All years
, All years
Perception and Brain Plasticity in Humans: New Insights from Phase-locking Fourier Approaches to fMRI
Lecture
Tuesday, May 26, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Perception and Brain Plasticity in Humans: New Insights from Phase-locking Fourier Approaches to fMRI
Dr. Amir Amedi
Hadassah Medical School
Hebrew University Jerusalem
An integrative approach towards understanding the neural basis of congenital prosopagnosia
Lecture
Tuesday, May 19, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
An integrative approach towards understanding the neural basis of congenital prosopagnosia
Dr. Galia Avidan
Dept of Psychology and Zlotowski Center for Neuroscience
Ben Gurion University of the Negev
Congenital prosopagnosia (CP) refers to the deficit in face processing that is apparently life-long in duration, arises in the absence of brain damage of any form and occurs in individuals with intact sensory and intellectual function. As such, CP provides a unique model in which to explore the psychological and neural bases of normal face processing. Despite the growing interest in CP, the neural mechanism giving rise to this disorder is still unclear. We addressed this issue by adopting an integrative approach in which both functional and structural imaging techniques were combined. Specifically, using fMRI, we have documented normal face selective activation in face -related regions in occipito-temporal cortex but in contrast, revealed abnormal activation in these individuals in frontal regions, suggesting that information propagation between frontal and occipito-temporal regions is disrupted in this disorder. Consistently with this account, diffusion tensor imaging (DTI) measures revealed that the two major posterior-anterior tracts (inferior longitudinal fasciculus, inferior fronto-occipital fasciculus) through the fusiform face area (FFA) had significantly fewer fibers and lower fractional anisotropy (FA) values in CP. Finally, along the same line, structural imaging data revealed a significant reduction in volume of the anterior fusiform gyrus in the CP group, but normal volume at the location of the functionally defined FFA. Thus, taken together, these findings provide, for the first time, a comprehensive account for the neural deficits underlying congenital prosopagnosia and shed light on the underlying distributed circuit mediating normal face processing.
Behavioral and neurophysiological correlates of GABA modulation in the basal ganglia
Lecture
Tuesday, May 5, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Behavioral and neurophysiological correlates of GABA modulation in the basal ganglia
Dr. Izhar Bar-Gad
Gonda Brain Research Center
Bar Ilan University
The cortico-basal ganglia pathway is involved in normal motor control and implicated in multiple movement disorders. We used focal microinjections of the GABA-A antagonist bicuculline to the sensorimotor putamen of behaving primates to induce stereotyped tics similar to those observed in human Tourette syndrome. The tics were accompanied by synchronized phasic changes in the local field potential and single cell activity of neurons throughout the cortico-basal ganglia loop. We also used focal injection of bicuculline to different functional domains of the globus pallidus external segment (GPe) to induce a variety of hyper-behavioral symptoms. These, symptoms varied between dyskinesia, stereotypy and attention deficit depending on injection site within the motor, limbic and associative domains respectively. The injections led to distributed uncorrelated changes in firing pattern throughout the cortico-basal ganglia loop. The neurophysiological findings and their implication on models of information processing in the basal ganglia will be discussed in the lecture.
Odotopic maps, odor coding, rats, mice, and behavior
Lecture
Monday, May 4, 2009
Hour: 12:30
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Odotopic maps, odor coding, rats, mice, and behavior
Prof. Burton Slotnick
Dept of Psychology
American University
What is the neural code for odor quality perception? Perhaps the most widely accepted view is spatial: that different odors are represented at the level of the olfactory bulb by bulbar patterns of activation, a so-called odotopic combinatorial coding for the receptive fields of olfactory sensory neurons. The primary evidence for this view comes from variety of imaging studies demonstrating orderly relationships between chemical structure of odorants and sites of activation across the olfactory bulb. However, behavioral studies with rodents fail to support predictions based on anatomy but open new avenues for research on this still elusive sensory modality.
