Publications
Selected publications
-
(2020) Molecular Cell. 80, 5, p. 876-891 Abstract
Stress granules (SGs) are cytoplasmic assemblies of proteins and non-translating mRNAs. Whereas much has been learned about SG formation, a major gap remains in understanding the compositional changes SGs undergo during normal disassembly and under disease conditions. Here, we address this gap by proteomic dissection of the SG temporal disassembly sequence using multi-bait APEX proximity proteomics. We discover 109 novel SG proteins and characterize distinct SG substructures. We reveal dozens of disassembly-engaged proteins (DEPs), some of which play functional roles in SG disassembly, including small ubiquitin-like modifier (SUMO) conjugating enzymes. We further demonstrate that SUMOylation regulates SG disassembly and SG formation. Parallel proteomics with amyotrophic lateral sclerosis (ALS)-associated C9ORF72 dipeptides uncovered attenuated DEP recruitment during SG disassembly and impaired SUMOylation. Accordingly, SUMO activity ameliorated C9ORF72-ALS-related neurodegeneration in Drosophila. By dissecting the SG spatiotemporal proteomic landscape, we provide an in-depth resource for future work on SG function and reveal basic and disease-relevant mechanisms of SG disassembly.
-
(2019) Science Translational Medicine. 11, 523, 5264. Abstract
Motor neuron-specific microRNA-218 (miR-218) has recently received attention because of its roles in mouse development. However, miR-218 relevance to human motor neuron disease was not yet explored. Here, we demonstrate by neuropathology that miR-218 is abundant in healthy human motor neurons. However, in amyotrophic lateral sclerosis (ALS) motor neurons, miR-218 is down-regulated and its mRNA targets are reciprocally up-regulated (derepressed). We further identify the potassium channel Kv10.1 as a new miR-218 direct target that controls neuronal activity. In addition, we screened thousands of ALS genomes and identified six rare variants in the human miR-218-2 sequence. miR-218 gene variants fail to regulate neuron activity, suggesting the importance of this small endogenous RNA for neuronal robustness. The underlying mechanisms involve inhibition of miR-218 biogenesis and reduced processing by DICER. Therefore, miR-218 activity in motor neurons may be susceptible to failure in human ALS, suggesting that miR-218 may be a potential therapeutic target in motor neuron disease.
-
(2015) The EMBO Journal. 34, 21, p. 2633-2651 Abstract
Interest in RNA dysfunction in amyotrophic lateral sclerosis (ALS) recently aroused upon discovering causative mutations in RNA-binding protein genes. Here, we show that extensive down-regulation of miRNA levels is a common molecular denominator for multiple forms of human ALS. We further demonstrate that pathogenic ALS-causing mutations are sufficient to inhibit miRNA biogenesis at the Dicing step. Abnormalities of the stress response are involved in the pathogenesis of neurodegeneration, including ALS. Accordingly, we describe a novel mechanism for modulating microRNA biogenesis under stress, involving stress granule formation and re-organization of DICER and AGO2 protein interactions with their partners. In line with this observation, enhancing DICER activity by a small molecule, enoxacin, is beneficial for neuromuscular function in two independent ALS mouse models. Characterizing miRNA biogenesis downstream of the stress response ties seemingly disparate pathways in neurodegeneration and further suggests that DICER and miRNAs affect neuronal integrity and are possible therapeutic targets.
-
(2011) Journal of Neuroscience. 31, 40, p. 14191-14203 Abstract
The etiology and pathophysiology of anxiety and mood disorders is linked to inappropriate regulation of the central stress response. To determine whether microRNAs have a functional role in the regulation of the stress response, we inactivated microRNA processing by a lentiviral-induced local ablation of the Dicer gene in the central amygdala (CeA) of adult mice. CeA Dicer ablation induced a robust increase in anxiety-like behavior, whereas manipulated neurons survive and appear to exhibit normal gross morphology in the time period examined. We also observed that acute stress in wild-type mice induced a differential expression profile of microRNAs in the amygdala. Bioinformatic analysis identified putative gene targets for these stress-responsive microRNAs, some of which are known to be associated with stress. One of the prominent stress-induced microRNAs found in this screen, miR-34c, was further confirmed to be upregulated after acute and chronic stressful challenge and downregulated in Dicer ablated cells. Lentivirally mediated overexpression of miR34c specifically within the adult CeA induced anxiolytic behavior after challenge. Of particular interest, one of the miR-34c targets is the stress-related corticotropin releasing factor receptor type 1 (CRFR1) mRNA, regulated via a single evolutionary conserved seed complementary site on its 3' UTR. Additional in vitro studies demonstrated that miR-34c reduces the responsiveness of cells to CRF in neuronal cells endogenously expressing CRFR1. Our results suggest a physiological role for microRNAs in regulating the central stress response and position them as potential targets for treatment of stress-related disorders.
