All years
All events, All years
Neural decoding and optimal filtering: on a reverse engineering view of neural information processing
Lecture
Monday, April 20, 2009
Hour: 12:00
Location:
Nella and Leon Benoziyo Building for Brain Research
Neural decoding and optimal filtering: on a reverse engineering view of neural information processing
Prof. Ron Meir
Faculty of Electrical Engineering
Technion, Haifa
The representation of value in the human brain
Lecture
Tuesday, April 7, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
The representation of value in the human brain
Prof. Ifat Levy
Yale University
The neural representation of value is a matter of great debate. In particular, it is not clear whether multiple valuation systems exist, each representing value under different conditions, or whether a single system that uses a “common currency” for the representation of value under many different conditions can be identified.
I will present two studies in which we combined experimental methods from behavioral economics with functional MRI to study the representation of value in the human brain. The first study compared choices under two terms of uncertainty: risk, when probabilities of different outcomes are known, and ambiguity, when such probabilities are not known. Our results show that although subjects exhibit markedly different choice behaviors under these two conditions, a single system, consisting of the striatum and the medial prefrontal cortex (MPFC) encodes choice values in both cases. In the second study we used MPFC activation elicited by passive viewing of goods in the scanner to predict subsequent choices between these goods made outside of the scanner. Our predictions were significantly above chance, suggesting that the same valuation system is engaged whether or not choice is required. Based on these results together with previous studies we suggest that the striatum and the MPFC are the final common pathway for valuation – other areas may be differentially involved in encoding value under different conditions, but all of these areas should transfer their output to the final system to guide choice behavior.
“LIS1, More or Less? Implications for Brain Development and Human Disease”
Lecture
Tuesday, March 31, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
“LIS1, More or Less? Implications for Brain Development and Human Disease”
Prof. Orly Reiner
Dept of Molecular Genetics, WIS
Perception and Action Interactions:Evidence from Neuropsychology, Neuroimaging, and Transcranial Magnetic Stimulation
Lecture
Thursday, March 26, 2009
Hour: 11:30
Location:
Nella and Leon Benoziyo Building for Brain Research
Perception and Action Interactions:Evidence from Neuropsychology, Neuroimaging, and Transcranial Magnetic Stimulation
Prof. Jody Culham
Dept of Psychology, University of Western Ontario, Canada
Visiting Senior Fellow, Institute of Advanced Studies
University of Bologna, Italy
Although prominent theories of vision have emphasized dissociations between two visual streams specialized for perception and action, in some situations, the two streams must interact. One such situation is the performance of actions upon remembered objects. Neuropsychological evidence from two patients with occipitotemporal lesions suggests that while immediate actions can be performed using only the dorsal vision-for-action stream, delayed actions require integrity of the ventral vision-for-perception stream. My lab has investigated the interactions between the two streams during delayed grasping using functional magnetic resonance imaging and transcranial magnetic stimulation. Our results suggest that delayed actions re-recruit information about object properties such as shape, size and orientation from the ventral stream and early visual areas at the time the delayed action is performed
Synergistic Interactions Between Molecular Risk Factors of Alzheimer’s Disease
Lecture
Tuesday, March 24, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Synergistic Interactions Between Molecular Risk Factors of Alzheimer’s Disease
Prof. Daniel Michaelson
Dept of Neurobiology,
Tel Aviv University
The allele E4 of apolipoprotein E (apoE4), the most prevalent genetic risk factor for Alzheimer’s disease, is associated with elevated levels of brain amyloid. This led to the suggestion that the pathological effects of apoE4 are mediated via synergistic pathological interactions with amyloid β (Aβ). We have recently shown that activation of the amyloid cascade by inhibition of the Aβ-degrading enzyme neprilysin in brains of apoE3 and apoE4 mice results in the isoform specific degeneration in apoE4 mice, of hippocampal CA1 neurons and of entorhinal and septal neurons. This is accompanied by the accumulation of intracellular Aβ and apoE and by pronounced cognitive deficits in the ApoE4 mice. We presently investigated the cellular mechanisms underlying the apoE4 dependent Aβ mediated neurodegeneration of CA1 and septal neurons and their neuronal specificity. Confocal microscopy kinetic studies revealed that the accumulated Aβ in CA1 neurons of apoE4 mice co-localizes with lysosomes and is associated with lysosomal activation and subsequent apoptotic neuronal cell death. Furthermore the accumulated Aβ is oligomerized. In contrast the degeneration of septal neurons is not associated with oligomerization of the accumulated Aβ. Instead intracellular Aβ in septal neurons co-localizes with the apoE receptor LRP whose levels are specifically elevated in these cells. These findings suggest that the apoE4 dependent Aβ mediated neurodegeneration is related, in CA1 but not in septal neurons, to oligomerization of the accumulated Aβ. In addition, neurodegeneration of CA1 but not of septal neurons is associated with inflammatory activation suggesting that the brain area specificity of the effects of apoE4 and Aβ are also related to brain area specific non neuronal mechanisms such as inflammation.
