These networks, which are present in cyanobacteria, algae, and higher plants, accommodate all of the molecular complexes necessary for the light-driven reactions of photosynthesis and provide a medium for energy transduction. Here we describe the ultrastructure of thylakoid membranes and their three-dimensional organization in various organisms along the evolutionary tree. Along the way we discuss issues pertaining to the formation and maintenance of these membranes, the means by which they enable molecular traffic within and across them, and the manner by which they respond to short- and long-term variations in light conditions.
This chapter describes how the energy landscape that underlies protein-binding reactions can be revealed using dynamic force spectroscopy. The chapter begins with a detailed description of methodologies used and requirements of the experimental system, including tip and Surface materials and their functionalization strategies. The next few sections discuss the fundamentals of measuring forces using the atomic force microscope, and the basics of performing force spectroscopy measurements from a practical point of view. Next, it presents an extensive account of methods for data analysis and current theoretical treatments. The remainder of the chapter illustrates the power of this methodology by several examples in which the location of energy barriers in a binding reaction pathway and their load-dependent dynamics are measured, the overall scale of roughness of the underlying energy surface is extracted, and alternative modes of protein activation are distinguished. Biological insight gained from these data is discussed. The intent is to provide the necessary theoretical and practical knowledge to begin force spectroscopy measurements on protein interactions.
The 'new view' of proteins sees protein reactions as parallel processes occurring along funnelled energy landscapes. These landscapes are generally not smooth, but are superimposed by hills and valleys of different heights and widths leading to roughness on the energy surface. In the present paper, we describe the origins of protein energy landscape roughness, measurements of its scale and its implications.
Nuclear pore complexes are constantly confronted by large fluxes of macromolecules and macromolecular complexes that need to get into and out of the nucleus. Such bidirectional traffic occurring in a narrow channel can easily lead to jamming. How then is passage between the nucleus and cytoplasm maintained under the varying conditions that arise during the lifetime of the cell? Here, we address this question using computer simulations in which the behaviour of the ensemble of transporting cargoes is analysed under different conditions. We suggest that traffic can exist in two distinct modes, depending on the concentration of cargoes and dissociation rates of the transport receptor-cargo complexes from the pores. In one mode, which prevails when dissociation is quick and cargo concentration is low, transport in either direction proceeds uninterrupted by transport in the other direction. The result is that the overall traffic direction fluctuates rapidly and unsystematically between import and export. Remarkably, when cargo concentrations are high and disassociation is slow, another mode takes over in which traffic proceeds in one direction for a certain extent of time, after which it flips direction for another period. The switch between this, more regulated, mode of transport and the other, quickly fluctuating state, does not require an active gating mechanism but rather occurs spontaneously through the dynamics of the transported particles themselves. The determining factor for the behaviour of traffic is found to be the exit rate from the pore channel, which is directly related to the activity of the Ran system that controls the loading and release of cargo in the appropriate cellular compartment.
Adaptability of oxygenic photosynthetic organisms to fluctuations in light spectral composition and intensity is conferred by state transitions, short-term regulatory processes that enable the photosynthetic apparatus to rapidly adjust to variations in light quality. In green algae and higher plants, these processes are accompanied by reversible structural rearrangements in the thylakoid membranes. We studied these structural changes in the thylakoid membranes of Arabidopsis thaliana chloroplasts using atomic force microscopy, scanning and transmission electron microscopy, and confocal imaging. Based on our results and on the recently determined three-dimensional structure of higher-plant thylakoids trapped in one of the two major light-adapted states, we propose a model for the transitions in membrane architecture. The model suggests that reorganization of the membranes involves fission and fusion events that occur at the interface between the appressed (granal) and nonappressed (stroma lamellar) domains of the thylakoid membranes. Vertical and lateral displacements of the grana layers presumably follow these localized events, eventually leading to macroscopic rearrangements of the entire membrane network.
Atomic force microscopy (AFM), developed in the late eighties to explore atomic details on hard material surfaces, has evolved to an imaging method capable of achieving fine structural details on biological samples. Its particular advantage in biology is that the measurements can be carried out in aqueous and physiological environment, which opens the possibility to study the dynamics of biological processes in vivo. The additional potential of the AFM to measure ultra-low forces at high lateral resolution has paved the way for measuring inter- and intra-molecular forces of bio-molecules on the single molecule level. Molecular recognition studies using AFM open the possibility to detect specific ligand-receptor interaction forces and to observe molecular recognition of a single ligand-receptor pair. Applications include biotin-avidin, antibody-antigen, NTA nitrilotriacetate-hexahistidine 6, and cellular proteins, either isolated or in cell membranes. The general strategy is to bind ligands to AFM tips and receptors to probe surfaces (or vice versa), respectively. In a force-distance cycle, the tip is first approached towards the surface whereupon a single receptor-ligand complex is formed, due to the specific ligand receptor recognition. During subsequent tip-surface retraction a temporarily increasing force is exerted to the ligand-receptor connection thus reducing its lifetime until the interaction bond breaks at a critical force (unbinding force). Such experiments allow for estimation of affinity, rate constants, and structural data of the binding pocket. Comparing them with values obtained from ensemble-average techniques and binding energies is of particular interest. The dependences of unbinding force on the rate of load increase exerted to the receptor-ligand bond reveal details of the molecular dynamics of the recognition process and energy landscapes. Similar experimental strategies were also used for studying intra-molecular force properties of polymers and unfolding-refolding kinetics of filamentous proteins. Recognition imaging, developed by combing dynamic force microscopy with force spectroscopy, allows for localization of receptor sites on surfaces with nanometer positional accuracy.
