Publications
2025
-
(2025) Physical Review Materials. 9, 1, 016201. Abstract
We explore the optical dipole orientation of single photon emitters in monolayer MoS2 as produced by a focused helium ion beam. The single photon emitters can be understood as single-sulfur vacancies. The corresponding far-field luminescence spectra reveal several photoluminescence lines below the dominating luminescence of the exciton in MoS2. These sub-bandgap emission lines were predicted by ab initio theory, but they have never been resolved in luminescence experiments because of their small amplitude. We reveal the lines by their dependence as a function of the photon energy and momentum as measured in the back focal plane of the optical circuitry. The agreement between theory and experiment suggests that the defect states interact strongly within the Brillouin zone.
2024
-
(2024) Physical Review B. 110, 13, 134304. Abstract
Understanding complex quantum dynamics in realistic materials requires insight into the underlying correlations that dominate the interactions between the participating particles. Due to the wealth of information involved in these processes, the application of artificial intelligence (AI) methods is compelling. However, unsupervised data-driven approaches typically focus on identifying maximum variations in data, rather than considering the correlations between them. Here, we present an approach that recognizes correlation patterns to explore convoluted dynamical processes. Our scheme uses singular value decomposition to extract dynamical features, unveiling the internal temporal-spatial interrelations that generate the dynamical mechanisms. We apply our approach to study light-induced wave-packet propagation in organic crystals, of interest for applications in material-based quantum computing and quantum information science. We show how transformation from the input momentum and time coordinates onto a new correlation-induced coordinate space allows direct recognition of the relaxation and dephasing components dominating the dynamics and we demonstrate their dependence on the initial pulse shape. A tensor product state composed of a linear combination of singular vectors is suggested as a pathway to reproduce the information required for further explainability of these mechanisms. Our method offers a route for elucidating complex dynamical processes using unsupervised AI-based analysis in multicomponent systems.
-
(2024) Journal of Chemical Physics. 161, 9, 091101. Abstract
Pentacene is an important model organic semiconductor in both the singlet exciton fission (SF) and organic electronics communities. We have investigated the effect of changing crystal structure on the SF process, generating multiple triplet excitons from an initial singlet exciton, and subsequent triplet recombination. Unlike for similar organic semiconductors that have strong SF sensitive to polymorphism, we find almost no quantitative difference between the kinetics of triplet pair (TT) formation in the two dominant polymorphs of pentacene. Both pairwise dimer coupling and momentum-space crystal models predict much faster TT formation from the bright singlet excited state of the Bulk vs ThinFilm polymorph, contrasting with the experiment. GW and Bethe-Salpeter equation calculations, including exciton-phonon coupling, reveal that ultrafast phonon-driven transitions in the ThinFilm polymorph compensate the intrinsically slower purely Coulomb-mediated TT formation channel, rationalizing the similarity in observed rates. Taking into account the influence of subtle structural distinctions on both the direct and phonon-mediated SF pathways reveals a predictive capability to these methods, expected to be applicable to a wide variety of molecular crystals.
-
(2024) npj 2D Materials and Applications. 8, 50. Abstract
Optical properties of heterostructures composed of layered 2D materials, such as transition metal dichalcogenides (TMDs) and graphene, are broadly explored. Of particular interest are light-induced energy transfer mechanisms in these materials and their structural roots. Here, we use state-of-the-art first-principles calculations to study the excitonic composition and the absorption properties of WS2graphene heterostructures as a function of interlayer alignment and the local strain resulting from it. We find that Brillouin zone mismatch and the associated energy level alignment between the graphene Dirac cone and the TMD bands dictate an interplay between interlayer and intralayer excitons, mixing together in the many-body representation upon the strain-induced symmetry breaking in the interacting layers. Examining the representative cases of the 0° and 30° interlayer twist angles, we find that this exciton mixing strongly varies as a function of the relative alignment. We quantify the effect of these structural modifications on exciton charge separation between the layers and the associated graphene-induced homogeneous broadening of the absorption resonances. Our findings provide guidelines for controllable optical excitations upon interface design and shed light on the importance of many-body effects in the understanding of optical phenomena in complex heterostructures.
-
(2024) Physical review letters. 132, 12, 126902. Abstract
Nonradiative exciton relaxation processes are critical for energy transduction and transport in optoelectronic materials, but how these processes are connected to the underlying crystal structure and the associated electron, exciton, and phonon band structures, as well as the interactions of all these particles, is challenging to understand. Here, we present a first-principles study of exciton-phonon relaxation pathways in pentacene, a paradigmatic molecular crystal and optoelectronic semiconductor. We compute the momentum- and band-resolved exciton-phonon interactions, and use them to analyze key scattering channels. We find that both exciton intraband scattering and interband scattering to parity-forbidden dark states occur on the same ∼100 fs timescale as a direct consequence of the longitudinal-transverse splitting of the bright exciton band. Consequently, exciton-phonon scattering exists as a dominant nonradiative relaxation channel in pentacene. We further show how the propagation of an exciton wave packet is connected with crystal anisotropy, which gives rise to the longitudinal-transverse exciton splitting and concomitant anisotropic exciton and phonon dispersions. Our results provide a framework for understanding the role of exciton-phonon interactions in exciton nonradiative lifetimes in molecular crystals and beyond.
2023
-
(2023) Nano Letters. 23, 24, p. 11655-11661 Abstract
We report on the optical absorption characteristics of selectively positioned sulfur vacancies in monolayer MoS2, as observed by photovoltage and photocurrent experiments in an atomistic vertical tunneling circuit at cryogenic and room temperature. Charge carriers are resonantly photoexcited within the defect states before they tunnel through an hBN tunneling barrier to a graphene-based drain contact. Both photovoltage and photocurrent characteristics confirm the optical absorption spectrum as derived from ab initio GW and Bethe-Salpeter equation approximations. Our results reveal the potential of single-vacancy tunneling devices as atomic-scale photodiodes.