Full list
2024
-
(2024) EBioMedicine. 108, 105323. Abstract
Background: With increasing recognition of the value of incorporating prognostic markers into amyotrophic lateral sclerosis (ALS) trial design and analysis plans, there is a pressing need to understand which among the prevailing clinical and biochemical markers have real value, and how they can be optimally used. Methods: A subset of patients with ALS recruited through the multi-center Phenotype-Genotype-Biomarker study (clinicaltrials.gov: NCT02327845) was identified as \u201ctrial-like\u201d based on meeting common trial eligibility criteria. Clinical phenotyping was performed by evaluators trained in relevant assessments. Serum neurofilament light (NfL) and phosphorylated neurofilament heavy (pNfH), urinary p75ECD, plasma microRNA-181, and an array of biochemical and clinical measures were evaluated for their prognostic value. Associations with functional progression were estimated by random-slopes mixed models of ALS functional rating scale-revised (ALSFRS-R) score. Associations with survival were estimated by log-rank test and Cox proportional hazards regression. Potential sample size savings from adjusting for given biomarkers in a hypothetical trial were estimated. Findings: Baseline serum NfL is a powerful prognostic biomarker, predicting survival and ALSFRS-R rate of decline. Serum NfL 100 pg/mL correspond to future ALSFRS-R slopes of ∼0.5 and ∼1.5 points/month, respectively. Serum NfL also adds value to the best available clinical predictors, encapsulated by the European Network to Cure ALS (ENCALS) predictor score. In models of functional decline, the addition of NfL yields ∼25% sample size saving above those achieved by inclusion of either clinical predictors or ENCALS score alone. The prognostic value of serum pNfH, urinary p75ECD, and plasma miR-181ab is more limited. Interpretation: Among the multitude of biomarkers considered, only blood NfL adds value to the ENCALS prediction model and should be incorporated into analysis plans for all ongoing and future ALS trials. Defined thresholds of NfL might also be used in trial design, for enrichment or stratified randomisation, to improve trial efficiency. Funding: NIH (U01-NS107027, U54-NS092091). ALSA (16-TACL-242).
-
(2024) Nature Medicine. Abstract
Precision medicine has the potential to provide more accurate diagnosis, appropriate treatment and timely prevention strategies by considering patients biological makeup. However, this cannot be realized without integrating clinical and omics data in a data-sharing framework that achieves large sample sizes. Systems that integrate clinical and genetic data from multiple sources are scarce due to their distinct data types, interoperability, security and data ownership issues. Here we present a secure framework that allows immutable storage, querying and analysis of clinical and genetic data using blockchain technology. Our platform allows clinical and genetic data to be harmonized by combining them under a unified framework. It supports combined genotypephenotype queries and analysis, gives institutions control of their data and provides immutable user access logs, improving transparency into how and when health information is used. We demonstrate the value of our framework for precision medicine by creating genotypephenotype cohorts and examining relationships within them. We show that combining data across institutions using our secure platform increases statistical power for rare disease analysis. By offering an integrated, secure and decentralized framework, we aim to enhance reproducibility and encourage broader participation from communities and patients in data sharing.
-
(2024) BMC Genomics. 25, 651. Abstract
Background: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting over 300,000 people worldwide. It is characterized by the progressive decline of the nervous system that leads to the weakening of muscles which impacts physical function. Approximately, 15% of individuals diagnosed with ALS have a known genetic variant that contributes to their disease. As therapies that slow or prevent symptoms continue to develop, such as antisense oligonucleotides, it is important to discover novel genes that could be targets for treatment. Additionally, as cohorts continue to grow, performing analyses in ALS subtypes, such as primary lateral sclerosis (PLS), becomes possible due to an increase in power. These analyses could highlight novel pathways in disease manifestation. Methods: Building on our previous discoveries using rare variant association analyses, we conducted rare variant burden testing on a substantially larger multi-ethnic cohort of 6,970 ALS patients, 166 PLS patients, and 22,524 controls. We used intolerant domain percentiles based on sub-region Residual Variation Intolerance Score (subRVIS) that have been described previously in conjunction with gene based collapsing approaches to conduct burden testing to identify genes that associate with ALS and PLS. Results: A gene based collapsing model showed significant associations with SOD1, TARDBP, and TBK1 (OR = 19.18, p = 3.67 × 1039; OR = 4.73, p = 2 × 1010; OR = 2.3, p = 7.49 × 109, respectively). These genes have been previously associated with ALS. Additionally, a significant novel control enriched gene, ALKBH3 (p = 4.88 × 107), was protective for ALS in this model. An intolerant domain-based collapsing model showed a significant improvement in identifying regions in TARDBP that associated with ALS (OR = 10.08, p = 3.62 × 1016). Our PLS protein truncating variant collapsing analysis demonstrated significant case enrichment in ANTXR2 (p = 8.38 × 106). Conclusions: In a large multi-ethnic cohort of 6,970 ALS patients, collapsing analyses validated known ALS genes and identified a novel potentially protective gene, ALKBH3. A first-ever analysis in 166 patients with PLS found a candidate association with loss-of-function mutations in ANTXR2.
-
(2024) Muscle and Nerve. Abstract
Introduction/Aims: Genetics is an important risk factor for amyotrophic lateral sclerosis (ALS), a neurodegenerative disease affecting motor neurons. Recent findings demonstrate that in addition to specific genetic mutations, structural variants caused by genetic instability can also play a causative role in ALS. Genomic instability can lead to deletions, duplications, insertions, inversions, and translocations in the genome, and these changes can sometimes lead to fusion of distinct genes into a single transcript. Gene fusion events have been studied extensively in cancer; however, they have not been thoroughly investigated in ALS. The aim of this study was to determine whether gene fusions are present in ALS. Methods: Gene fusions were identified using STAR Fusion v1.10.0 software in bulk RNA-Seq data from human postmortem samples from publicly available data sets from Target ALS and the New York Genome Center ALS Consortium. Results: We report the presence of gene fusion events in several brain regions as well as in spinal cord samples in ALS. Although most gene fusions were intra-chromosomal events between neighboring genes and present in both ALS and control samples, there was a significantly greater number of unique gene fusions in ALS compared to controls. Lastly, we identified specific gene fusions with a significant burden in ALS, that were absent from both control samples and known cancer gene fusion databases. Discussion: Collectively, our findings reveal an enrichment of gene fusions in ALS and suggest that these events may be an additional genetic cause linked to ALS pathogenesis.