Cyanobacteria, the progenitors of plant and algal chloroplasts, enabled aerobic life on earth by introducing oxygenic photosynthesis. In most cyanobacteria, the photosynthetic membranes are arranged in multiple, seemingly disconnected, concentric shells. In such an arrangement, it is unclear how intracellular trafficking proceeds and how different layers of the photosynthetic membranes communicate with each other to maintain photosynthetic homeostasis. Using electron microscope tomography, we show that the photosynthetic membranes of two distantly related cyanobacterial species contain multiple perforations. These perforations, which are filled with particles of different sizes including ribosomes, glycogen granules and lipid bodies, allow for traffic throughout the cell. In addition, different layers of the photosynthetic membranes are joined together by internal bridges formed by branching and fusion of the membranes. The result is a highly connected network, similar to that of higher-plant chloroplasts, allowing water-soluble and lipid-soluble molecules to diffuse through the entire membrane network. Notably, we observed intracellular membrane-bounded vesicles, which were frequently fused to the photosynthetic membranes and may play a role in transport to these membranes.
Nuclear pore complexes provide the sole gateway for the exchange of material between nucleus and cytoplasm of interphase eukaryotic cells. They support two modes of transport: passive diffusion of ions, metabolites, and intermediate-sized macromolecules and facilitated, receptor-mediated translocation of proteins, RNA, and ribonucleoprotein complexes. It is generally assumed that both modes of transport occur through a single diffusion channel located within the central pore of the nuclear pore complex. To test this hypothesis, we studied the mutual effects between transporting molecules utilizing either the same or different modes of translocation. We find that the two modes of transport do not interfere with each other, but molecules utilizing a particular mode of transport do hinder motion of others utilizing the same pathway. We therefore conclude that the two modes of transport are largely segregated.
Filamentous cyanobacteria, the main primary producers in biological sand crusts, survive harsh environmental conditions including diurnal desiccation/rehydration cycles. Here we describe the inactivation of photosystem II during dehydration of native crusts (NC) and Microcoleus sp. isolates grown on nitrocellulose filters (NCF). The morphology of NCF cells, visualized by scanning-transmission and atomic-force microscopy, disclosed long bacterial filaments encapsulated in extracellular polysaccharides (EPS) tubes consisting of parallel fibrils (100400 nm wide and 50100 nm high) oriented mostly perpendicular to the tube length. Presence of empty EPS tubes indicated a gliding capability of the cells. Desiccation of NC resulted in a rapid decline of Fo and complete loss of Fv. These changes were accompanied by a decrease of 77 K PSII fluorescence emission relative to that of PSI, when excited at 430 nm, and a significant decrease of energy transfer from phycobilisomes to PSII. Lowering the turgor pressure through the addition of 1.5 M trehalose to natural crusts, reduced Fv/Fm by over 50% and was accompanied by a decrease of 77 K PSI fluorescence induced by chlorophyll excitation. Excitation of phycobilisomes resulted in a downshift of the PSI emission wavelength by 8 nm, indicative of reduced energy transfer from LHCI to the core PSI. Decline of Fv/Fm in trehalose-incubated NCF cells did not induce significant changes in 77 K fluorescence emission. These results suggest that alterations in energy transfer from antennae to reaction centers may be part of the survival strategy of Microcoleus.
The energy landscape of proteins is thought to have an intricate, corrugated structure. Such roughness should have important consequences on the folding and binding kinetics of proteins, as well as on their equilibrium fluctuations. So far, no direct measurement of protein energy landscape roughness has been made. Here, we combined a recent theory with single-molecule dynamic force spectroscopy experiments to extract the overall energy scale of roughness ε for a complex consisting of the small GTPase Ran and the nuclear transport receptor importin-β. The results gave ε>5kBT, indicating a bumpy energy surface, which is consistent with the ability of importin-β to accommodate multiple conformations and to interact with different, structurally distinct ligands.
The use of synthetic gene delivery systems in human gene transfer is hampered by poor transfection efficiencies, largely because of the inability of DNA to translocate across the nuclear pore complex. A means to overcome this barrier is to bind the DNA to nuclear localization signals (NLSs), which are recognized by shuttling receptors of the nuclear import machinery. Here, we studied the intracellular transport of plasmid DNA microinjected into HeLa cell cytoplasm, alone or as a complex with intact or NLS-deleted NFκB p50, using confocal microscopy imaging. We found that association of NLS-carrying p50 with DNA facilitated not only nuclear entry of the DNA but also its migration through the cytoplasm toward the nucleus. Facilitated transport of p50-DNA complexes in the cytoplasm proceeded along microtubules in a dynein-dependent manner and is mediated by the heterodimeric nuclear transport receptor that recognizes the p50-born NLS.