-
(2023) Physical Review B. 108, 22, L220305. Abstract
Heterostructures of layered transition metal dichalcogenides (TMDs) host long-lived, tunable excitons, making them intriguing candidates for material-based quantum information applications. Light absorption in these systems induces a plethora of optically excited states that hybridize both interlayer and intralayer characteristics, providing a distinctive starting point for their relaxation processes, in which the interplay between generated electron-hole pairs and their scattering with phonons play a key role. We present a first-principles theoretical approach to compute phonon-induced exciton decomposition due to rapid occupation of electron-hole pairs with finite momentum and opposite spin. Using the MoSe2/WSe2 heterostructure as a case study, we observe a reduction in the optical activity of bright states upon phonon scattering already in the first few femtoseconds after a photoexcitation, driving exciton interlayer delocalization and subsequent variations in the exciton spin. Our results reveal an unexpected and previously unexplored starting point for exciton relaxation dynamics, suggesting increased availability for coherent interactions and nonradiative processes through ultrafast changes in exciton momentum, spatial, and spin properties upon light excitation.
-
(2023) npj Computational Materials. 9, 1, 186. Abstract
Moire superlattices of transition metal dichalcogenide (TMD) heterostructures give rise to rich excitonic phenomena associated with the interlayer twist angle. Theoretical calculations of excitons in such systems are typically based on model moire potentials that mitigate the computational cost. However, predictive understanding of the electron-hole coupling dominating the excitations is crucial to realize the twist-induced modifications of the optical selection rules. In this work, we use many-body perturbation theory to evaluate the relation between twist angle and exciton properties in TMD heterostructures. We present an approach for unfolding excitonic states from the moire Brillouin zone onto the separate-layer ones. Applying this method to a large-angle twisted MoS2/MoSe2 bilayer, we find that the optical spectrum is dominated by mixed electron-hole transitions with different momenta in the separate monolayers, leading to unexpected hybridization between interlayer and intralayer excitons. Our findings offer a design pathway for exciton layer-localization in TMD heterostructures.
-
(2023) Nano Letters. 23, 13, p. 5995-6001 Abstract
Associating atomic vacancies to excited-state transport phenomena in two-dimensional semiconductors demands a detailed understanding of the exciton transitions involved. We study the effect of such defects on the electronic and optical properties of WS2graphene and MoS2graphene van der Waals heterobilayers, employing many-body perturbation theory. We find that chalcogen defects and the graphene interface radically alter the optical properties of the transition-metal dichalcogenide in the heterobilayer, due to a combination of dielectric screening and the many-body nature of defect-induced intralayer and interlayer optical transitions. By analyzing the intrinsic radiative rates of the subgap excitonic features, we show that while defects introduce low-lying optical transitions, resulting in excitons with non-negligible oscillator strength, they decrease the optical response of the pristine-like transition-metal dichalcogenide intralayer excitons. Our findings relate excitonic features with interface design for defect engineering in photovoltaic and transport applications.
-
(2023) npj 2D Materials and Applications. 7, 30. Abstract
Single spin-defects in 2D transition-metal dichalcogenides are natural spin-photon interfaces for quantum applications. Here we report high-field magneto-photoluminescence spectroscopy from three emission lines (Q1, Q2, and Q*) of He-ion induced sulfur vacancies in monolayer MoS2. Analysis of the asymmetric PL lineshapes in combination with the diamagnetic shift of Q1 and Q2 yields a consistent picture of localized emitters with a wave function extent of ~3.5 nm. The distinct valley-Zeeman splitting in out-of-plane B-fields and the brightening of dark states through in-plane B-fields necessitates spin-valley selectivity of the defect states and lifted spin-degeneracy at zero field. Comparing our results to ab initio calculations identifies the nature of Q1 and Q2 and suggests that Q* is the emission from a chemically functionalized defect. Analysis of the optical degree of circular polarization reveals that the Fermi level is a parameter that enables the tunability of the emitter. These results show that defects in 2D semiconductors may be utilized for quantum technologies.
-
(2023) Physical Review B. 107, 7, 075419. Abstract
We study the dynamical properties of pointlike defects, represented by monoatomic chalcogen vacancies, in WS2graphene and MoS2graphene heterobilayers. Employing a multidisciplinary approach based on the combination of ab initio, model Hamiltonian and density matrix techniques, we propose a minimal interacting model that allows for the calculation of electronic transition times associated to population and depopulation of the vacancy by an additional electron. We obtain the \u201ccoarse-grained\u201d semiclassical dynamics by means of a quantum master equation approach and discuss the potential role of virtual charge fluctuations in the internal dynamics of impurity quasidegenerate states. The interplay between the symmetry of the lattice and the spin degree of freedom through the spin-orbit interaction and its impact on charge quenching is studied in detail.
2022
-
(2022) Applied Physics Letters. 121, 19, 192106. Abstract
We theoretically study the contribution of quantum effects to the exciton diffusion coefficient in atomically thin crystals. It is related to the weak localization caused by the interference of excitonic wavefunctions on the trajectories with closed loops. Due to the weak inelasticity of the exciton-phonon interaction, the effect is present even if the excitons are scattered by long-wavelength acoustic phonons. We consider exciton interaction with longitudinal acoustic phonons with linear dispersion and flexural phonons with quadratic dispersion. We identify the regimes where the weak localization effect can be particularly pronounced. We also briefly address the role of free charge carriers in the exciton quantum transport and, within the self-consistent theory of localization, the weak localization effects beyond the lowest order.
-
(2022) Physical review. B. 106, 16, L161407. Abstract
The presence of chalcogen vacancies in monolayer transition metal dichalcogenides (TMDs) leads to excitons with mixed localized-delocalized character and to reduced valley selectivity. Recent experimental advances in defect design in TMDs allow for a close examination of such mixed exciton states as a function of their degree of circular polarization under external magnetic fields, revealing strongly varying defect-induced magnetic properties. A theoretical understanding of these observations and their physical origins demands a predictive, structure-sensitive theory. In this work, we study the effect of chalcogen vacancies on the exciton magnetic properties in monolayer MoS2. Using many-body perturbation theory, we show how the complex excitonic picture associated with the presence of defectswith reduced valley and spin selectivity due to hybridized electron-hole transitionsleads to a structurally controllable exciton magnetic response. We find a variety of g-factors with changing magnitudes and sign depending on the exciton energy and character. Our findings suggest a pathway to tune the nature of the excitonsand by that their magneto-optical propertiesthrough
defect architecture. -
(2022) Physical Review Materials. 6, 6, 065402. Abstract
BiVO4 is a promising photocatalyst for efficient water oxidation, with surface reactivity determined by the structure of active catalytic sites. Surface oxidation in the presence of oxygen vacancies induces electron localization, suggesting an atomistic route to improve the charge transfer efficiency within the catalytic cycle. In this paper, we study the effect of oxygen vacancies on the electronic and optical properties at BiVO4 surfaces upon water oxidation. We use density functional theory and many-body perturbation theory to explore the change in the electronic and quasiparticle energy levels and to evaluate the electron-hole coupling as a function of the underlying structure. We show that while the presence of defects alters the atomic structure and largely modifies the wave-function nature, leading to defect-localized states at the quasiparticle gap region, the optical excitations remain largely unchanged due to the substantial hybridization of defect and nondefect electron-hole transitions. Our findings suggest that defect-induced surface oxidation supports improved electron transport, both through bound and tunable electronic states and via a mixed nature of the optical transitions, expected to reduce electron-hole defect trapping.