2023
-
(2023) Nucleic Acids Research. 51, 17, p. 9369-9384 Abstract
Bloom's syndrome (BLM) protein is a known nuclear helicase that is able to unwind DNA secondary structures such as G-quadruplexes (G4s). However, its role in the regulation of cytoplasmic processes that involve RNA G-quadruplexes (rG4s) has not been previously studied. Here, we demonstrate that BLM is recruited to stress granules (SGs), which are cytoplasmic biomolecular condensates composed of RNAs and RNA-binding proteins. BLM is enriched in SGs upon different stress conditions and in an rG4-dependent manner. Also, we show that BLM unwinds rG4s and acts as a negative regulator of SG formation. Altogether, our data expand the cellular activity of BLM and shed light on the function that helicases play in the dynamics of biomolecular condensates.
-
(2023) Neuropathology and Applied Neurobiology. 49, 4, e12916. Abstract
Aims: This study aimed to explore the non-linear relationships between cell-free microRNAs (miRNAs) and their contribution to prediction of Frontotemporal dementia (FTD), an early onset dementia that is clinically heterogeneous, and too often suffers from delayed diagnosis. Methods: We initially studied a training cohort of 219 subjects (135 FTD and 84 non-neurodegenerative controls) and then validated the results in a cohort of 74 subjects (33 FTD and 41 controls). Results: On the basis of cell-free plasma miRNA profiling by next generation sequencing and machine learning approaches, we develop a non-linear prediction model that accurately distinguishes FTD from non-neurodegenerative controls in ~90% of cases. Conclusions: The fascinating potential of diagnostic miRNA biomarkers might enable early-stage detection and a cost-effective screening approach for clinical trials that can facilitate drug development.
-
(2023) Current Neuropharmacology. 21, 12, p. 2567-2582 Abstract
Background: TNF-dependent synaptotoxicity contributes to the neuronal damage occurring in patients with Multiple Sclerosis (pwMS) and its mouse model Experimental Autoimmune Encephalomyelitis (EAE). Here, we investigated miR-142-3p, a synaptotoxic microRNA induced by inflammation in EAE and MS, as a potential downstream effector of TNF signalling. Methods: Electrophysiological recordings, supported by molecular, biochemical and histochemical analyses, were performed to explore TNF-synaptotoxicity in the striatum of EAE and healthy mice. MiR-142 heterozygous (miR-142 HE) mice and/or LNA-anti miR-142-3p strategy were used to verify the TNF-miR-142-3p axis hypothesis. The cerebrospinal fluid (CSF) of 151 pwMS was analysed to evaluate possible correlation between TNF and miR-142-3p levels and their impact on clinical parameters (e.g. progression index (PI), age-related clinical severity (gARMSS)) and MRI measurements at diagnosis (T0). Results: High levels of TNF and miR-142-3p were detected in both EAE striatum and MS-CSF. The TNF-dependent glutamatergic alterations were prevented in the inflamed striatum of EAE miR-142 HE mice. Accordingly, TNF was ineffective in healthy striatal slices incubated with LNA-anti miR142-3p. However, both preclinical and clinical data did not validate the TNF-miR-142-3p axis hypothesis, suggesting a permissive neuronal role of miR-142-3p on TNF-signalling. Clinical data showed a negative impact of each molecule on disease course and/or brain lesions and unveiled that their high levels exert a detrimental synergistic effect on disease activity, PI and white matter lesion volume. Conclusion: We propose miR-142-3p as a critical modulator of TNF-mediated neuronal toxicity and suggest a detrimental synergistic action of these molecules on MS pathology.
2022
-
(2022) Communications Biology. 5, 1, 314. Abstract
TDP-43 (TAR DNA-binding protein 43) aggregation and redistribution are recognised as a hallmark of amyotrophic lateral sclerosis and frontotemporal dementia. As TDP-43 inclusions have recently been described in the muscle of inclusion body myositis patients, this highlights the need to understand the role of TDP-43 beyond the central nervous system. Using RNA-seq, we directly compare TDP-43-mediated RNA processing in muscle (C2C12) and neuronal (NSC34) mouse cells. TDP-43 displays a cell-type-characteristic behaviour targeting unique transcripts in each cell-type, which is due to characteristic expression of RNA-binding proteins, that influence TDP-43s performance and define cell-type specific splicing. Among splicing events commonly dysregulated in both cell lines, we identify some that are TDP-43-dependent also in human cells. Inclusion levels of these alternative exons are altered in tissues of patients suffering from FTLD and IBM. We therefore propose that TDP-43 dysfunction contributes to disease development either in a common or a tissue-specific manner.
-
(2022) Nucleic Acids Research. 50, 20, p. 11426-11441 Abstract
RNA G-quadruplexes (rG4s) are RNA secondary structures, which are formed by guanine-rich sequences and have important cellular functions. Existing computational tools for rG4 prediction rely on specific sequence features and/or were trained on small datasets, without considering rG4 stability information, and are therefore sub-optimal. Here, we developed rG4detector, a convolutional neural network to identify potential rG4s in transcriptomics data. rG4detector outperforms existing methods in both predicting rG4 stability and in detecting rG4-forming sequences. To demonstrate the biological-relevance of rG4detector, we employed it to study RNAs that are bound by the RNA-binding protein G3BP1. G3BP1 is central to the induction of stress granules (SGs), which are cytoplasmic biomolecular condensates that form in response to a variety of cellular stresses. Unexpectedly, rG4detector revealed a dynamic enrichment of rG4s bound by G3BP1 in response to cellular stress. In addition, we experimentally characterized G3BP1 cross-talk with rG4s, demonstrating that G3BP1 is a bona fide rG4-binding protein and that endogenous rG4s are enriched within SGs. Furthermore, we found that reduced rG4 availability impairs SG formation. Hence, we conclude that rG4s play a direct role in SG biology via their interactions with RNA-binding proteins and that rG4detector is a novel useful tool for rG4 transcriptomics data analyses.