The light-harvesting and energy-transducing functions of the chloroplast are performed within an intricate lamellar system of membranes, called thylakoid membranes, which are differentiated into granum and stroma lamellar domains. Using dual-axis electron microscope tomography, we determined the three-dimensional organization of the chloroplast thylakoid membranes within cryo-immobilized, freeze-substituted lettuce (Lactuca sativa) leaves. We found that the grana are built of repeating units that consist of paired layers formed by bifurcations of stroma lamellar sheets, which fuse within the granum body. These units are rotated relative to each other around the axis of the granum cylinder. One of the layers that makes up the pair bends upwards at its edge and fuses with the layer above it, whereas the other layer bends in the opposite direction and merges with the layer below. As a result, each unit in the granum is directly connected to its neighbors as well as to the surrounding stroma lamellae. This highly connected morphology has important consequences for the formation and function of the thylakoid membranes as well as for their stacking/unstacking response to variations in light conditions.
The limitations imposed on the analyses of complex chemical and biological systems by ensemble averaging can be overcome by single-molecule experiments. Here, we used a single-molecule technique to discriminate between two generally accepted mechanisms of a key biological process--the activation of proteins by molecular effectors. The two mechanisms, namely induced-fit and population-shift, are normally difficult to discriminate by ensemble approaches. As a model, we focused on the interaction between the nuclear transport effector, RanBP1, and two related complexes consisting of the nuclear import receptor, importin beta, and the GDP- or GppNHp-bound forms of the small GTPase, Ran. We found that recognition by the effector proceeds through either an induced-fit or a population-shift mechanism, depending on the substrate, and that the two mechanisms can be differentiated by the data.
We present an approach to study the real-time dynamics of single molecules using capacitance measurements. The method is based on a nonparallel-plate microcapacitor, which has a tapered-gap geometry. A particle moving within such a capacitor induces capacitance changes that depend on its position. Monitoring these changes allows motion to be traced at a resolution which is higher than the smallest fabricated feature of the device. The detection scheme also enables the distinction between particles of different dielectric constants and the exertion of dielectrophoretic forces on the particles. This approach provides a means for studying various aspects of single-particle dynamics at high resolution, in real time, and under conditions compatible with biological systems.
Several million macromolecules are exchanged each minute between the nucleus and cytoplasm by receptor-mediated transport. Most of this traffic is controlled by the small GTPase Ran, which regulates assembly and disassembly of the receptor cargo complexes in the appropriate cellular compartment. Here we applied dynamic force spectroscopy to study the interaction of Ran with the nuclear import receptor importin beta1 (impbeta) at the single-molecule level. We found that the complex alternates between two distinct conformational states of different adhesion strength. The application of an external mechanical force shifts equilibrium toward one of these states by decreasing the height of the interstate activation energy barrier. The other state can be stabilized by a functional Ran mutant that increases this barrier. These results support a model whereby functional control of Ran imp is achieved by a population shift between pre-existing alternative conformations.
gp210 is a major constituent of the nuclear pore complex (NPC) with possible structural and regulatory roles. It interacts with components of the NPC via its C-terminal domain (CTD), which follows a transmembrane domain and a massive (∼200 kDa) N-terminal region that resides in the lumen of the perinuclear space. Here, we report the solution structure of the human gp210 CTD as determined by various spectroscopic techniques. In water, the CTD adopts an extended, largely unordered conformation, which contains a significant amount of left-handed polyproline type II (PII) helical structure. The conformation of the CTD is altered by high pH, charged detergents, and the hydrogen bond-promoting reagent trifluoroethanol (TFE), which decrease the PII fraction of the fragment. TFE also induces a conformational change in a region containing an SPXX motif whose serine becomes specifically phosphorylated during mitosis. We propose that PII elements in the CTD may play a role in its interaction with the NPC and may serve as recognition sites for regulatory proteins bearing WW or other, unknown PII-binding motifs.
Envelope-free chloroplasts were imaged in situ by contact and tapping mode scanning force microscopy at a lateral resolution of 3-5 nm and vertical resolution of ∼0.3 nm. The images of the intact thylakoids revealed detailed structural features of their surface, including individual protein complexes over stroma, grana margin and grana-end membrane domains. Structural and immunogold-assisted assignment of two of these complexes, photosystem I (PS I) and ATP synthase, allowed direct determination of their surface density, which, for both, was found to be highest in grana margins. Surface rearrangements and pigment-protein complex redistribution associated with salt-induced membrane unstacking were followed on native, hydrated specimens. Unstacking was accompanied by a substantial increase in grana diameter and, eventually, led to their merging with the stroma lamellae. Concomitantly, PS IIα effective antenna size decreased by 21% and the mean size of membrane particles increased substantially, consistent with attachment of mobile light-harvesting complex II to PS I. The ability to image intact photosynthetic membranes at molecular resolution, as demonstrated here, opens up new vistas to investigate thylakoid structure and function.