-
(2022) Advanced Materials. 34, 13, 2106629. Abstract
A critical overview of the theory of the chirality-induced spin selectivity (CISS) effect, that is, phenomena in which the chirality of molecular species imparts significant spin selectivity to various electron processes, is provided. Based on discussions in a recently held workshop, and further work published since, the status of CISS effects-in electron transmission, electron transport, and chemical reactions-is reviewed. For each, a detailed discussion of the state-of-the-art in theoretical understanding is provided and remaining challenges and research opportunities are identified.
-
(2022) Science. 376, 6591, abm8511. Abstract
Interlayer excitons, electron-hole pairs bound across two monolayer van der Waals semiconductors, offer promising electrical tunability and localizability. Because such excitons display weak electron-hole overlap, most studies have examined only the lowest-energy excitons through photoluminescence. We directly measured the dielectric response of interlayer excitons, which we accessed using their static electric dipole moment. We thereby determined an intrinsic radiative lifetime of 0.40 nanoseconds for the lowest direct-gap interlayer exciton in a tungsten diselenide/molybdenum diselenide heterostructure. We found that differences in electric field and twist angle induced trends in exciton transition strengths and energies, which could be related to wave function overlap, moiré confinement, and atomic reconstruction. Through comparison with photoluminescence spectra, this study identifies a momentum-indirect emission mechanism. Characterization of the absorption is key for applications relying on light-matter interactions.
-
(2022) Materials Horizons. 9, 3, p. 1089-1098 Abstract
2D-semiconductors with strong lightmatter interaction are attractive materials for integrated and tunable optical devices. Here, we demonstrate room-temperature wavelength multiplexing of the two-primary bright excitonic channels (Ab-, Bb-) in monolayer transition metal dichalcogenides (TMDs) arising from a dark exciton mediated transition. We present how tuning dark excitons via an out-of-plane electric field cedes the system equilibrium from one excitonic channel to the other, encoding the field polarization into wavelength information. In addition, we demonstrate how such exciton multiplexing is dictated by thermal-scattering by performing temperature dependent photoluminescence measurements. Finally, we demonstrate experimentally and theoretically how excitonic mixing can explain preferable decay through dark states in MoX2 in comparison with WX2 monolayers. Such field polarization-based manipulation of excitonic transitions can pave the way for novel photonic device architectures.
-
(2022) The journal of physical chemistry letters. 13, 3, p. 747-753 Abstract
Organic molecular crystals are appealing for next-generation optoelectronic applications due to their multiexciton generation processes that can increase the efficiency of photovoltaic devices. However, a general understanding of how crystal structures affect these processes is lacking, requiring computationally demanding calculations for each material. Here we present an approach to understand and classify organic crystals and elucidate multiexciton processes. We show that organic crystals that are composed of two sublattices are well-approximated by effective fictitious systems of higher translational symmetry. Within this framework, we derive hidden selection rules in crystal pentacene and predict that the bulk polymorph supports fast Coulomb-mediated singlet fission with a transition rate about 2 orders of magnitude faster than that of the thin-film polymorph, a result confirmed with many-body perturbation theory calculations. Our approach is based on density-functional theory calculations and provides design principles for the experimental and computational discovery of new materials with tailored excitonic properties.
2021
-
(2021) Nature Communications. 12, 1, 3822. Abstract
For two-dimensional (2D) layered semiconductors, control over atomic defects and understanding of their electronic and optical functionality represent major challenges towards developing a mature semiconductor technology using such materials. Here, we correlate generation, optical spectroscopy, atomic resolution imaging, and ab initio theory of chalcogen vacancies in monolayer MoS2. Chalcogen vacancies are selectively generated by in-vacuo annealing, but also focused ion beam exposure. The defect generation rate, atomic imaging and the optical signatures support this claim. We discriminate the narrow linewidth photoluminescence signatures of vacancies, resulting predominantly from localized defect orbitals, from broad luminescence features in the same spectral range, resulting from adsorbates. Vacancies can be patterned with a precision below 10 nm by ion beams, show single photon emission, and open the possibility for advanced defect engineering of 2D semiconductors at the ultimate scale.
-
(2021) Frontiers in Chemistry. 9, 743391. Abstract
Excited-state processes at organic-inorganic interfaces consisting of molecular crystals are essential in energy conversion applications. While advances in experimental methods allow direct observation and detection of exciton transfer across such junctions, a detailed understanding of the underlying excitonic properties due to crystal packing and interface structure is still largely lacking. In this work, we use many-body perturbation theory to study structure-property relations of excitons in molecular crystals upon adsorption on a gold surface. We explore the case of the experimentally-studied octyl perylene diimide (C8-PDI) as a prototypical system, and use the GW and Bethe-Salpeter equation (BSE) approach to quantify the change in quasiparticle and exciton properties due to intermolecular and substrate screening. Our findings provide a close inspection of both local and environmental structural effects dominating the excitation energies and the exciton binding and nature, as well as their modulation upon the metal-organic interface composition.
-
(2021) Nano Letters. 21, 18, p. 7644-7650 Abstract
Exciton dynamics, lifetimes, and scattering are directly related to the exciton dispersion or band structure. Here, we present a general theory for exciton band structure within both ab initio and model Hamiltonian approaches. We show that contrary to common assumption, the exciton band structure contains nonanalytical discontinuitiesa feature which is impossible to obtain from the electronic band structure alone. These discontinuities are purely quantum phenomena, arising from the exchange scattering of electronhole pairs. We show that the degree of these discontinuities depends on materials symmetry and dimensionality, with jump discontinuities occurring in 3D and different orders of removable discontinuities in 2D and 1D, whose details depend on the exciton degeneracy and material thickness. Finally, we connect these features to the early stages of exciton dynamics, radiative lifetimes, and diffusion constants, in good correspondence with recent experimental observations, revealing that the discontinuities in the band structure lead to ultrafast ballistic transport and suggesting that measured exciton diffusion and dynamics are influenced by the underlying exciton dispersion.