-
(2022) Brain Communications. 4, 5, Abstract
Many lines of evidence have highlighted the role played by heterogeneous nuclear ribonucleoproteins in amyotrophic lateral sclerosis. In this study, we have aimed to identify transcripts co-regulated by TAR DNA-binding protein 43 kDa and highly conserved heterogeneous nuclear ribonucleoproteins which have been previously shown to regulate TAR DNA-binding protein 43 kDa toxicity (deleted in azoospermia-associated protein 1, heterogeneous nuclear ribonucleoprotein -Q, -D, -K and -U). Using the transcriptome analyses, we have uncovered that Nitric Oxide Synthase 1 Adaptor Protein mRNA is a direct TAR DNA-binding protein 43 kDa target, and in flies, its modulation alone can rescue TAR DNA-binding protein 43 kDa pathology. In primary mouse cortical neurons, we show that TAR DNA-binding protein 43 kDa mediated downregulation of Nitric Oxide Synthase 1 Adaptor Protein expression strongly affects the NMDA-receptor signalling pathway. In human patients, the downregulation of Nitric Oxide Synthase 1 Adaptor Protein mRNA strongly correlates with TAR DNA-binding protein 43 kDa proteinopathy as measured by cryptic Stathmin-2 and Unc-13 homolog A cryptic exon inclusion. Overall, our results demonstrate that Nitric Oxide Synthase 1 Adaptor Protein may represent a novel disease-relevant gene, potentially suitable for the development of new therapeutic strategies.
-
(2022) European Journal of Neurology. 29, 8, p. 2420-2430 Abstract
Objective: The antisense oligonucleotide nusinersen (spinraza) regulates splicing of the survival motor neuron 2 (SMN2) messenger RNA to increase SMN protein expression and has improved ventilator free survival and motor function outcomes in infantile onset forms of SMA, treated early in the course of the disease. However, the response in later onset forms of SMA is highly variable and dependent on symptom severity and disease duration at treatment initiation. Therefore, we aimed to identify novel noninvasive biomarkers that could predict the response to nusinersen in type II and III SMA patients.
Methods: 34 SMA patients were included. We applied next-generation sequencing to identify microRNAs in the cerebrospinal fluid (CSF) as candidate biomarkers predicting response to nusinersen. Hammersmith Functional Motor Scale Expanded (HFMSE), was conducted at baseline and 6 months post initiation of nusinersen therapy to assess motor function. Patients changing by ≥ 3 or ≤0 points in the HFMSE total score were considered as responders or non-responders, respectively. Results: Lower baseline levels of two muscle microRNAs (miR-206 and miR-133), alone or in combination, predicted the pre-determined clinical response to nusinersen after 6 months therapy. Moreover, miR-206 levels were inversely correlated with the HFMSE score. Conclusions: Lower miR-206 and miR-133 in the CSF predict more robust clinical response to nusinersen treatment in later onset SMA patients. These novel findings have high clinical relevance for identifying early treatment response to nusinsersen in later onset SMA patients and call to test the ability of miRNAs to predict more sustained long-term benefit. -
(2022) Cells (Basel, Switzerland). 11, 15, 2415. Abstract
Proper homeostasis of the proteome, referred to as proteostasis, is maintained by chaperone-dependent refolding of misfolded proteins and by protein degradation via the ubiquitin-proteasome system and the autophagic machinery. This review will discuss a crosstalk between biomolecular condensates and proteostasis, whereby the crowding of proteostasis factors into macromolecular assemblies is often established by phase separation of membraneless biomolecular condensates. Specifically, ubiquitin and other posttranslational modifications come into play as agents of phase separation, essential for the formation of condensates and for ubiquitin-proteasome system activity. Furthermore, an intriguing connection associates malfunction of the same pathways to the accumulation of misfolded and ubiquitinated proteins in aberrant condensates, the formation of protein aggregates, and finally, to the pathogenesis of neurodegenerative diseases. The crosstalk between biomolecular condensates and proteostasis is an emerging theme in cellular and disease biology and further studies will focus on delineating specific molecular pathways involved in the pathogenesis of amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases.
-
(2022) Molecular metabolism (Germany). 60, 101467. Abstract
Objectives: Until recently, communication between neighboring cells in islets of Langerhans was overlooked by genomic technologies, which require rigorous tissue dissociation into single cells. Methods: We utilize sorting of physically interacting cells (PICs) with single-cell RNA-sequencing to systematically map cellular interactions in the endocrine pancreas after pancreatectomy. Results: The pancreas cellular landscape features pancreatectomy associated heterogeneity of beta-cells, including an interaction-specific program between paired beta and delta-cells. Conclusions: Our analysis suggests that the particular cluster of beta-cells that pairs with delta-cells benefits from stress protection, implying that the interaction between beta- and delta-cells might safeguard against pancreatectomy associated challenges. The work encourages testing the potential relevance of physically-interacting beta-delta-cells also in diabetes mellitus.
-
(2022) Nature Neuroscience. 25, 4, p. 433-445 Abstract
The noncoding genome is substantially larger than the protein-coding genome but has been largely unexplored by genetic association studies. Here, we performed region-based rare variant association analysis of >25,000 variants in untranslated regions of 6,139 amyotrophic lateral sclerosis (ALS) whole genomes and the whole genomes of 70,403 non-ALS controls. We identified interleukin-18 receptor accessory protein (IL18RAP) 3 untranslated region (3UTR) variants as significantly enriched in non-ALS genomes and associated with a fivefold reduced risk of developing ALS, and this was replicated in an independent cohort. These variants in the IL18RAP 3UTR reduce mRNA stability and the binding of double-stranded RNA (dsRNA)-binding proteins. Finally, the variants of the IL18RAP 3UTR confer a survival advantage for motor neurons because they dampen neurotoxicity of human induced pluripotent stem cell (iPSC)-derived microglia bearing an ALS-associated expansion in C9orf72, and this depends on NF-κB signaling. This study reveals genetic variants that protect against ALS by reducing neuroinflammation and emphasizes the importance of noncoding genetic association studies.