Neuronal plasticity experiments revealed that apoE4 inhibits synaptogenesis and neurogenesis and stimulates apoptosis in hippocampal neurons of apoE4 mice that have been exposed to an enriched environment. These effects are also associated with the specific accumulation of apoE4 and oligomerized Aβ in the affected neurons. Additional experiments revealed that apoE4 up-regulates the expression of inflammation-related genes following i.c.v injection of LPS and that this effect is also associated with the accumulation of intra neuronal Aβ in hippocampal neurons. These findings suggest that the impaired neuronal plasticity and hyper inflammatory effects of apoE4 may also be mediated via cross talk interactions of apoE4 with the amyloid cascade.
Now I See It, Now I Don’t: Neural Basis of Simple Perceptual Decisions in the Human Brain
Lecture
Wednesday, March 18, 2009
Hour: 12:30
Location:
Nella and Leon Benoziyo Building for Brain Research
Now I See It, Now I Don’t: Neural Basis of Simple Perceptual Decisions in the Human Brain
Dr. Tobias H. Donner
Center for Neural Science & Dept of Psychology
New York University
It is frequently proposed that conscious perceptual decisions are produced by recurrent interactions among multiple brain areas. Sensory stimuli, which are close to psychophysical threshold or perceptually bistable, induce fluctuating percepts in the face of constant sensory input. Thus, these stimuli provide ideal tools for probing the intrinsic neural mechanisms underlying perceptual decisions, in the absence of extrinsic stimulus changes. I will present human neuroimaging (MEG and fMRI) studies, in which we used this approach for probing the large-scale neural mechanisms underlying decisions about the presence or absence of simple visual features. Our results suggest that neural population activity in parietal, prefrontal, and premotor areas reflects the decision process, and that population activity in extrastriate ventral visual cortex reflects perception. Further, cooperative and competitive long- range interactions, across multiple levels of the cortical processing hierarchy, both seem to underlie simple perceptual decisions.
How circadian clocks keep time: insights from Drosophila
Lecture
Tuesday, March 17, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
How circadian clocks keep time: insights from Drosophila
Dr. Sebastian Kadener
Dept of Biological Chemistry
The Hebrew University of Jerusalem
Circadian rhythms in locomotor activity are an example of a well-characterized behavior for which the molecular and neurobiological bases are not yet completely understood. These rhythms are self-sustained 24 hours rhythms that underlie most physiological and behavioral processes. The central circadian clock, which is situated in the brain, is responsible for daily rhythms in locomotor activity that persist even after weeks in constant darkness (DD). Peripheral clocks are spread trough the fly body and regulate a plethora of physiological functions that include: olfaction, detoxification and immunity. All these clocks keep time trough complex transcriptional-translational feedback loops that include the proteins CLK, CYC, PER and TIM. My research focuses on the study of the molecular basis of the circadian clock. In particular, I am interested in the contribution of the different molecular interactions and processes to the generation of robust 24hs rhythms. In this context, I have recently demonstrated that transcriptional speed of the clock gene PER is a determinant of the circadian period and that translational regulation by miRNAs is part of the central circadian clock.
Complex Translational Control in the Gustatory Cortex Determines the Stability of a Taste Memory
Lecture
Thursday, March 12, 2009
Hour: 12:00
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Complex Translational Control in the Gustatory Cortex Determines the Stability of a Taste Memory
Dr. Kobi Rosenblum
Dept of Neurobiology, University of Haifa
The off-line processing of acquired sensory information in the mammalian cortex is an example for the unique way biology creates to compute and store information which guides behavior. The relatively short temporal phase in the process (i.e. hours following acquisition) is defined biochemically by its sensitivity to protein synthesis inhibitors. Until recently this negative definition of molecular consolidation did not reveal the details of the endogenous processes taking place, minutes to hours, in the neurons and circuit underlying a given memory. We use taste learning paradigms in order to study this process of molecular consolidation in the gustatory cortex.