-
(2021) ACS Nano. 15, 5, p. 8780-8789 Abstract
Structural defects vary the optoelectronic properties of monolayer transition metal dichalcogenides, leading to concerted efforts to control defect type and density via materials growth or postgrowth passivation. Here, we explore a simple chemical treatment that allows on-off switching of low-lying, defect-localized exciton states, leading to tunable emission properties. Using steady-state and ultrafast optical spectroscopy, supported by ab initio calculations, we show that passivation of sulfur vacancy defects, which act as exciton traps in monolayer MoS2 and WS2, allows for controllable and improved mobilities and an increase in photoluminescence up to 275-fold, more than twice the value achieved by other chemical treatments. Our findings suggest a route for simple and rational defect engineering strategies for tunable and switchable electronic and excitonic properties through passivation.
-
(2021) Ultrafast Phenomena and Nanophotonics XXV. Vol. 11684. Abstract
Electron-hole excitations, or excitons, play a key role in energy conversion processes and photophysics applications. The exciton transport and decay properties are strongly coupled to structural complexities. They are of particular interest upon layered heterostructures of transition metal dichalcogenides (TMDs), a structural composition that introduces non-trivial interlayer excitonic effects. In this talk, I will describe a computational approach to study the excitonic phenomena at TMD heterostructures, using ab initio many-body perturbation theory. I will discuss many-body effects on optical selection rules and exciton phenomena in and between layered transition metal dichalcogenides, where a mixed nature of electron-hole interactions control the optical transitions and the exciton fine structure. I will further present a new approach to study exciton decay processes upon such junctions from first principles.
-
(2021) Materials Horizons. 8, 1, p. 197-208 Abstract
Two-dimensional (2D) excitons arise from electronhole confinement along one spatial dimension. Such excitations are often described in terms of Frenkel or Wannier limits according to the degree of exciton spatial localization and the surrounding dielectric environment. In hybrid material systems, such as the 2D perovskites, the complex underlying interactions lead to excitons of an intermediate nature, whose description lies somewhere between the two limits, and a better physical description is needed. Here, we explore the photophysics of a tuneable materials platform where covalently bonded metal-chalcogenide layers are spaced by organic ligands that provide confinement barriers for charge carriers in the inorganic layer. We consider self-assembled, layered bulk silver benzeneselenolate, [AgSePh]∞, and use a combination of transient absorption spectroscopy and ab initio GW plus BetheSalpeter equation calculations. We demonstrate that in this non-polar dielectric environment, strongly anisotropic excitons dominate the optical transitions of [AgSePh]∞. We find that the transient absorption measurements at room temperature can be understood in terms of low-lying excitons confined to the AgSe planes with in-plane anisotropy, featuring anisotropic absorption and emission. Finally, we present a pathway to control the exciton behaviour by changing the chalcogen in the material lattice. Our studies unveil unexpected excitonic anisotropies in an unexplored class of tuneable, yet air-stable, hybrid quantum wells, offering design principles for the engineering of an ordered, yet complex dielectric environment and its effect on the excitonic phenomena in such emerging materials.
2020
-
(2020) Physical Review Letters. 125, 25, 255301. Abstract
We determine the phase diagram of excitons in a symmetric transition-metal dichalcogenide 3-layer heterostructure. First principles calculations reveal interlayer exciton states of a symmetric quadrupole, from which higher energy asymmetric dipole states are composed. We find quantum phase transitions between a repulsive quadrupolar and an attractive staggered dipolar lattice phases, driven by a competition between interactions and single exciton energies. The different internal quantum state of excitons in each phase is a striking example of a system where single-particle and interacting many-body states are coupled.
-
(2020) Physical Chemistry of Semiconductor Materials and Interfaces XIX. Vol. 11464. Abstract
In emerging photovoltaic and photocatalytic systems, correlated electron-hole excitations called excitons often serve as carriers in energy transfer processes. Structural complexities, such as reduced dimensionalities, interface compositions, and the presence of impurities, are closely coupled to exciton properties and decay processes. In this talk, I will describe a computational approach to study the excitonic phenomena in materials of complex structures, using ab initio many-body perturbation theory. I will specifically discuss many-body effects on optical and exciton phenomena in and between layered transition metal dichalcogenides, where a mixed nature of electron-hole interactions control the optical signatures and structurally-tunable selection rules. I will further present a new approach to study exciton decay processes in such functional materials from first principles, employing a rate-equation perturbative scheme to exciton-exciton and exciton-phonon interactions.
-
(2020) Journal of Physical Chemistry C. 124, 25, p. 13592-13601 Abstract
A prototypical organic photovoltaic material is a heterojunction composed of the blend of regioregular poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C-61-butyric acid methyl ester (PCBM). Microscopic understanding of the energy conversion mechanism in this system involves the relationship between the electronic structure and the atomistic geometry of P3HT:PCBM interfaces. In this work, the effect of the number of P3HT layers on the electronic structure of the P3HT:PCBM interface is studied by means of first-principles GW. We apply the substrate screening approach to accelerate such calculations and to better understand the many-body dielectric screening at the interface. The quasiparticle band gap of the entire interface is found to decrease as the number of P3HT layers increases. The gaps of the individual components of the interface are found to be smaller than those of their isolated counterparts, with strong dependence on the number of P3HT layers. Importantly, when comparing the P3HT:PCBM system, where a single interface is present, and the P3HT:PCBM:P3HT system, where an interface is formed on either side of PCBM, we find that the two systems exhibit very different quasiparticle energy level alignments. We discuss the possible implications of our findings in related experiments. The observed trends in the layer-dependent quasiparticle electronic structures of P3HT:PCBM interfaces provide computational insight into energy conversion pathways in these materials.