-
(2022) Nature. 603, 7899, p. 131-137 Abstract
Variants of UNC13A, a critical gene for synapse function, increase the risk of amyotrophic lateral sclerosis and frontotemporal dementia13, two related neurodegenerative diseases defined by mislocalization of the RNA-binding protein TDP-434,5. Here we show that TDP-43 depletion induces robust inclusion of a cryptic exon in UNC13A, resulting in nonsense-mediated decay and loss of UNC13A protein. Two common intronic UNC13A polymorphisms strongly associated with amyotrophic lateral sclerosis and frontotemporal dementia risk overlap with TDP-43 binding sites. These polymorphisms potentiate cryptic exon inclusion, both in cultured cells and in brains and spinal cords from patients with these conditions. Our findings, which demonstrate a genetic link between loss of nuclear TDP-43 function and disease, reveal the mechanism by which UNC13A variants exacerbate the effects of decreased TDP-43 function. They further provide a promising therapeutic target for TDP-43 proteinopathies.
-
(2022) Neuron. 110, 6, p. 992-1008.e11 Abstract
Amyotrophic lateral sclerosis (ALS) is a complex disease that leads to motor neuron death. Despite heritability estimates of 52%, genome-wide association studies (GWASs) have discovered relatively few loci. We developed a machine learning approach called RefMap, which integrates functional genomics with GWAS summary statistics for gene discovery. With transcriptomic and epigenetic profiling of motor neurons derived from induced pluripotent stem cells (iPSCs), RefMap identified 690 ALS-associated genes that represent a 5-fold increase in recovered heritability. Extensive conservation, transcriptome, network, and rare variant analyses demonstrated the functional significance of candidate genes in healthy and diseased motor neurons and brain tissues. Genetic convergence between common and rare variation highlighted KANK1 as a new ALS gene. Reproducing KANK1 patient mutations in human neurons led to neurotoxicity and demonstrated that TDP-43 mislocalization, a hallmark pathology of ALS, is downstream of axonal dysfunction. RefMap can be readily applied to other complex diseases.
-
(2022) Neuropathology and Applied Neurobiology. 48, 2, e12765. Abstract
Aim: We recently proposed miR-142-3p as a molecular player in inflammatory synaptopathy, a new pathogenic hallmark of multiple sclerosis (MS) and of its mouse model experimental autoimmune encephalomyelitis (EAE), that leads to neuronal loss independently of demyelination. MiR-142-3p seems to be unique among potential biomarker candidates in MS, since it is an inflammatory miRNA playing a dual role in the immune and central nervous systems. Here, we aimed to verify the impact of miR-142-3p circulating in the cerebrospinal fluid (CSF) of MS patients on clinical parameters, neuronal excitability and its potential interaction with disease modifying therapies (DMTs). Methods and Results: In a cohort of 151 MS patients, we found positive correlations between CSF miR-142-3p levels and clinical progression, IL-1β signalling as well as synaptic excitability measured by transcranial magnetic stimulation. Furthermore, therapy response of patients with low miR-142-3p to dimethyl fumarate (DMF), an established disease-modifying treatment (DMT), was superior to that of patients with high miR-142-3p levels. Accordingly, the EAE clinical course of heterozygous miR-142 mice was ameliorated by peripheral DMF treatment with a greater impact relative to their wild type littermates. In addition, a central protective effect of this drug was observed following intracerebroventricular and ex vivo acute treatments of EAE wild type mice, showing a rescue of miR-142-3p-dependent glutamatergic alterations. By means of electrophysiology, molecular and biochemical analysis, we suggest miR-142-3p as a molecular target of DMF. Conclusion: MiR-142-3p is a novel and potential negative prognostic CSF marker of MS and a promising tool for identifying personalised therapies.
2021
-
(2021) iScience. 24, 11, 103221. Abstract
Neurodegenerative diseases are challenging for systems biology because of the lack of reliable animal models or patient samples at early disease stages. Induced pluripotent stem cells (iPSCs) could address these challenges. We investigated DNA, RNA, epigenetics, and proteins in iPSC-derived motor neurons from patients with ALS carrying hexanucleotide expansions in C9ORF72. Using integrative computational methods combining all omics datasets, we identified novel and known dysregulated pathways. We used a C9ORF72 Drosophila model to distinguish pathways contributing to disease phenotypes from compensatory ones and confirmed alterations in some pathways in postmortem spinal cord tissue of patients with ALS. A different differentiation protocol was used to derive a separate set of C9ORF72 and control motor neurons. Many individual -omics differed by protocol, but some core dysregulated pathways were consistent. This strategy of analyzing patient-specific neurons provides disease-related outcomes with small numbers of heterogeneous lines and reduces variation from single-omics to elucidate network-based signatures.
-
(2021) EMBO Molecular Medicine. 13, 11, e14997. Abstract
A new study by Islam et al, in this issue of EMBO Molecular Medicine, reports three microRNAs in the blood that are linked to inter-individual differences in cognition, prior to any sign of cognitive decline. The novel miRNA biomarkers may assist in predicting the risk of cognitive decline and later of developing dementia and can contribute to decision strategies about early therapeutic interventions.