A common way to analyse basal and stimulated activity of eukaryotic genetic control elements, such as promoters and enhancers, is to introduce them into cells via DNA vectors containing an easily assayable reporter gene. Activity is then studied by measurement of transiently produced mRNA or reporter protein. In such assays, it is assumed that the variable measured is proportional to the transcriptional activity of the control element under investigation. Here we question the validity of this generally accepted assumption. Specifically, recent observations indicate that control elements, in addition to modulating transgene transcription, can facilitate the nuclear uptake of their carrier plasmids. This process is mediated by transcription factors or other nuclear proteins harbouring nuclear localisation signals, which bind to the control elements in the cytoplasm and transport the DNA into the nucleus through the protein nuclear import machinery. As the number of mRNA transcripts produced for an epi-chromosomally expressed transgene is directly related to its copy number inside the nucleus, such transport activity may lead to substantial overestimation of the transcriptional potency of the control element(s) studied. (C) 2001 John Wiley & Sons, Inc.
The success of synthetic DNA delivery systems in human gene therapy will be enhanced by increasing transfection efficiencies and by providing tighter control over targeting of the DNA into the nucleus. Here, we used DNA vectors that contain repetitive binding sites for the inducible transcription factor NFκB, which is transported into the nucleus by the nuclear import machinery. Nuclear entry of the modified vectors was augmented 12-fold and was associated with corresponding increase in gene expression. Depending on their position, the binding sites could also function as transcriptional enhancers, increasing gene expression levels up to an additional 19-fold. Notably, nuclear targeting of the DNA and transgene transcription could both be regulated by exogenous stimulators which modulate the intracellular distribution of NFκB. The approach provides a framework for the controlled targeting of constitutive or transcriptionally regulated synthetic vectors into mammalian cell nuclei.
Fifteen years after its invention, the scanning force microscope (SFM) is rooted deep in the biological sciences. Here we discuss the use of SFM in biotechnology and biomedical research. The spectrum of applications reviewed includes imaging, force spectroscopy and mapping, as well as sensor applications. It is our hope that this review will be useful for researchers considering the use of SFM in their studies but are uncertain about its scope of capabilities. For the benefit of readers unfamiliar with SFM technology, the fundamentals of SFM imaging and force measurement are also briefly introduced.
The lateral resolution attained by scanning force microscopy (SFM) on disordered membrane protein structures is often limited. We have imaged one such structure - the nuclear pore complex, on chemically fixed nuclear envelopes isolated from Xenopus oocytes, optimizing procedures to maximize lateral resolution. The images, obtained in air using acoustic tapping, reveal NPC-associated nucleoplasmic and cytoplasmic features with a resolution approaching that of field emission in-lens scanning electron microscopy. Some of the features have hitherto evaded detection by SFM. We also demonstrate the usefulness of phase imaging and show that, with scanning parameters set appropriately, the contrast is dominated by surface topography. The results obtained confirm and substantiate previous EM and SFM data and illustrate the applicability of chemical fixation and oscillating force microscopy to image large disordered membrane protein structures at high spatial resolution.
Antigen-dependent activation of T lymphocytes requires T cell receptor (TCR)-mediated recognition of specific peptides, together with the MHC molecules to which they are bound. To achieve this recognition in a reasonable time frame, the TCR must scan and discriminate rapidly between thousands of MHC molecules differing from each other only in their bound peptides. Kinetic analysis of the interaction between a TCR and its cognate peptide-MHC complex indicates that both association and dissociation depend heavily on the temperature, indicating the presence of large energy barriers in both phases. Thermodynamic analysis reveals changes in heat capacity and entropy that are characteristic of protein-ligand associations in which local folding is coupled to binding. Such an "induced-fit" mechanism is characteristic of sequence-specific DNA-binding proteins that must also recognize specific ligands in the presence of a high background of competing elements. Here, we propose that induced fit may endow the TCR with its requisite discriminatory capacity and suggest a model whereby the loosely structured antigen-binding loops of the TCR rapidly explore peptide-MHC complexes on the cell surface until some critical structural complementarity is achieved through localized folding transitions. We further suggest that conformational changes, implicit in this model, may also propagate beyond the TCR antigen-binding site and directly affect self-association of ligated TCRs or TCR-CD3 interactions required for signaling.