-
The bright side of defects in MoS2 and WS2 and a generalizable chemical treatment protocol for defect passivation(2020) arXiv. 2002.03956. Abstract
Structural defects are widely regarded as detrimental to the optoelectronic properties of monolayer transition metal dichalcogenides, leading to concerted efforts to eliminate defects via improved materials growth or post-growth passivation. Here, using steady-state and ultrafast optical spectroscopy, supported by ab initio calculations, we demonstrate that sulfur vacancy defects act as exciton traps. Current chemical treatments do not passivate these sites, leading to decreased mobility and trap-limited photoluminescence. We present a generalizable treatment protocol based on the use of passivating agents such as thiols or sulfides in combination with a Lewis acid to passivate sulfur vacancies in monolayer MoS2 and WS2, increasing photoluminescence up to 275 fold, while maintaining mobilities. Our findings suggest a route for simple and rational defect engineering strategies, where the passivating agent varies the electronic properties, thereby allowing the design of new heterostructures.
2019
-
(2019) ACS Nano. 13, 9, p. 10520-10534 Abstract
Control of impurity concentrations in semiconducting materials is essential to device technology. Because of their intrinsic confinement, the properties of two-dimensional semiconductors such as transition metal dichalcogenides (TMDs) are more sensitive to defects than traditional bulk materials. The technological adoption of TMDs is dependent on the mitigation of deleterious defects and guided incorporation of functional foreign atoms. The first step toward impurity control is the identification of defects and assessment of their electronic properties. Here, we present a comprehensive study of point defects in monolayer tungsten disulfide (WS2) grown by chemical vapor deposition using scanning tunneling microscopy/spectroscopy, CO-tip noncontact atomic force microscopy, Kelvin probe force spectroscopy, density functional theory, and tight-binding calculations. We observe four different substitutional defects: chromium (Cr-W) and molybdenum (Mo-W) at a tungsten site, oxygen at sulfur sites in both top and bottom layers (O-S top/bottom), and two negatively charged defects (CD type I and CD type II). Their electronic fingerprints unambiguously corroborate the defect assignment and reveal the presence or absence of in-gap defect states. Cr-W forms three deep unoccupied defect states, two of which arise from spin-orbit splitting. The formation of such localized trap states for Cr-W differs from the Mo-W case and can be explained by their different d shell energetics and local strain, which we directly measured. Utilizing a tight-binding model the electronic spectra of the isolectronic substitutions O-S and Cr-W are mimicked in the limit of a zero hopping term and infinite on-site energy at a S and W site, respectively. The abundant CDs are negatively charged, which leads to a significant band bending around the defect and a local increase of the contact potential difference. In addition, CD-rich domains larger than 100 nm are observed, causing a work function increase of 1.1 V. While most defects are electronically isolated, we also observed hybrid states formed between Cr-W dimers. The important role of charge localization, spin-orbit coupling, and strain for the formation of deep defect states observed at substitutional defects in WS2 as reported here will guide future efforts of targeted defect engineering and doping of TMDs.
-
(2019) Physical Review Letters. 123, 7, 076801. Abstract
Structural defects in 2D materials offer an effective way to engineer new material functionalities beyond conventional doping. We report on the direct experimental correlation of the atomic and electronic structure of a sulfur vacancy in monolayer WS2 by a combination of CO-tip noncontact atomic force microscopy and scanning tunneling microscopy. Sulfur vacancies, which are absent in as-grown samples, were deliberately created by annealing in vacuum. Two energetically narrow unoccupied defect states followed by vibronic sidebands provide a unique fingerprint of this defect. Direct imaging of the defect orbitals, together with ab initio GW calculations, reveal that the large splitting of 252 +/- 4 meV between these defect states is induced by spin-orbit coupling.
-
(2019) Nature Communications. 10, 1, 3382. Abstract
Chalcogen vacancies are generally considered to be the most common point defects in transition metal dichalcogenide (TMD) semiconductors because of their low formation energy in vacuum and their frequent observation in transmission electron microscopy studies. Consequently, unexpected optical, transport, and catalytic properties in 2D-TMDs have been attributed to in-gap states associated with chalcogen vacancies, even in the absence of direct experimental evidence. Here, we combine low-temperature non-contact atomic force microscopy, scanning tunneling microscopy and spectroscopy, and state-of-the-art ab initio density functional theory and GW calculations to determine both the atomic structure and electronic properties of an abundant chalcogen-site point defect common to MoSe2 and WS2 monolayers grown by molecular beam epitaxy and chemical vapor deposition, respectively. Surprisingly, we observe no in-gap states. Our results strongly suggest that the common chalcogen defects in the described 2D-TMD semiconductors, measured in vacuum environment after gentle annealing, are oxygen substitutional defects, rather than vacancies.
-
(2019) Journal of Physical Chemistry C. 123, 11, p. 6379-6387 Abstract
We develop a first-principles approach for accurate conductance calculations of covalently bound molecular junctions. Our approach extends the DFT+Σ method, an approximate GW-based self-energy correction scheme acting on a tractable molecular subspace (based on a gas-phase reference of the same dimension) that corrects level alignment in the junction relative to density functional theory (DFT). We introduce a new extended gas-phase reference system, consisting of the molecule and several lead atoms, whose frontier orbitals maximally project onto the conducting orbitals of the junction. With this choice of reference, our self-energy correction to the KohnSham Hamiltonian takes into account mixing of the gas-phase reference orbitals upon the formation of the junction. We apply our generalized DFT+Σ approach to a series of alkanechain junctions in which the molecules are covalently bound to the leads via carboxyl terminal groups. Our results lead to conductance values in quantitative agreement with experiment. We also revisit the well-studied AubipyridineAu junction and show that we recover the original DFT+Σ approach for relatively weak donoracceptor moleculelead binding.
2018
-
(2018) Physical Review Letters. 121, 16, 167402. Abstract
We study the effect of point-defect chalcogen vacancies on the optical properties of monolayer transition metal dichalcogenides using ab initio GW and Bethe-Salpeter equation calculations. We find that chalcogen vacancies introduce unoccupied in-gap states and occupied resonant defect states within the quasiparticle continuum of the valence band. These defect states give rise to a number of strongly bound defect excitons and hybridize with excitons of the pristine system, reducing the valley-selective circular dichroism. Our results suggest a pathway to tune spin-valley polarization and other optical properties through defect engineering.