-
(2021) Nature Neuroscience. 24, 11, p. 1534-1541 Abstract
Amyotrophic lateral sclerosis (ALS) is a relentless neurodegenerative disease of the human motor neuron system, where variability in progression rate limits clinical trial efficacy. Therefore, better prognostication will facilitate therapeutic progress. In this study, we investigated the potential of plasma cell-free microRNAs (miRNAs) as ALS prognostication biomarkers in 252 patients with detailed clinical phenotyping. First, we identified, in a longitudinal cohort, miRNAs whose plasma levels remain stable over the course of disease. Next, we showed that high levels of miR-181, a miRNA enriched in neurons, predicts agreater than two-fold risk of death in independent discovery and replication cohorts (126 and 122 patients, respectively). miR-181 performance is similar to neurofilament light chain (NfL), and when combined together, miR-181 + NfL establish a novel RNAprotein biomarker pair with superior prognostication capacity. Therefore, plasma miR-181 alone and a novel miRNAprotein biomarker approach, based on miR-181 + NfL, boost precision of patient stratification. miR-181-based ALS biomarkers encourage additional validation and might enhance the power of clinical trials.
-
(2021) Frontiers in Molecular Biosciences. 8, 673038. Abstract
Spatial organization of cellular processes in membranous or membrane-less organelles (MLOs, alias molecular condensates) is a key concept for compartmentalizing biochemical pathways. Prime examples of MLOs are the nucleolus, PML nuclear bodies, nuclear splicing speckles or cytosolic stress granules. They all represent distinct sub-cellular structures typically enriched in intrinsically disordered proteins and/or RNA and are formed in a process driven by liquid-liquid phase separation. Several MLOs are critically involved in proteostasis and their formation, disassembly and composition are highly sensitive to proteotoxic insults. Changes in the dynamics of MLOs are a major driver of cell dysfunction and disease. There is growing evidence that post-translational modifications are critically involved in controlling the dynamics and composition of MLOs and recent evidence supports an important role of the ubiquitin-like SUMO system in regulating both the assembly and disassembly of these structures. Here we will review our current understanding of SUMO function in MLO dynamics under both normal and pathological conditions.
-
(2021) Neuron. 109, 3, p. 448-460.e4 Abstract
We examined the role of repeat expansions in the pathogenesis of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) by analyzing whole-genome sequence data from 2,442 FTD/ALS patients, 2,599 Lewy body dementia (LBD) patients, and 3,158 neurologically healthy subjects. Pathogenic expansions (range, 4064 CAG repeats) in the huntingtin (HTT) gene were found in three (0.12%) patients diagnosed with pure FTD/ALS syndromes but were not present in the LBD or healthy cohorts. We replicated our findings in an independent collection of 3,674 FTD/ALS patients. Postmortem evaluations of two patients revealed the classical TDP-43 pathology of FTD/ALS, as well as huntingtin-positive, ubiquitin-positive aggregates in the frontal cortex. The neostriatal atrophy that pathologically defines Huntington's disease was absent in both cases. Our findings reveal an etiological relationship between HTT repeat expansions and FTD/ALS syndromes and indicate that genetic screening of FTD/ALS patients for HTT repeat expansions should be considered.
2020
-
(2020) Cell Reports. 33, 9, 108456. Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease. CAV1 and CAV2 organize membrane lipid rafts (MLRs) important for cell signaling and neuronal survival, and overexpression of CAV1 ameliorates ALS phenotypes in vivo. Genome-wide association studies localize a large proportion of ALS risk variants within the non-coding genome, but further characterization has been limited by lack of appropriate tools. By designing and applying a pipeline to identify pathogenic genetic variation within enhancer elements responsible for regulating gene expression, we identify disease-associated variation within CAV1/CAV2 enhancers, which replicate in an independent cohort. Discovered enhancer mutations reduce CAV1/CAV2 expression and disrupt MLRs in patient-derived cells, and CRISPR-Cas9 perturbation proximate to a patient mutation is sufficient to reduce CAV1/CAV2 expression in neurons. Additional enrichment of ALS-associated mutations within CAV1 exons positions CAV1 as an ALS risk gene. We propose CAV1/CAV2 overexpression as a personalized medicine target for ALS.
-
(2020) Molecular Cell. 80, 5, p. 876-891 Abstract
Stress granules (SGs) are cytoplasmic assemblies of proteins and non-translating mRNAs. Whereas much has been learned about SG formation, a major gap remains in understanding the compositional changes SGs undergo during normal disassembly and under disease conditions. Here, we address this gap by proteomic dissection of the SG temporal disassembly sequence using multi-bait APEX proximity proteomics. We discover 109 novel SG proteins and characterize distinct SG substructures. We reveal dozens of disassembly-engaged proteins (DEPs), some of which play functional roles in SG disassembly, including small ubiquitin-like modifier (SUMO) conjugating enzymes. We further demonstrate that SUMOylation regulates SG disassembly and SG formation. Parallel proteomics with amyotrophic lateral sclerosis (ALS)-associated C9ORF72 dipeptides uncovered attenuated DEP recruitment during SG disassembly and impaired SUMOylation. Accordingly, SUMO activity ameliorated C9ORF72-ALS-related neurodegeneration in Drosophila. By dissecting the SG spatiotemporal proteomic landscape, we provide an in-depth resource for future work on SG function and reveal basic and disease-relevant mechanisms of SG disassembly.