Interactions between environmental changes and brain plasticity in birds
Lecture
Monday, April 27, 2009
Hour: 12:30
Location:
Nella and Leon Benoziyo Building for Brain Research
Interactions between environmental changes and brain plasticity in birds
Prof. Anat Barnea
Dept of Natural and Life Sciences
The Open University of Israel
Neurogenesis (birth of new neurons) occurs in many vertebrates, including humans. Most of the new neurons die before reaching destination. Those which survive migrate to various brain regions, replace older ones and connect to existing circuits. Evidence suggests that this replacement is related to acquisition of new information. Therefore, neuronal replacement is seen as a form of brain plasticity that enables organisms to adjust to environmental changes. However, direct evidence of a causal link between replacement and learning remains elusive.
I will review a few of our studies which tried to uncover conditions that influence new neuronal recruitment and survival, and how these phenomena relate to the life of birds. We hypothesize that an increase in new neuron recruitment is associated with expected or actual increase in memory load, particularly in brain regions that process and perhaps store this new information. Moreover, since new neuronal recruitment is part of a turnover process, we assume that the same conditions that favor the survival of some neurons induce the death of others. I will offer a frame and rational for comparing neuronal replacement in the adult avian brain, and try to uncover the pressures, rules, and mechanisms that govern its constant rejuvenation. I will discuss a variety of behaviors and environmental conditions (food-hoarding, social change, parent-offspring recognition, migration) and their effect on new neuronal recruitment in relevant brain regions. I will describe various approaches and techniques which we used in those studies (behavioral, anatomical, cellular and hormonal), and will emphasize the significance of studying behavior and brain function under natural or naturalistic conditions.
Neural decoding and optimal filtering: on a reverse engineering view of neural information processing
Lecture
Monday, April 20, 2009
Hour: 12:00
Location:
Nella and Leon Benoziyo Building for Brain Research
Neural decoding and optimal filtering: on a reverse engineering view of neural information processing
Prof. Ron Meir
Faculty of Electrical Engineering
Technion, Haifa
The representation of value in the human brain
Lecture
Tuesday, April 7, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
The representation of value in the human brain
Prof. Ifat Levy
Yale University
The neural representation of value is a matter of great debate. In particular, it is not clear whether multiple valuation systems exist, each representing value under different conditions, or whether a single system that uses a “common currency” for the representation of value under many different conditions can be identified.
I will present two studies in which we combined experimental methods from behavioral economics with functional MRI to study the representation of value in the human brain. The first study compared choices under two terms of uncertainty: risk, when probabilities of different outcomes are known, and ambiguity, when such probabilities are not known. Our results show that although subjects exhibit markedly different choice behaviors under these two conditions, a single system, consisting of the striatum and the medial prefrontal cortex (MPFC) encodes choice values in both cases. In the second study we used MPFC activation elicited by passive viewing of goods in the scanner to predict subsequent choices between these goods made outside of the scanner. Our predictions were significantly above chance, suggesting that the same valuation system is engaged whether or not choice is required. Based on these results together with previous studies we suggest that the striatum and the MPFC are the final common pathway for valuation – other areas may be differentially involved in encoding value under different conditions, but all of these areas should transfer their output to the final system to guide choice behavior.