Recent results, from our laboratory, obtained from genetic, pharmacological, biochemical, electrophysiological and behavioral studies demonstrate that translational control, at the initiation and elongation phases of translation, plays a key role in the process of molecular consolidation. Moreover, this spatially and temporally regulated translation control modifies both general and synaptic protein expression that is crucial for memory stabilization. We propose a model to explain the interplay between regulation of initiation and elongation phases of translation and demonstrate that in certain situations cognitive enhancement can be achieved.
Unravelling signal processing in the cortical column
Lecture
Tuesday, February 24, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Unravelling signal processing in the cortical column
Idan Segev
Department of Neurobiology &
Interdisciplinary Center for Neural Computation
Hebrew University, Jerusalem
Never before have such intense experimental efforts been focused on neuronal circuits of the size of few hundred thousands neurons whose functions are relatively well defined. The extraordinarily powerful new genetic tools and 3D reconstruction methods, combined with modern multi-electrode arrays, telemetry, two-photon imaging and photo-activation are starting to shed bright light on the intricacies of these circuits, and in particular of the cortical column. But without tools that integrate all this different types of data, one cannot expect to gain a comprehensive understanding on how these circuits perform specific sensory-motor or cognitive functions. As in any other complex system, a modeling study is essential if we are to ever say that we understand how this system works. I will describe several attempts in my group to begin building detailed models of the cortical column, highlighting that, at both circuit level and at the level of individual neurons, models should capture experimental variability and that the building of these models should become automated. I will demonstrate how these models could be used to fruitfully guide new experiments and discuss were all this new integrated "simulation-driven brain research agenda" might lead to.
“Intersectional Optogenetics" unearths neurons that drive fish locomotion
Lecture
Wednesday, February 18, 2009
Hour: 15:00
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
“Intersectional Optogenetics" unearths neurons that drive fish locomotion
Prof. Ehud Isacoff
Dept of Molecular & Cell Biology
UC Berkeley
A major challenge for biology is to develop new ways of determining how proteins operate in complexes in cells. This requires molecularly focused methods for dynamic interrogation and manipulation. An attractive approach is to use light as both input and output to probe molecular machines in cells. While there has been significant progress in optical detection of protein function, little advance has been made in remote control of any kind, including optical methods. As part of our efforts in the NIH Nanomedicine Development Center for the Optical Control of Biological Function, we are developing methods for rapidly switching on and off with light the function of select proteins in cells. The strategies are broadly applicable across protein classes.
Our approach has been to synthesize Photoswitched Tethered Ligands (PTLs), which are attached in a site directed manner to a protein of interest. The site of attachment is designed into the protein to be at a precise distance from a binding site for the ligand. The geometric precision has two important consequences. First, light of two different wavelengths is used to isomerize the linker in such a way that the ligand can only bind in one of the sites, thus making it possible to toggle binding on and off with light. Second, native proteins are not affected by the PTL and remain insensitive to light, since the PTL does not attach. This means that a specific protein in a cell, a tissue and even in an intact freely behaving organism, can have its biochemical signaling turned on and off by remote optical control. The switching is very fast, taking place in ~1 millisecond, i.e. at the rate of the fastest nerve impulse.
I will describe how we used our light-gated kaintate-type glutamate receptor, LiGluR, to study vertebrate locomotion. We used intersectional optogenetics in larval zebrafish to identify a new class of neurons that provide an important modulatory drive to swim behavior.
Pages
All years
All events, All years
Neuronal Circuitry of Conditioned Fear
Lecture
Monday, February 2, 2009
Hour: 12:30
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Neuronal Circuitry of Conditioned Fear
Prof. Andreas Lüthi
Friedrich Miescher Institute, Switzerland
Fearful Brains in an Anxious World
Lecture
Sunday, February 1, 2009
Hour: 15:00
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Fearful Brains in an Anxious World
Prof. Joseph E. Ledoux
Center for Neural Science,
New York University
Generation of temporal patterns in the olivo-cerebellar system
Lecture
Thursday, January 22, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Generation of temporal patterns in the olivo-cerebellar system
Dr. Gilad Jacobson
Dept of Neurobiology
Hebrew University, Jerusalem
The olivo-cerebellar system plays a crucial role in timing of both motor and non-motor tasks. The mechanisms underlying this timing capability are still unclear. Here I propose a plausible mechanism in which a temporal pattern reflects accurate phase relationships between the oscillatory activity of olivary neurons. I provide evidence from chronic multi-electrode recordings in awake rats that inferior olive oscillations possess hitherto unknown properties that: (1) Oscillations in different parts of the inferior olive can maintain constant, non-zero phase differences; (2) The oscillation frequency of olivary neurons is co-modulated; and (3) Phase differences are well maintained despite frequency changes. Thus, the inferior olive can generate not only “clock ticks” at the oscillation cycle duration, but more importantly shorter intervals that emerge by combining different parts of the olivary circuitry. This enables the olivo-cerebellar circuit to support timing in the range implicated by behavioural studies.