-
(2020) Brain Communications. 2, 2, fcaa064. Abstract
Increasingly, repeat expansions are being identified as part of the complex genetic architecture of amyotrophic lateral sclerosis. To date, several repeat expansions have been genetically associated with the disease: intronic repeat expansions in C9orf72, polyglutamine expansions in ATXN2 and polyalanine expansions in NIPA1. Together with previously published data, the identification of an amyotrophic lateral sclerosis patient with a family history of spinocerebellar ataxia type 1, caused by polyglutamine expansions in ATXN1, suggested a similar disease association for the repeat expansion in ATXN1. We, therefore, performed a large-scale international study in 11 700 individuals, in which we showed a significant association between intermediate ATXN1 repeat expansions and amyotrophic lateral sclerosis (P = 3.33 × 10-7). Subsequent functional experiments have shown that ATXN1 reduces the nucleocytoplasmic ratio of TDP-43 and enhances amyotrophic lateral sclerosis phenotypes in Drosophila, further emphasizing the role of polyglutamine repeat expansions in the pathophysiology of amyotrophic lateral sclerosis.
2019
-
(2019) Science Translational Medicine. 11, 523, 5264. Abstract
Motor neuron-specific microRNA-218 (miR-218) has recently received attention because of its roles in mouse development. However, miR-218 relevance to human motor neuron disease was not yet explored. Here, we demonstrate by neuropathology that miR-218 is abundant in healthy human motor neurons. However, in amyotrophic lateral sclerosis (ALS) motor neurons, miR-218 is down-regulated and its mRNA targets are reciprocally up-regulated (derepressed). We further identify the potassium channel Kv10.1 as a new miR-218 direct target that controls neuronal activity. In addition, we screened thousands of ALS genomes and identified six rare variants in the human miR-218-2 sequence. miR-218 gene variants fail to regulate neuron activity, suggesting the importance of this small endogenous RNA for neuronal robustness. The underlying mechanisms involve inhibition of miR-218 biogenesis and reduced processing by DICER. Therefore, miR-218 activity in motor neurons may be susceptible to failure in human ALS, suggesting that miR-218 may be a potential therapeutic target in motor neuron disease.
-
(2019) Cell Reports. 29, 5, p. 1164-1177.e5 Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. While several pathogenic mutations have been identified, the vast majority of ALS cases have no family history of disease. Thus, for most ALS cases, the disease may be a product of multiple pathways contributing to varying degrees in each patient. Using machine learning algorithms, we stratify the transcriptomes of 148 ALS postmortem cortex samples into three distinct molecular subtypes. The largest cluster, identified in 61% of patient samples, displays hallmarks of oxidative and proteotoxic stress. Another 19% of the samples shows predominant signatures of glial activation. Finally, a third group (20%) exhibits high levels of retrotransposon expression and signatures of TARDBP/TDP-43 dysfunction. We further demonstrate that TDP-43 (1) directly binds a subset of retrotransposon transcripts and contributes to their silencing in vitro, and (2) pathological TDP-43 aggregation correlates with retrotransposon de-silencing in vivo.
-
(2019) Diabetologia. 62, 9, p. 1653-1666 Abstract
Aims/hypothesis Adult beta cells in the pancreas are the sole source of insulin in the body. Beta cell loss or increased demand for insulin impose metabolic challenges because adult beta cells are generally quiescent and infrequently re-enter the cell division cycle. The aim of this study is to test the hypothesis that a family of proto-oncogene microRNAs that includes miR-17-92 and miR-106b-25 clusters regulates beta cell proliferation or function in the adult endocrine pancreas. Methods To elucidate the role of miR-17-92 and miR-106b-25 clusters in beta cells, we used a conditional miR-17-92/miR-106b-25 knockout mouse model. We employed metabolic assays in vivo and ex vivo, together with advanced microscopy of pancreatic sections, bioinformatics, mass spectrometry and next generation sequencing, to examine potential targets of miR-17-92/miR-106b-25, by which they might regulate beta cell proliferation and function. Results We demonstrate that miR-17-92/miR-106b-25 regulate the adult beta cell mitotic checkpoint and that miR-17-92/miR-106b-25 deficiency results in reduction in beta cell mass in vivo. Furthermore, we reveal a critical role for miR-17-92/miR-106b-25 in glucose homeostasis and in controlling insulin secretion. We identify protein kinase A as a new relevant molecular pathway downstream of miR-17-92/miR-106b-25 in control of adult beta cell division and glucose homeostasis. Conclusions/interpretation The study contributes to the understanding of proto-oncogene miRNAs in the normal, untransformed endocrine pancreas and illustrates new genetic means for regulation of beta cell mitosis and function by non-coding RNAs. Data availability Sequencing data that support the findings of this study have been deposited in GEO with the accession code GSE126516.
-
(2019) Neurobiology of Aging. 74, p. 234.e9-234.e15 Abstract
NIPA1 (nonimprinted in Prader-Willi/Angelman syndrome 1) mutations are known to cause hereditary spastic paraplegia type 6, a neurodegenerative disease that phenotypically overlaps to some extent with amyotrophic lateral sclerosis (ALS). Previously, a genomewide screen for copy number variants found an association with rare deletions in NIPA1 and ALS, and subsequent genetic analyses revealed that long (or expanded) polyalanine repeats in NIPA1 convey increased ALS susceptibility. We set out to perform a large-scale replication study to further investigate the role of NIPA1 polyalanine expansions with ALS, in which we characterized NIPA1 repeat size in an independent international cohort of 3955 patients with ALS and 2276 unaffected controls and combined our results with previous reports. Meta-analysis on a total of 6245 patients with ALS and 5051 controls showed an overall increased risk of ALS in those with expanded (>8) GCG repeat length (odds ratio = 1.50, p = 3.8x10(-5)). Together with previous reports, these findings provide evidence for an association of an expanded polyalanine repeat in NIPA1 and ALS. (C) 2018 Elsevier Inc. All rights reserved.
