Available Positions

Innate Immunity Host Defense Antimicrobial Peptides: Potentially new generation antibiotics to overcome bacterial biofilms, sepsis and bacterial resistance.

Area: 
Chemistry
Life Sciences
Thursday, July 1, 2021

(i) Antibacterial and antifungal peptides - Living organisms of all types produce a large repertoire of gene-encoded antimicrobial peptides that serve as part of the innate immunity. Since 1991 we have established the “carpet” mechanism as an efficient model describing membrane permeation by many antimicrobial peptides. Most importantly, we disproved accepted dogmas on the role of specific structure, sequence or chirality in biological function. Furthermore, we found parameter controlling target cell specificity. The success of our model is also reflected by our ability to develop a novel family of cell selective antimicrobial diastereomeric peptides and lipopeptides based on predictions not possible by other models. This new family seems to have very high potential for future therapeutics urgently needed due to increasing resistance of bacteria and fungi to available antibiotics. Indeed, they presented the first example of antimicrobial peptides that were active against bacterial infection when inject intravenously.

(ii) Anticancer peptides - Our immune system is geared to recognize and destroy cancer cells mainly through receptor-mediated mechanisms. Despite evidence that immune effectors can play a significant role in controlling tumor growth under natural conditions or in response to therapeutic manipulation, cancer cells usually evade immune surveillance. In that regard, antimicrobial peptides seem to overcome these limitations via a yet unknown non-receptor-mediated mechanism. We have designed cancer selective lytic peptides composed of D,L-amino acids that can specifically target and lyse cancer cells. These peptides can cure both primary and methastatic tumors in mice xenografts. In contrast, a peptide with the same amino acid composition but composed of all L-amino acid was active only on cell lines but not in animal models.