HLA-DM catalyzes the release of invariant chain fragments from newly synthesized major histocompatibility complex (MHC) class II molecules, stabilizes empty class II molecules, and edits class II-associated peptides by preferentially releasing those that are loosely bound. The ability of KLA-DM to carry out these functions in vitro is pH dependent, with an optimum at pH 4.5-5.5 and poor activity at pH 7, The structural basis for these properties of HLA-DM is unknown, Sequence homology suggests that HLA-DM resembles classical, peptide-binding MHC class II molecules. In this study, we examined whether HLA-DM has a secondary structure composition consistent with an MHC fold and whether HLA-DM changes conformation between pH 5 and pH 7. Far-UV circular dichroism (CD) spectra of recombinant soluble HLA-DM (sDM) indicate that HLA-DM belongs to the alpha/beta class of proteins and structurally resembles both MHC class I and class II molecules. The CD peak around 198 nm increases upon going from neutral to endosomal pH and drops sharply upon denaturation below pH 3.5, distinguishing at least three states of sDM: the denatured state and two highly similar folded states. Fluorescence emission spectra show a slight blue-shift and a approximate to 20% drop in intensity at pH 5 compared with pH 7. Unfolding experiments using guanidinium chloride show that the stability of sDM is somewhat reduced but not lost at pH 5. These results indicate that sDM undergoes a pH-dependent conformational change between neutral and endosomal pH. The change seems to involve both hydrogen bonding patterns and the hydrophobic core of sDM and may contribute to the pH dependence of DM activity.
While still incomplete, the first data concerning the biochemistry of T cell receptor-ligand interactions in cell-free systems seem to have considerable predictive value regarding whether a T cell response is strong or weak or suppressive. This data will help considerably in elucidating the mechanisms behind T cell responsiveness. Also of great interest are the first structures of T cell receptor molecules and, particularly, TCR-ligand complexes. These appear to confirm earlier suggestions of a fixed orientation for TCR engagement with peptide/MHC and should form the basis for understanding higher oligomers, evidence for which has also just emerged. We conclude with an analysis of the highly diverse CDR3 loops found in all antigen receptor molecules and suggest that such regions form the core of both TCR and antibody specificity.
The emergence of eukaryotes was accompanied by two major events that concern their genome and are of crucial significance when considered in terms of macromolecular crowding: (i) a substantial increase in the amount of DNA, and (ii) its confinement within a defined space. The resulting highly crowded environment would have strongly promoted DNA self-assembly processes, leading to extremely condensed and thermodynamically stable DNA aggregates. Such structural transitions have indeed been observed in vitro, as well as in virtually all cellular systems in which a nucleosomal assembly is absent. In this paper we raise the hypothesis that upon transition from prokaryotic systems to eukaryotes, the nucleosomes were rendered essential in order to negate extensive DNA condensation processes that would have resulted from excluded volume effects. By suppressing such processes, the nucleosomes act to maintain and regulate the conformational space of the DNA, thus enabling conformational flexibility and reversible structural modulations.
T cells initiate many immune responses through the interaction of their T-cell antigen receptors (TCR) with antigenic peptides bound to major histocompatibility complex (MHC) molecules. This interaction sends a biochemical signal into the T cell by a mechanism that is not clearly understood. We have used quasi-elastic light scattering (QELS) to show that, in the presence of MHC molecules bound to a full agonist peptide, TCR/peptide-MHC complexes oligomerize in solution to form supramolecular structures at concentrations near the dissociation constant of the binding reaction. The size of the oligomers is concentration dependent and is calculated to contain two to six ternary complexes for the concentrations tested here. This effect is specific as neither molecule forms oligomers by itself, nor were oligomers observed unless the correct peptide was bound to the MHC. These results provide direct evidence for models of T-cell signalling based on the specific assembly of multiple TCR/peptide-MHC complexes in which the degree of assembly determines the extent and qualitative nature of the transduced signal. They may also explain how T cells maintain sensitivity to antigens present in only low abundance on the antigen-presenting cell.
Recent studies have shown that many nonclassical major histocompatibility complex (MHC) (class Ib) molecules have distinct antigen-binding capabilities, including the binding of nonpeptide moieties and the binding of peptides that are different from those bound to classical MHC molecules. Here, we show that one of the H-2T region-encoded molecules, T10, when produced in Escherichia coli, can be folded in vitro with beta(2)-microglobulin (beta(2)m) to form a stable heterodimer in the absence of peptide or nonpeptide moieties. This heterodimer can be recognized by specific antibodies and is stimulatory to the gamma delta T cell clone, G8. Circular dichroism analysis indicates that T10/beta(2)m has structural features distinct from those of classical MHC class I molecules. These results suggest a new way for MHC-like molecules to adopt a peptide-free structure and to function in the immune system.
The structure and thermal stability of empty and peptide-filled forms of the murine class II major histocompatibility complex (MHC) molecule I-Ek were studied at neutral and mildly acidic pH. The two forms have distinct circular dichroic spectra, suggesting that a conformational change may accompany peptide binding. Thermal stability profiles indicate that binding of peptide significantly increases the thermal stability of the empty heterodimers at both neutral and mildly acidic pH. Free energies calculated from these data provide a direct measure of this stabilization and show that the empty form of I-Ek is significantly more stable than that of class I MHC proteins. Furthermore, for the two MHC class II proteins that were analyzed (I-Ek and I-Ad), thermal stability was not significantly altered by acidification. In contrast, of four class I MHC molecules studied, three have shown a significant loss in complex stability at low pH. The marked stability exhibited by their empty form, as well as their resistance to low pH, as observed in this study, correlate well with the ability of class II MHC molecules to traverse and bind peptides in acidic endosomal vesicles.