“LIS1, More or Less? Implications for Brain Development and Human Disease”
Lecture
Tuesday, March 31, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
“LIS1, More or Less? Implications for Brain Development and Human Disease”
Prof. Orly Reiner
Dept of Molecular Genetics, WIS
Perception and Action Interactions:Evidence from Neuropsychology, Neuroimaging, and Transcranial Magnetic Stimulation
Lecture
Thursday, March 26, 2009
Hour: 11:30
Location:
Nella and Leon Benoziyo Building for Brain Research
Perception and Action Interactions:Evidence from Neuropsychology, Neuroimaging, and Transcranial Magnetic Stimulation
Prof. Jody Culham
Dept of Psychology, University of Western Ontario, Canada
Visiting Senior Fellow, Institute of Advanced Studies
University of Bologna, Italy
Although prominent theories of vision have emphasized dissociations between two visual streams specialized for perception and action, in some situations, the two streams must interact. One such situation is the performance of actions upon remembered objects. Neuropsychological evidence from two patients with occipitotemporal lesions suggests that while immediate actions can be performed using only the dorsal vision-for-action stream, delayed actions require integrity of the ventral vision-for-perception stream. My lab has investigated the interactions between the two streams during delayed grasping using functional magnetic resonance imaging and transcranial magnetic stimulation. Our results suggest that delayed actions re-recruit information about object properties such as shape, size and orientation from the ventral stream and early visual areas at the time the delayed action is performed
Synergistic Interactions Between Molecular Risk Factors of Alzheimer’s Disease
Lecture
Tuesday, March 24, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Synergistic Interactions Between Molecular Risk Factors of Alzheimer’s Disease
Prof. Daniel Michaelson
Dept of Neurobiology,
Tel Aviv University
The allele E4 of apolipoprotein E (apoE4), the most prevalent genetic risk factor for Alzheimer’s disease, is associated with elevated levels of brain amyloid. This led to the suggestion that the pathological effects of apoE4 are mediated via synergistic pathological interactions with amyloid β (Aβ). We have recently shown that activation of the amyloid cascade by inhibition of the Aβ-degrading enzyme neprilysin in brains of apoE3 and apoE4 mice results in the isoform specific degeneration in apoE4 mice, of hippocampal CA1 neurons and of entorhinal and septal neurons. This is accompanied by the accumulation of intracellular Aβ and apoE and by pronounced cognitive deficits in the ApoE4 mice. We presently investigated the cellular mechanisms underlying the apoE4 dependent Aβ mediated neurodegeneration of CA1 and septal neurons and their neuronal specificity. Confocal microscopy kinetic studies revealed that the accumulated Aβ in CA1 neurons of apoE4 mice co-localizes with lysosomes and is associated with lysosomal activation and subsequent apoptotic neuronal cell death. Furthermore the accumulated Aβ is oligomerized. In contrast the degeneration of septal neurons is not associated with oligomerization of the accumulated Aβ. Instead intracellular Aβ in septal neurons co-localizes with the apoE receptor LRP whose levels are specifically elevated in these cells. These findings suggest that the apoE4 dependent Aβ mediated neurodegeneration is related, in CA1 but not in septal neurons, to oligomerization of the accumulated Aβ. In addition, neurodegeneration of CA1 but not of septal neurons is associated with inflammatory activation suggesting that the brain area specificity of the effects of apoE4 and Aβ are also related to brain area specific non neuronal mechanisms such as inflammation.
Neuronal plasticity experiments revealed that apoE4 inhibits synaptogenesis and neurogenesis and stimulates apoptosis in hippocampal neurons of apoE4 mice that have been exposed to an enriched environment. These effects are also associated with the specific accumulation of apoE4 and oligomerized Aβ in the affected neurons. Additional experiments revealed that apoE4 up-regulates the expression of inflammation-related genes following i.c.v injection of LPS and that this effect is also associated with the accumulation of intra neuronal Aβ in hippocampal neurons. These findings suggest that the impaired neuronal plasticity and hyper inflammatory effects of apoE4 may also be mediated via cross talk interactions of apoE4 with the amyloid cascade.
Pages
All years
, All years
“Intersectional Optogenetics" unearths neurons that drive fish locomotion
Lecture
Wednesday, February 18, 2009
Hour: 15:00
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
“Intersectional Optogenetics" unearths neurons that drive fish locomotion
Prof. Ehud Isacoff
Dept of Molecular & Cell Biology
UC Berkeley
A major challenge for biology is to develop new ways of determining how proteins operate in complexes in cells. This requires molecularly focused methods for dynamic interrogation and manipulation. An attractive approach is to use light as both input and output to probe molecular machines in cells. While there has been significant progress in optical detection of protein function, little advance has been made in remote control of any kind, including optical methods. As part of our efforts in the NIH Nanomedicine Development Center for the Optical Control of Biological Function, we are developing methods for rapidly switching on and off with light the function of select proteins in cells. The strategies are broadly applicable across protein classes.