Personal theories and self-images: Critical tools in the rehabilitation from a severe brain injury
Lecture
Sunday, January 18, 2009
Hour: 14:45
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Personal theories and self-images: Critical tools in the rehabilitation from a severe brain injury
Prof. Yoram Eshet
Dept of Psychology & Education
The Open University of Israel
The lecture is given by a person who suffers from a severe (right-parietal) brain injury from the Yom Kippur War (1973). It discusses the injury as it is perceived by the injured person. The lecture focuses on self-images of the injury and emphasizes the pivotal role of higher cognitive processes, such as personal theories and narratives, as critical tools for a successful; rehabilitation.
Learning to smell: Cortical plasticity and odor perception
Lecture
Wednesday, January 14, 2009
Hour: 10:30
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Learning to smell: Cortical plasticity and odor perception
Prof. Donald Wilson
New York University School of Medicine
& Emotional Brain Institute
Nathan Kline Institute for Psychiatric Research
Odor perception - discrimination and recognition of volatile chemicals in the environment – is critical for wide ranging behaviors including kin recognition, mate selection, predator avoidance, homing, and feeding. Most naturally occurring odors are complex mixtures, often containing hundreds of different components. Furthermore, natural odors invariably occur against odorous backgrounds. Thus, olfaction and odor perception involves far more than simple odor ligands binding to receptors in the nose. I will describe recent work
The tempotron: applications to visual and time-warp invariant auditory processing
Lecture
Tuesday, January 13, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
The tempotron: applications to visual and time-warp invariant auditory processing
Dr. Robert Guetig
Racah Institute of Physics &
Interdisciplinary Center for Neural Computation
Hebrew University, Jerusalem
The timing of action potentials of sensory neurons contains substantial information about the eliciting stimuli. Although computational advantages of spike-timing-based neuronal codes have long been recognized, it is unclear whether and how neurons can learn to read out such representations. We propose a novel biologically plausible supervised synaptic learning rule, the tempotron, enabling neurons to efficiently learn a broad range of decision rules, even when information is embedded in the spatio-temporal structure of spike patterns and not in mean firing rates. We demonstrate the enhanced performance of the tempotron over the rate-based perceptron in reading out spike patterns from retinal ganglion cell populations. Extending the tempotron to conductance-based voltage kinetics, we show that this model can subserve time-warp invariant processing of afferent spike patterns. Furthermore, we show that the conductance-based tempotron can learn to balance excitation and inhibition to match its integration time constant to the temporal scale of a given processing task. We show that already a small population of neurons can solve the TI46 isolated digit speech recognition task with near perfect performance
How to migrate when immobilized: Novel role for Reelin in the migration of cortical neurons
Lecture
Wednesday, January 7, 2009
Hour: 12:30
Location:
Nella and Leon Benoziyo Building for Brain Research
How to migrate when immobilized: Novel role for Reelin in the migration of cortical neurons
Prof. Michael Frotscher
Institute of Anatomy & Cell Biology
University of Freiburg, Germany
Reelin, a glycoprotein of the extracellular matrix, is secreted by Cajal-Retzius cells in the marginal zone of the cortex and controls the radial migration of cortical neurons. Reelin signaling involves the lipoprotein receptors apolipoprotein E receptor 2 (ApoER2) and very low density lipoprotein receptor (VLDLR), the adapter protein Disabled1 (Dab1), and phosphatidylinositol-3-kinase (PI3K). In regulating neuronal migration, Reelin signaling eventually acts on the cytoskeleton; however, its effects on the dynamic reorganization of the cytoskeleton have remained obscure. In reeler mutants deficient in Reelin, the majority of cortical neurons are unable to migrate to their destinations, suggesting Reelin signaling to be essential for the dynamic cytoskeletal reorganization that is required for neurons to migrate.