The notion that 'L-proteins interact more avidly (than D-proteins) with D-nucleic acids' (Hegstorm, R.A.; Kondepudi, D.K. Sci. Am. 1990, 253, 98-105) represents a direct extension to the concept of stereochemical complementarity. This notion, considered as a central tenet to theories concerned with the origin of biochemical homochirality, is however completely refuted by currently available experimental data that indicate identical DNA affinities towards L- and D-peptides. Here we show that chiral discrimination in nucleic acid-peptide interactions necessitates a substantial amplification of macromolecular geometric constraints. Thus, DNA molecules are found to exhibit a higher affinity toward L-peptides - but only under conditions that enhance their chiral identity by promoting the formation of cholesteric DNA mesophases. The results allow for new reflections on the concept of molecular complementarity, and indicate that spontaneously obtained chiral DNA mesophases might have played a key role in determining the terrestrial L-homochirality of proteins. Moreover, the observations provide an intriguing example to the notion that new properties of DNA molecules emerge in their condensed state, in which a higher structural order is imposed.
Closed-circular supercoiled DNA molecules have been shown to form a cholesteric assembly within bacteria as well as in vitro under physiological DNA and salt concentrations. Circular dichroism and X-ray scattering studies indicate that the macroscopic structural properties of the chiral mesophase are directly and uniquely dictated by the supercoiling parameters of the constituent molecules. Specifically, we find that the pitch of the DNA cholesteric phase derived from supercoiled DNA is determined by the superhelical density, which, in turn, is modulated by secondary conformational changes. A direct interrelationship among four DNA structural levels, namely, DNA sequence, secondary structural transitions, the tertiary superhelical conformation, and the quaternary, supramolecular organization is accordingly pointed out. Since secondary conformational changes are both sequence and environment dependent, alterations of cellular conditions may effectively modulate the properties of the packed DNA organization, through their effects on secondary structural transitions and hence on the superhelical parameters. On the basis of these results we suggest that liquid crystallinity represents an effectively regulated packaging mode of plectonemic, nucleosome-free DNA molecules in living systems.
We investigated the molecular basis for factor VII (FVII) deficiency in Israel and found that 13 patients were homozygous and 10 heterozygous for a C to T substitution at nucleotide 10648 of the FVII gene. This predicted an Ala244Val change and was associated with decreased FVII activity and antigen level. Of the 36 Ala244Val positive alleles, 20 were observed in patients of Moroccan origin, 10 in Iranian-Jewish patients and 6 in patients of other origins. A computer model of the serine protease domain of FVII suggested that the Ala244Val substitution may cause distortion of the entire protein structure. Intragenic polymorphic sites analyses disclosed a founder effect for the Moroccan and Iranian-Jewish patients. A survey of the Ala244Val mutation revealed an allele frequency of 1:42.5 in Moroccan Jews and 1:40 in Iranian Jews. As Moroccan Jews have been separated from Iranian Jews for more than two millennia, the data suggest that the Ala244Val mutation occurred in ancient times.
Extensive effort has been directed toward a quantitative evaluation of forces which operate between biomacromolecules since the characterization of such forces is essential to a thorough understanding of fundamental biological processes. However, all studies hitherto reported were conducted in vitro, using isolated species. Here we report the first quantitative characterization of forces operating between DNA molecules within living bacteria. Evaluation of x-ray scattering studies conducted on intact bacteria indicates that, at DNA-DNA surface separations characteristic of DNA assemblies, interactions are dominated by repulsive hydration forces which originate from the structuring of water molecules. The results support the notion that the mechanisms by means of which macromolecules function, fold, and interact with each other crucially depend upon their hydration properties.
Electron microscopy and circular dichroism studies of cholesteric aggregates derived from topologically-constrained DNA molecules indicate that the overall morphology and structural properties of these aggregates are fundamentally different from those characterizing condensed structures of nonconstrained DNA species. Specifically, the cholesteric pitch and twist of all hitherto characterized lyotropic mesophases of biopolymersincluding those obtained from linear DNAdepend predominantly upon environmental parameters such as the dielectric constant of the solvent. In contrast, the properties of aggregates derived from closed circular supercoiled DNA are found to be solely and directly dictated by the superhelical density and handedness. On the basis of these results, as well as on the demonstrated ubiquity of liquid-crystalline DNA organizations in vivo, we suggest that supercoiling-regulated liquid crystallinity represents an effective packaging mode of nucleosome-free, topologically-constrained DNA molecules in living systems.
Bacterial plasmids may often reach a copy number larger than 1000 per cell, corresponding to a total amount of DNA that may exceed the amount of DNA within the bacterial chromosome. This observation highlights the problem of cellular accommodation of large amounts of closed-circular nucleic acids, whose interwound conformation offers negligible DNA compaction. As determined by x-ray scattering experiments conducted on intact bacteria, supercoiled plasmids segregate within the cells into dense clusters characterized by a long-range order. In vitro studies performed at physiological DNA concentrations indicated that interwound DNA spontaneously forms liquid crystalline phases whose macroscopic structural properties are determined by the features of the molecular supercoiling. Because these features respond to cellular factors, DNA supercoiling may provide a sensitive regulatory link between cellular parameters and the packaging modes of interwound DNA in vivo.