-
(2018) Journal of Chemical Theory and Computation. 14, 6, p. 2919-2929 Abstract
We show that fundamental gaps and optical spectra of molecular solids can be predicted quantitatively and nonempirically within the framework of time-dependent density functional theory (TDDFT) using the recently developed optimally tuned screened range-separated hybrid (OT-SRSH) functional approach. In this scheme, the electronic structure of the gas-phase molecule is determined by optimal tuning of the range-separation parameter in a range-separated hybrid functional. Screening and polarization in the solid state are taken into account by adding long-range dielectric screening to the functional form, with the modified functional used to perform self-consistent periodic-boundary calculations for the crystalline solid. We provide a comprehensive benchmark for the accuracy of our approach by considering the X23 set of molecular solids and comparing results obtained from TDDFT with those obtained from many-body perturbation theory in the GW-BSE approximation. We additionally compare results obtained from dielectric screening computed within the random-phase approximation to those obtained from the computationally more efficient many-body dispersion approach and find that this influences the fundamental gap but has little effect on the optical spectra. Our approach is therefore robust and can be used for studies of molecular solids that are typically beyond the reach of computationally more intensive methods.
-
(2018) Physical Chemistry Chemical Physics. 20, 10, p. 6860-6867 Abstract
Peptide-based molecular electronic devices are promising due to the large diversity and unique electronic properties of biomolecules. These electronic properties can change considerably with peptide structure, allowing diverse design possibilities. In this work, we explore the effect of the side-chain of the peptide on its electronic properties, by using both experimental and computational tools to detect the electronic energy levels of two model peptides. The peptides include 2Ala and 2Trp as well as their 3-mercaptopropionic acid linker which is used to form monolayers on an Au surface. Specifically, we compare experimental ultraviolet photoemission spectroscopy measurements with density functional theory based computational results. By analyzing differences in frontier energy levels and molecular orbitals between peptides in gas-phase and in a monolayer on gold, we find that the electronic properties of the peptide side-chain are maintained during binding of the peptide to the gold substrate. This indicates that the energy barrier for the peptide electron transport can be tuned by the amino acid compositions, which suggests a route for structural design of peptide-based electronic devices.
-
(2018) Journal of Physical Chemistry Letters. 9, 4, p. 763-767 Abstract
We measure the conductance of unmodified peptides at the single-molecule level using the scanning tunneling microscope-based break-junction method, utilizing the N-terminal amine group and the C-terminal carboxyl group as gold metal-binding linkers. Our conductance measurements of oligoglycine and oligoalanine backbones do not rely on peptide side-chain linkers. We compare our results with alkanes terminated asymmetrically with an amine group on one end and a carboxyl group on the other to show that peptide bonds decrease the conductance of an otherwise saturated carbon chain. Using a newly developed first-principles approach, we attribute the decrease in conductance to charge localization at the peptide bond, which reduces the energy of the frontier orbitals relative to the Fermi energy and the electronic coupling to the leads, lowering the tunneling probability. Crucially, this manifests as an increase in conductance decay of peptide backbones with increasing length when compared with alkanes.
-
(2018) Journal of the American Chemical Society. 140, 6, p. 2326-2335 Abstract
Singlet fission is the spin-conserving process by which a singlet exciton splits into two triplet excitons. Singlet fission occurs via a correlated triplet pair intermediate, but direct evidence of this state has been scant, and in films of TIPS-pentacene, a small molecule organic semiconductor, even the rate of fission has been unclear. We use polarization-resolved transient absorption microscopy on individual crystalline domains of TIPS-pentacene to establish the fission rate and demonstrate that the initially created triplets remain bound for a surprisingly long time, hundreds of picoseconds, before separating. Furthermore, using a broadband probe, we show that it is possible to determine absorbance spectra of individual excited species in a crystalline solid. We find that triplet interactions perturb the absorbance, and provide evidence that triplet interaction and binding could be caused by the π-stacked geometry. Elucidating the relationship between the lattice structure and the electronic structure and dynamics has important implications for the creation of photovoltaic devices that aim to boost efficiency via singlet fission.
2017
-
(2017) Physical Review Letters. 119, 26, 267401. Abstract
We develop a new first-principles approach to predict and understand rates of singlet fission with an ab initio Green's-function formalism based on many-body perturbation theory. Starting with singlet and triplet excitons computed from a GW plus Bethe-Salpeter equation approach, we calculate the exciton-biexciton coupling to lowest order in the Coulomb interaction, assuming a final state consisting of two noninteracting spin-correlated triplets with finite center-of-mass momentum. For crystalline pentacene, symmetries dictate that the only purely Coulombic fission decay process from a bright singlet state requires a final state consisting of two inequivalent nearly degenerate triplets of nonzero, equal and opposite, center-of-mass momenta. For such a process, we predict a singlet lifetime of 30-70 fs, in very good agreement with experimental data, indicating that this process can dominate singlet fission in crystalline pentacene. Our approach is general and provides a framework for predicting and understanding multiexciton interactions in solids.
-
(2017) Journal of Chemical Physics. 146, 9, 092326. Abstract
The alignment of the frontier orbital energies of an adsorbed molecule with the substrate Fermi level at metal-organic interfaces is a fundamental observable of significant practical importance in nanoscience and beyond. Typical density functional theory calculations, especially those using local and semi-local functionals, often underestimate level alignment leading to inaccurate electronic structure and charge transport properties. In this work, we develop a new fully self-consistent predictive scheme to accurately compute level alignment at certain classes of complex heterogeneous molecule-metal interfaces based on optimally tuned range-separated hybrid functionals. Starting from a highly accurate description of the gas-phase electronic structure, our method by construction captures important nonlocal surface polarization effects via tuning of the long-range screened exchange in a range-separated hybrid in a non-empirical and system-specific manner. We implement this functional in a plane-wave code and apply it to several physisorbed and chemisorbed molecule-metal interface systems. Our results are in quantitative agreement with experiments, for both the level alignment and work function changes. Our approach constitutes a new practical scheme for accurate and efficient calculations of the electronic structure of molecule-metal interfaces. (C) 2017 Author(s).