Our approach has been to synthesize Photoswitched Tethered Ligands (PTLs), which are attached in a site directed manner to a protein of interest. The site of attachment is designed into the protein to be at a precise distance from a binding site for the ligand. The geometric precision has two important consequences. First, light of two different wavelengths is used to isomerize the linker in such a way that the ligand can only bind in one of the sites, thus making it possible to toggle binding on and off with light. Second, native proteins are not affected by the PTL and remain insensitive to light, since the PTL does not attach. This means that a specific protein in a cell, a tissue and even in an intact freely behaving organism, can have its biochemical signaling turned on and off by remote optical control. The switching is very fast, taking place in ~1 millisecond, i.e. at the rate of the fastest nerve impulse.
I will describe how we used our light-gated kaintate-type glutamate receptor, LiGluR, to study vertebrate locomotion. We used intersectional optogenetics in larval zebrafish to identify a new class of neurons that provide an important modulatory drive to swim behavior.
Computing as modeling
Lecture
Tuesday, February 17, 2009
Hour: 12:30
Location:
Nella and Leon Benoziyo Building for Brain Research
Computing as modeling
Prof. Oron Shagrir
Dept of Philosophy & Dept of Cognitive Science
Hebrew University, Jerusalem
The view that the brain computes is a working hypothesis in cognitive and brain sciences. But what does it mean to say that a system computes? What distinguishes computing systems, such as brains, from non-computing systems, such as stomachs and tornadoes? I argue that a "structural" approach to computing cannot account for much of the computational work in cognitive neuroscience. Instead, I offer a modeling account, which is a variant of a "semantic" approach. On this modeling account, the key feature of computing is a similarity between the "inner" mathematical relations, defined over the representing states, and "outer" mathematical relations, defined over the represented states.
Changes in the brain during chronic nicotine: from thermodynamics to neuroadaptation
Lecture
Tuesday, February 17, 2009
Hour: 10:30
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Changes in the brain during chronic nicotine: from thermodynamics to neuroadaptation
Prof. Henry Lester
California Institute of Technology
The Development of Reading Pathways in School Age Children
Lecture
Thursday, February 12, 2009
Hour: 11:30
Location:
Nella and Leon Benoziyo Building for Brain Research
The Development of Reading Pathways in School Age Children
Dr. Michal Ben-Shachar
English Dept and the Gonda Brain Research Center
Bar Ilan University
Learning to read involves exposure to large amounts of print in a focused period of time during childhood. How does this environmental transition affect cortical circuits for visual perception and shape recognition? I will present data from a developmental study of reading examining the relation between reading skill, cortical function and white matter properties in school age children. Functional properties in area MT+, and white matter properties in temporal callosal fibers, are both correlated with reading skill. I will discuss possible interpretations of these findings within a general model of the reading pathways.