The effects exerted by short runs of adenines (A-tracts), alternating (AT)n segments, and single-stranded DNA upon the right- to left-handed DNA transition, as well as upon the energetic and structural parameters of the B/Z junctions, were investigated by using synthetic segments in which these motifs are coupled to a potentially Z-forming core. UV, CD, and 31P NMR studies of the salt-induced B to Z transition occurring in the various segments indicate that the transition is composed of two phases: a slow rate-determining induction of an initial structural deformation followed by a cooperative propagation of this "nucleus" in the form of a left-handed Z-DNA. The first phase is found to be crucially affected by the nature of the sequences coupled to the potentially Z-forming core. Thus, a higher rigidity of the flanking segments, such as that characterizing adenine tracts, is associated with higher energy values required for the induction of the initial conformational deformation, as well as with more defined structural parameters of the ultimate B/Z junctions. The second phase is affected mainly by the composition and sequence of the Z-forming segment. The observations that DNA conformational changes can be finely tuned and modulated by parameters pertaining to both the segment which undergoes the transition and the flanking sequences support the notion that DNA secondary motifs, such as the Z form and A-tracts, might be involved in the regulation of cellular processes.
Alternating purine-pyrimidine DNA sequences such as poly[d(C-G)] or poly[d(m5C-G)] undergo a cooperative, salt-induced structural transition from a right-handed B conformation, which prevails at relatively low ionic strength, into a left-handed Z form, generally believed to be stabilized by high salt concentrations. We report here that upon a monotonous increase of the ionic strength, the well-established B to Z transition is followed by a second, hitherto unobserved conformational change leading from Z-DNA back into a right-handed B-like form. This observation indicates that, in contrast with the current convention, the Z motif represents an unstable configuration relative to the B form at both low and high salt concentrations and that the occurrence of a left-handed DNA structure, presently depicted as a step function of the ionic strength, should rather be treated in terms of a pulse. The reported transition underscores the inherent metastability of the Z configuration, and indicates, consequently, that this motif is ideally suited to act as a structural regulatory element, as such an element should be endowed with a large susceptibility to cellular parameters.
Recent 1H nuclear magnetic resonance (n.m.r.) hydrogen exchange experiments on five different proteins have delineated the secondary structures formed in trapped, partially folded intermediates. The early forming structural elements are identifiable through a technique described in this work to predict folding pathways. The method assumes that the sequential selection of structural fragments such as α-helices and β-strands involved in the folding process is founded upon the maximal burial of solvent accessible surface from both the formation of internal structure and substructure association. The substructural elements were defined objectively by major changes in main-chain direction. The predicted folding pathways are in complete correspondence with the n.m.r. results in that the formed structural fragments found in the folding intermediates are those predicted earliest in the pathways. The technique was also applied to proteins of known tertiary structure and with fold similar to one of the five proteins examined by 1H n.m.r. The pathways for these structures also showed general consistency with the n.m.r. observations, suggesting conservation of a secondary structural framework or molten globule about which folding nucleates and proceeds.Errata: Equation 4 and 5 on page 905 are each missing a term.
The effects of short runs of adenines (A-tracts) upon nucleic acids packaging processes and the properties of the resulting condensates were investigated by using random DNA sequences isolated from natural sources, as well as synthetic segments obtained by an extensive ligation of specific oligomers. Reiteration of short A-tracts (A(N) where N3), in which the distinct structural features that characterize this motif are fully expressed, results in a complete suppression of any chiral order in the packed particles, assigned to a significantly enhanced rigidity. DNA fragments where A-tracts are reiterated in phase, leading to a stable macroscopic curvature, are found to undergo condensation through altered pathways and to form toroidal shapes of unusually small dimensions. The results point towards the intriguing possibility that A-tracts and, in particular, the global, intrinsic curvature associated with such motifs, might be involved in the determination of nucleic acids packaging pathways, and underline the usefulness of defined sequences in the study of DNA condensation processes.
Inherently curved DNA segments, associated with short runs of adenines, have been identified in many gene regulatory regions, yet their physiological significance remains unknown. The observations reported in this study indicate that intrinsically bent nucleic acid fragments are characterized by substantially attenuated affinities toward DNA-binding proteins involved in structural functions, such as H1 histone and protamine, as well as toward various DNA-modifying enzymes including ligases and exo- and endonucleases. Two mechanisms might be responsible for the altered binding properties. According to the first mechanism, the attenuated binding affinities and the bending represent two independent consequences of the unique structural parameters exhibited by A-tracts. Indeed, analysis of the degradation products obtained upon exposure of the curved sequences to various chemical nucleases points toward the narrowing of the DNA minor groove, a conformational modulation known to characterize A-tracts and to run along the axially-bent motifs, as a potential determinant of the observed binding attenuation. Alternatively, the conformational constraints which result from the stable bending might act to modulate the strength of DNA-protein interactions. Although the factor directly responsible for the altered binding affinities revealed by the bent sequences cannot as yet be conclusively resolved, it is proposed that a reiteration of this specific factor, being either an A-tract or a bend, in phase with the DNA helical repeat acts to amplify the modulation of the binding. This suggestion is based on the findings obtained from ligated DNA fragments which are composed of hexadecamers as the repetitive unit, and in which the A-tracts and the bends are reiterated out-of-phase. The binding attenuation revealed by these DNA segments is found to be considerably lower than that exhibited by the globally curved sequences. On the basis of these observations, we suggest that sequence-dependent DNA bending associated with short, phased runs of adenine might be involved in gene regulation processes.