2016
-
(2016) Proceedings of the National Academy of Sciences of the United States of America. 113, 39, p. 10785-10790 Abstract
Charge migration for electron transfer via the polypeptide matrix of proteins is a key process in biological energy conversion and signaling systems. It is sensitive to the sequence of amino acids composing the protein and, therefore, offers a tool for chemical control of charge transport across biomaterial-based devices. We designed a series of linear oligoalanine peptides with a single tryptophan substitution that acts as a "dopant," introducing an energy level closer to the electrodes' Fermi level than that of the alanine homopeptide. We investigated the solid-state electron transport (ETp) across a selfassembled monolayer of these peptides between gold contacts. The single tryptophan "doping" markedly increased the conductance of the peptide chain, especially when its location in the sequence is close to the electrodes. Combining inelastic tunneling spectroscopy, UV photoelectron spectroscopy, electronic structure calculations by advanced density-functional theory, and dc current-voltage analysis, the role of tryptophan in ETp is rationalized by charge tunneling across a heterogeneous energy barrier, via electronic states of alanine and tryptophan, and by relatively efficient direct coupling of tryptophan to a Au electrode. These results reveal a controlled way of modulating the electrical properties of molecular junctions by tailormade "building block" peptides.
-
(2016) Nature Communications. 7, 10744. Abstract
Chirality-induced spin selectivity is a recently-discovered effect, which results in spin selectivity for electrons transmitted through chiral peptide monolayers. Here, we use this spin selectivity to probe the organization of self-assembled α-helix peptide monolayers and examine the relation between structural and spin transfer phenomena. We show that the α-helix structure of oligopeptides based on alanine and aminoisobutyric acid is transformed to a more linear one upon cooling. This process is similar to the known cold denaturation in peptides, but here the self-assembled monolayer plays the role of the solvent. The structural change results in a flip in the direction of the electrical dipole moment of the adsorbed molecules. The dipole flip is accompanied by a concomitant change in the spin that is preferred in electron transfer through the molecules, observed via a new solid-state hybrid organic-inorganic device that is based on the Hall effect, but operates with no external magnetic field or magnetic material.
2015
-
(2015) Journal of the American Chemical Society. 137, 30, p. 9617-9626 Abstract
Many novel applications in bioelectronics rely on the interaction between biomolecules and electronically conducting substrates. However, crucial knowledge about the relation between electronic transport via peptides and their amino-acid composition is still absent. Here, we report results of electronic transport measurements via several homopeptides as a function of their structural properties and temperature. We demonstrate that the conduction through the peptide depends on its length and secondary structure as well as on the nature of the constituent amino acid and charge of its residue. We support our experimental observations with high-level electronic structure calculations and suggest off-resonance tunneling as the dominant conduction mechanism via extended peptides. Our findings indicate that both peptide composition and structure can affect the efficiency of electronic transport across peptides.
-
(2015) Physical Review B (Condensed Matter and Materials Physics). 92, 8, 081204(R). Abstract
We present a framework for obtaining reliable solid-state charge and optical excitations and spectra from optimally tuned range-separated hybrid density functional theory. The approach, which is fully couched within the formal framework of generalized Kohn-Sham theory, allows for the accurate prediction of exciton binding energies. We demonstrate our approach through first principles calculations of one- and two-particle excitations in pentacene, a molecular semiconducting crystal, where our work is in excellent agreement with experiments and prior computations. We further show that with one adjustable parameter, set to produce the known band gap, this method accurately predicts band structures and optical spectra of silicon and lithium fluoride, prototypical covalent and ionic solids. Our findings indicate that for a broad range of extended bulk systems, this method may provide a computationally inexpensive alternative to many-body perturbation theory, opening the door to studies of materials of increasing size and complexity.
2014
-
(2014) Physical Review B. 90, 7, 075204. Abstract
The energy positions of frontier orbitals in organic electronic materials are often studied experimentally by (inverse) photoemission spectroscopy and theoretically within density functional theory. However, standard exchange-correlation functionals often result in too small fundamental gaps, may lead to wrong orbital energy ordering, and do not capture polarization-induced gap renormalization. Here we examine these issues and a strategy for overcoming them by studying the gas phase and bulk electronic structure of the organic molecule quinacridone (5Q), a promising material with many interesting properties for organic devices. Experimentally we perform angle-resolved photoemission spectroscopy (ARUPS) on thin films of the crystalline β phase of 5Q. Theoretically we employ an optimally tuned range-separated hybrid functional (OT-RSH) within density functional theory. For the gas phase molecule, our OT-RSH result for the ionization potential (IP) represents a substantial improvement over the semilocal PBE and the PBE0 hybrid functional results, producing an IP in quantitative agreement with experiment. For the bulk crystal we take into account the correct screening in the bulk, using the recently developed optimally tuned screened range-separated hybrid (OT-SRSH) approach, while retaining the optimally tuned parameters for the range separation and the short-range Fock exchange. This leads to a band gap narrowing due to polarization effects and results in a valence band spectrum in excellent agreement with experimental ARUPS data, with respect to both peak positions and heights. Finally, full-frequency G0W0 results based on a hybrid functional starting point are shown to agree with the OT-SRSH approach, improving substantially on the PBE-starting point.
-
(2014) Journal of Physical Chemistry Letters. 5, 15, p. 2734-2741 Abstract
A self-consistent optimally tuned range-separated hybrid density functional (scOT-RSH) approach is developed. It can simultaneously predict accurate geometries, vibrational modes, and frontier orbital energies. This is achieved by optimizing the range-separation parameter, γ to both satisfy the ionization energy theorem and minimize interatomic forces. We benchmark our approach against an established hybrid functional, B3LYP, using the G2 test set. scOT-RSH greatly improves the accuracy of occupied frontier orbital energies, with a mean absolute error (MAE) of only 0.2 eV relative to experimental ionization energies compared to 2.96 eV with B3LYP. Geometries do not change significantly compared to those obtained from B3LYP, with a bond length MAE of 0.012 Å compared to 0.008 Å for B3LYP, and a 6.5% MAE for zero-point energies, slightly larger than that of B3LYP (3.1%). scOT-RSH represents a new paradigm in which accurate geometries and ionization energies can be predicted simultaneously from a single functional approach.