Plasticity in the Human Ventral Stream:: Regional Differences Across Time Scales
Lecture
Monday, February 9, 2009
Hour: 12:30
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Plasticity in the Human Ventral Stream:: Regional Differences Across Time Scales
Prof. Kalanit Grill-Spector
Dept of Psychology & Neurosciences Institute
Stanford University, CA
The human ventral stream consists of regions in the lateral and ventral aspects of the occipital and temporal lobes and is involved in visual recognition. One robust characteristic of selectivity in the adult human ventral stream is category selectivity. Category selectivity is manifested by both a regional preference to particular object categories, such as faces, places and bodyparts, as well as in specific (and reproducible) distributed response patterns across the ventral stream for different object categories. However, it is not well understood how experience modifies these representations and how do these representations come about throughout development. Here, I will describe two sets of experiments in which we addressed these important questions. First, I will describe experiments in adults in which we examined the effect of repetition on categorical responses in the ventral stream. Repeating objects decreases responses in the human ventral stream. However, repetition largely does not change the profile of category selectivity in the ventral stream, except for a place-selective region in the collateral sulcus in which long-lagged repetitions sharpened its responses. Second, I will describe experiments in which we examined changes in category selectivity throughout development from middle childhood (7-11 years), through adolescence (12-16) into adulthood. Surprisingly, we find that it takes more than a decade for the development of adult-like face and place-selective regions. In contrast, the lateral occipital object-selective region showed an adult-like profile by age 7. Finally, I will discuss the implications of these results on plasticity in the ventral stream and our theoretical models linking between fMRI measurements and the underlying neural mechanisms.
Neuronal Circuitry of Conditioned Fear
Lecture
Monday, February 2, 2009
Hour: 12:30
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Neuronal Circuitry of Conditioned Fear
Prof. Andreas Lüthi
Friedrich Miescher Institute, Switzerland
Fearful Brains in an Anxious World
Lecture
Sunday, February 1, 2009
Hour: 15:00
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Fearful Brains in an Anxious World
Prof. Joseph E. Ledoux
Center for Neural Science,
New York University
Generation of temporal patterns in the olivo-cerebellar system
Lecture
Thursday, January 22, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Generation of temporal patterns in the olivo-cerebellar system
Dr. Gilad Jacobson
Dept of Neurobiology
Hebrew University, Jerusalem
The olivo-cerebellar system plays a crucial role in timing of both motor and non-motor tasks. The mechanisms underlying this timing capability are still unclear. Here I propose a plausible mechanism in which a temporal pattern reflects accurate phase relationships between the oscillatory activity of olivary neurons. I provide evidence from chronic multi-electrode recordings in awake rats that inferior olive oscillations possess hitherto unknown properties that: (1) Oscillations in different parts of the inferior olive can maintain constant, non-zero phase differences; (2) The oscillation frequency of olivary neurons is co-modulated; and (3) Phase differences are well maintained despite frequency changes. Thus, the inferior olive can generate not only “clock ticks” at the oscillation cycle duration, but more importantly shorter intervals that emerge by combining different parts of the olivary circuitry. This enables the olivo-cerebellar circuit to support timing in the range implicated by behavioural studies.
Personal theories and self-images: Critical tools in the rehabilitation from a severe brain injury
Lecture
Sunday, January 18, 2009
Hour: 14:45
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Personal theories and self-images: Critical tools in the rehabilitation from a severe brain injury
Prof. Yoram Eshet
Dept of Psychology & Education
The Open University of Israel
The lecture is given by a person who suffers from a severe (right-parietal) brain injury from the Yom Kippur War (1973). It discusses the injury as it is perceived by the injured person. The lecture focuses on self-images of the injury and emphasizes the pivotal role of higher cognitive processes, such as personal theories and narratives, as critical tools for a successful; rehabilitation.
Learning to smell: Cortical plasticity and odor perception
Lecture
Wednesday, January 14, 2009
Hour: 10:30
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Learning to smell: Cortical plasticity and odor perception
Prof. Donald Wilson
New York University School of Medicine
& Emotional Brain Institute
Nathan Kline Institute for Psychiatric Research
Odor perception - discrimination and recognition of volatile chemicals in the environment – is critical for wide ranging behaviors including kin recognition, mate selection, predator avoidance, homing, and feeding. Most naturally occurring odors are complex mixtures, often containing hundreds of different components. Furthermore, natural odors invariably occur against odorous backgrounds. Thus, olfaction and odor perception involves far more than simple odor ligands binding to receptors in the nose. I will describe recent work
Pages
All years
, All years
There are no events to display