In contrast, we show that Reelin signaling stabilizes the cytoskeleton by serine3 phosphorylation of n-cofilin, an actin-depolymerizing protein. Phosphorylation at serine3 renders n-cofilin unable to depolymerize F-actin. However, depolymerization of F-actin is required for cytoskeletal reorganization. The Reelin receptor ApoER2, Dab1, src family kinases (SFKs), and PI3K were found to be involved in n-cofilin serine3 phosphorylation. Phosphorylation of n-cofilin was observed in the leading processes of migrating neurons when they reached the Reelin-containing marginal zone. Using a stripe choice assay, we found neuronal processes to be stable on Reelin-coated stripes. In contrast, on control stripes they formed lamellipodia as a sign of ongoing growth. These new results indicate that Reelin-induced stabilization of neuronal processes anchors them to the marginal zone which is crucial for directional migration by nuclear translocation.
(Supported by the German Research Foundation, DFG: SFB 592)
Rule-Rationality versus Act-Rationality
Lecture
Tuesday, December 30, 2008
Hour: 12:30
Location:
Jacob Ziskind Building
Rule-Rationality versus Act-Rationality
Prof. Yisrael Aumann
Nobel Prize Laureate in Economics, 2005
The Center for the Study of Rationality
Hebrew University, Jerusalem
People's actions often deviate from rationality, i.e., self-interested behavior. We propose a paradigm called rule-rationality, according to which people do not maximize utility in each of their acts, but rather follow rules or modes of behavior that usually---but not always---maximize utility. Specifically, rather than choosing an act that maximizes utility among all possible acts in a given situation, people adopt rules that maximize average utility among all applicable rules, when the same rule is applied to many apparently similar situations. The distinction is analogous to that between Bentham's "act-utilitarianism'' and the "rule-utilitarianism'' of Mill, Harsanyi, and others. The genesis of such behavior is examined, and examples are given. The paradigm may provide a synthesis between rationalistic neo-classical economic theory and behavioral economics.
Nonlinearity, memory, and phase transitions in learning
Lecture
Thursday, December 25, 2008
Hour: 12:00
Location:
Nella and Leon Benoziyo Building for Brain Research
Nonlinearity, memory, and phase transitions in learning
Dr. Ilya Nemenman
Computer, Computation and Statistical Sciences Division & Center for Nonlinear Studies
Los Alamos National Laboratory
Abstracting from physiological details, I will present a theory that suggests an explanation behind critical periods in learning as a natural consequence of learning dynamics under a small and realistic set of assumptions. Surprisingly, the same theory offers an explanation for other animal learning phenomena, such as the tendency to reverse to the status quo following a transient learning experience. Additionally, the theory suggests simple experiments that can be used to prove or refute it. If the time permits, as a commercial for future results, I will finish the talk with a brief overview of recent attempts at LANL for petascale simulations of the mammalian visual cortex.
Salience-based selection: How does the brain ignore saliency?
Lecture
Tuesday, December 23, 2008
Hour: 12:30
Location:
Jacob Ziskind Building
Salience-based selection: How does the brain ignore saliency?
Dr. Carmel Mevorach
Behavioral Brain Sciences Centre
University of Birmingham UK
At any particular time the brain is bombarded with an almost infinite amount of visual information. Efficient behaviour, then, relies on a process of attentional selection which is required to filter out irrelevant stimuli and to prioritize the processing of relevant events. Importantly, this attentional prioritisation process needs to be flexible in order to be responsive to changes in behavioural relevance. Thus, bottom-up cues for attention must be modulated by top-down information, reflecting the goals of behaviour. In recent years, considerable neurobiological evidence has accumulated indicating that flexible visual selection is controlled by a fronto-parietal network within the brain. In particular, the posterior parietal cortex (PPC) has been implicated both when spatial selection is required and when selection is non-spatial. In a series of recent studies we have used converging operations to demonstrate a link between the PPC and a form of non-spatial selection – selecting on the basis of the relative salience of the stimuli. Using variants of the classic Global/Local task we orthogonally manipulated the level of shape that participants responded to and the salience of that information. Using experimental techniques such as neuropsychological studies, Trans-cranial Stimulation (TMS) and functional imaging (fMRI) we show that the PPC is sensitive to the relative saliency of the information so that selection can be based on whether the target or the distractor are more salient. Most importantly, we provide evidence for distinct roles played by the right and left PPC in selection and suppression of saliency, respectively. The data may also suggest how such complementary forms of selection are implemented in the brain.
Pages
All years
All events, All years
There are no events to display