-
(2014) Journal of Chemical Theory and Computation. 10, 5, p. 1934-1952 Abstract
Density functional theory with optimally tuned range-separated hybrid (OT-RSH) functionals has been recently suggested [Refaely-Abramson et al. Phys. Rev. Lett. 2012, 109, 226405] as a nonempirical approach to predict the outer-valence electronic structure of molecules with the same accuracy as many-body perturbation theory. Here, we provide a quantitative evaluation of the OT-RSH approach by examining its performance in predicting the outer-valence electron spectra of several prototypical gas-phase molecules, from aromatic rings (benzene, pyridine, and pyrimidine) to more complex organic systems (terpyrimidinethiol and copper phthalocyanine). For a range up to several electronvolts away from the frontier orbital energies, we find that the outer-valence electronic structure obtained from the OT-RSH method agrees very well (typically within ∼0.1-0.2 eV) with both experimental photoemission and theoretical many-body perturbation theory data in the GW approximation. In particular, we find that with new strategies for an optimal choice of the short-range fraction of Fock exchange, the OT-RSH approach offers a balanced description of localized and delocalized states. We discuss in detail the sole exception found-a high-symmetry orbital, particular to small aromatic rings, which is relatively deep inside the valence state manifold. Overall, the OT-RSH method is an accurate DFT-based method for outer-valence electronic structure prediction for such systems and is of essentially the same level of accuracy as contemporary GW approaches, at a reduced computational cost.
2013
-
(2013) Physical Review B. 88, 8, 081204. Abstract
Fundamental gap renormalization due to electronic polarization is a basic phenomenon in molecular crystals. Despite its ubiquity and importance, all conventional approaches within density-functional theory completely fail to capture it, even qualitatively. Here, we present a new screened range-separated hybrid functional, which, through judicious introduction of the scalar dielectric constant, quantitatively captures polarization-induced gap renormalization, as demonstrated on the prototypical organic molecular crystals of benzene, pentacene, and C60. This functional is predictive, as it contains system-specific adjustable parameters that are determined from first principles, rather than from empirical considerations.
2012
-
(2012) Physical review letters. 109, 22, 226405. Abstract
We present a method for obtaining outer-valence quasiparticle excitation energies from a density-functional-theory-based calculation, with an accuracy that is comparable to that of many-body perturbation theory within the GW approximation. The approach uses a range-separated hybrid density functional, with an asymptotically exact and short-range fractional Fock exchange. The functional contains two parameters, the range separation and the short-range Fock fraction. Both are determined nonempirically, per system, on the basis of the satisfaction of exact physical constraints for the ionization potential and frontier-orbital many-electron self-interaction, respectively. The accuracy of the method is demonstrated on four important benchmark organic molecules: perylene, pentacene, 3,4,9,10-perylene-tetracarboxylic-dianydride (PTCDA), and 1,4,5,8-naphthalene-tetracarboxylic-dianhydride (NTCDA). We envision that for the outer-valence excitation spectra of finite systems the approach could provide an inexpensive alternative to GW, opening the door to the study of presently out of reach large-scale systems.
-
(2012) Journal of Chemical Theory and Computation. 8, 5, p. 1515-1531 Abstract
Excitation gaps are of considerable significance in electronic structure theory. Two different gaps are of particular interest. The fundamental gap is defined by charged excitations, as the difference between the first ionization potential and the first electron affinity. The optical gap is defined by a neutral excitation, as the difference between the energies of the lowest dipole-allowed excited state and the ground state. Within many-body perturbation theory, the fundamental gap is the difference between the corresponding lowest quasi-hole and quasi-electron excitation energies, and the optical gap is addressed by including the interaction between a quasi-electron and a quasi-hole. A long-standing challenge has been the attainment of a similar description within density functional theory (DFT), with much debate on whether this is an achievable goal even in principle. Recently, we have constructed and applied a new approach to this problem. Anchored in the rigorous theoretical framework of the generalized Kohn-Sham equation, our method is based on a range-split hybrid functional that uses exact long-range exchange. Its main novel feature is that the range-splitting parameter is not a universal constant but rather is determined from first principles, per system, based on satisfaction of the ionization potential theorem. For finite-sized objects, this DFT approach mimics successfully, to the best of our knowledge for the first time, the quasi-particle picture of many-body theory. Specifically, it allows for the extraction of both the fundamental and the optical gap from one underlying functional, based on the HOMO-LUMO gap of a ground-state DFT calculation and the lowest excitation energy of a linear-response time-dependent DFT calculation, respectively. In particular, it produces the correct optical gap for the difficult case of charge-transfer and charge-transfer-like scenarios, where conventional functionals are known to fail. In this perspective, we overview the formal and practical challenges associated with gap calculations, explain our new approach and how it overcomes previous difficulties, and survey its application to a variety of systems.
2011
-
(2011) Physical Review B. 84, 7, 075144. Abstract
The fundamental and optical gaps of relevant molecular systems are of primary importance for organic-based photovoltaics. Unfortunately, whereas optical gaps are accessible with time-dependent density functional theory (DFT), the highest-occupied - lowest-unoccupied eigenvalue gaps resulting from DFT calculations with semi-local or hybrid functionals routinely and severely underestimate the fundamental gaps of gas-phase organic molecules. Here, we show that a range-separated hybrid functional, optimally tuned so as to obey Koopmans' theorem, provides fundamental gaps that are very close to benchmark results obtained from many-body perturbation theory in the GW approximation. We then show that using this functional does not compromise the possibility of obtaining reliable optical gaps from time-dependent DFT. We therefore suggest optimally tuned range-separated hybrid functionals as a practical and accurate tool for DFT-based predictions of photovoltaically relevant and other molecular systems.
1969
-
(1969) Nuclear Physics A. 138, 3, p. 609-625 Abstract
A study of analogue resonances by elastic proton scattering from 106Cd, 108Cd, 10Cd, 112Cd, 114Cd and 116Cd is reported. Resonance parameters were extracted and spectroscopic factors were derived. The method used for calculating single-particle widths is discussed as are the systematics of the obtained spectroscopic factors.
-
(1969) Physics Letters B. 29, 5, p. 304-305 Abstract
It is shown that the angular correlations between decay protons from analogue resonances and subsequently emitted γ rays yield complete information regarding decay amplitudes. Results of a 108Cd (p,pγ) correlation experiment via a 3 2+ analogue resonance are discussed.
1968
-
(1968) Physics Letters B. 26, 12, p. 723-726 Abstract
Three analogue resonances of 107Cd states have been observed by (p,p) and (p,p) scattering. Two of them have large spectroscopic factors for decay to the 2+ first excited to the 0+ ground state. A study of the angular distribution of γ-rays following the inelastic process is presented.