In the present study we evaluated the DNA binding activity of wild type and mutant p53 proteins that were isolated from bacterial expression vectors. A comparison of the binding activities of the various purified p53 proteins, assessed by their ability to bind DNA cellulose columns, Indicated that wild type p53 has a higher affinity to DNA than have mutant p53 forms. Furthermore, only wild type p53 was able to bind genomic DNA upon electrophoretlc protein blotting. As specific deletion of the C-terminal region of wild type p53 totally abolished binding to genomic DNA, it was concluded that the 47 C-termlnal amlno acids contain the DNA binding region. The fact that the N-terminus contains a transcription activation region whereas the C-terminus contains a DNA binding domain places p53 in the family of typical transcription factors. Our experiments show that the topographical positioning of these domains plays an important role in the activity of wild type p53.
Circular dichroism and electron microscopy studies of various in vitro DNA packaging systems indicate that all the factors which induce and modulate the secondary conformation of DNA molecules are capable of eliciting nucleic acids condensation processes into tight, highly ordered tertiary structures as well as altering the extent of order and compactness within the resulting species. Specifically, such factors include the ionic strength, the presence of particular dehydrating agents and polyamines, as well as the pH values. It is proposed that slight alterations of these parameters induce the formation of short non-B-DNA segments that propagate as a perturbation along the B-DNA double helix. The structural fluctuations of the dsDNA molecules that result from the conformational discontinuities formed at the junction sites between the B motif and the conformationally altered segments alter the elastic response of the nucleic acids and facilitate cooperative condensation processes. Moreover, the type and frequency of the structurally modified clusters interspersed within the B conformation and determined by the environmental parameters are shown to provide a means for continuous regulation of the extent and mode of DNA packaging. The ionic strength and hydrophobic environment in the close vicinity of the DNA molecules are controlled and modulated in vivo by DNA-binding proteins such as histones and protamines; similarly, pH values and polyamine concentrations are constantly regulated in living systems. It is suggested, therefore, that the secondary structural polymorphism which characterizes the DNA molecules might display a regulatory role by acting as a functional link between cellular parameters and the extent, mode, and timing of nucleic acid packaging processes.
DNA-binding drugs used for chemotherapy originate from a rather large variety of modifications sustained by the nucleic acids upon interaction with the chemical agents. Notably, these modifications are generally considered as involving the following localized chemical or structural processes: base alkylations, frameshift mutations or strand breakages at specific sites, interstrand cross-links, and local structural transitions within the secondary configurations. We find that antitumor agents hinder or prevent altogether the long range packaging of DNA molecules into compact, ordered states. This effect, observed even at low drug to base pair ratios, is general: it is induced by DNA groove binders as well as by intercalators. Nucleoprotein complexes are found to be efficiently protected against the decondensing effect of the drugs. These observations point toward a generic mechanism for the effectiveness of DNA-binding drugs ggainst tumor cells and viruses as well as for the severe effects of chemotherapy on male fertility: actively dividing systems, such as tumor cells, are characterized by regions of chromatin which are decondensed for the purpose of replication and transcription, and therefore accessible to the drugs. Similarly, both viral infection and spermatogenesis, where histones are replaced by protamines, involve transient formation of relatively uncondensed DNA species and subsequent packaging into extremely tight structures
In biological systems nucleic acids are invariably found in highly compact forms. These rather intricate forms raise questions of basic importance which are related to the various factors involved in the condensation processes, the chemical, physical, and structural features revealed by the packed species, and the effects of the extremely tight packaging upon interactions of the DNA molecules with proteins and drugs. A means for addressing these questions on a molecular level is provided by various procedures known to induce in vitro condensation of DNA molecules into highly compact species which, in turn, may serve as a model for the in vivo physical organization of nucleic acids. A study of the optical properties of the tightly packed DNA molecules indicates that the interactions of these species with polypeptides are characterized by distinct, hitherto unobserved, chiral and structural discrimination. Specifically, the polypeptides found to be selected against are composed of those amino acids that are not normally used in protein biosynthesis, such as D-1ySine or ornithine. These findings provide new clues to long debated topics such as the specific universal chirality of amino acids in proteins or the correlation between conformational flexibility of polypeptides and their ability to form stable compact complexes with nucleic acids.