2018
-
(2018) eLife. 7, e37754. Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) represent two ends of a disease spectrum with shared clinical, genetic and pathological features. These include near ubiquitous pathological inclusions of the RNA-binding protein (RBP) TDP-43, and often the presence of a GGGGCC expansion in the C9ORF72 (C9) gene. Previously, we reported that the sequestration of hnRNP H altered the splicing of target transcripts in C9ALS patients (Conlon et al., 2016). Here, we show that this signature also occurs in half of 50 postmortem sporadic, non-C9 ALS/FTD brains. Furthermore, and equally surprisingly, these like-C9 brains also contained correspondingly high amounts of insoluble TDP-43, as well as several other disease-related RBPs, and this correlates with widespread global splicing defects. Finally, we show that the like-C9 sporadic patients, like actual C9ALS patients, were much more likely to have developed FTD. We propose that these unexpected links between C9 and sporadic ALS/FTD define a common mechanism in this disease spectrum.
-
(2018) EMBO Reports. 19, 3, 45726. Abstract
The principle underlying miRNA silencing seems rather simple: Dicer is required for the biogenesis of endogenous miRNAs, andmature miRNAs at the RNA-induced silencing complex, RISC, bind to targets bysequence complementary, inhibiting protein expression. However, research shows that there are many degrees of complexity to miRNA regulation. A new study by Antoniou etal that is published in this issue of EMBO Reports explores an interesting neuron-specific facet of miRNA biogenesis. We learn that in neuronal dendrites, the endoplasmic reticulum (ER) acts as a regulatory domain for the dynamic encounter of TRBP and Dicer, two proteins required for the biogenesis of miRNAs, thus affecting neuron morphogenesis.
-
(2018) Neuron. 97, 6, p. 1268-1283.e6 Abstract
To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS. Using a large-scale genome-wide association study and exome sequencing, we identified KIF5A as a novel gene associated with ALS. Our data broaden the phenotype resulting from mutations in KIF5A and highlight the importance of cytoskeletal defects in the pathogenesis of ALS.
-
(2018) Scientific Reports. 8, 1, 59. Abstract
microRNAs (miRNAs) are critical for neuronal function and their dysregulation is repeatedly observed in neurodegenerative diseases. Here, we implemented high content image analysis for investigating the impact of several miRNAs in mouse primary motor neurons. This survey directed our attention to the neuron-specific miR-124, which controls axonal morphology. By performing next generation sequencing analysis and molecular studies, we characterized novel roles for miR-124 in control of mitochondria localization and function. We further demonstrated that the intermediate filament Vimentin is a key target of miR-124 in this system. Our data establishes a new pathway for control of mitochondria function in motor neurons, revealing the value of a neuron-specific miRNA gene as a mechanism for the re-shaping of otherwise ubiquitously-expressed intermediate filament network, upstream of mitochondria activity and cellular metabolism.
-
(2018) RNA Biology. 15, 8, p. 1133-1145 Abstract
In recent years, microRNAs (miRNAs) in tissues and biofluids have emerged as a new class of promising biomarkers for numerous diseases. Blood-based biomarkers are particularly desirable since serum or plasma is easily accessible and can be sampled repeatedly. To comprehensively explore the biomarker potential of miRNAs, sensitive, accurate and cost-efficient miRNA profiling techniques are required. Next generation sequencing (NGS) is emerging as the preferred method for miRNA profiling; offering high sensitivity, single-nucleotide resolution and the possibility to profile a considerable number of samples in parallel. Despite the excitement about miRNA biomarkers, challenges associated with insufficient characterization of the sequencing library preparation efficacy, precision and method-related quantification bias have not been addressed in detail and are generally underappreciated in the wider research community.Here, we have tested in parallel four commercially available small RNA sequencing kits against a cohort of samples comprised of human plasma, human serum, murine brain tissue and a reference library containing similar to 950 synthetic miRNAs. We discuss the advantages and limits of these methodologies for massive parallel microRNAs profiling. This work can serve as guideline for choosing an adequate library preparation method, based on sensitivity, specificity and accuracy of miRNA quantification, workflow convenience and potential for automation.y
2017
-
(2017) Gastroenterology. 153, 5, p. 1404-1415 Abstract
Background & Aims Effective treatments are needed for hepatic steatosis characterized by accumulation of triglycerides in hepatocytes, which leads to hepatocellular carcinoma. MicroRNA 122 (MIR122) is expressed only in the liver, where it regulates lipid metabolism. We investigated the mechanism by which free fatty acids (FFAs) regulate MIR122 expression and the effect of MIR122 on triglyceride synthesis. Methods We analyzed MIR122 promoter activity and validated its target mRNAs by transfection of Luciferase reporter plasmids into Huh7, BNL-1ME, and HEK293 cultured cell lines. We measured levels of microRNAs and mRNAs by quantitative real-time PCR analysis of RNA extracted from plasma, liver, muscle, and adipose tissues of C57BL/6 mice given the FFA-inducer CL316243. MIR122 was inhibited using an inhibitor of MIR122. Metabolic profiles of mice were determined using metabolic chambers and by histologic analyses of liver tissues. We performed RNA sequence analyses to identify metabolic pathways involving MIR122. Results We validated human Agpat1 and Dgat1 mRNAs, involved in triglyceride synthesis, as targets of MIR122. FFAs increased MIR122 expression in livers of mice by activating the retinoic acid-related orphan receptor alpha, and induced secretion of MIR122 from liver to blood. Circulating MIR122 entered muscle and adipose tissues of mice, reducing mRNA levels of genes involved in triglyceride synthesis. Mice injected with an inhibitor of MIR122 and then given CL316243, accumulated triglycerides in liver and muscle tissues, and had reduced rates of β-oxidation. There was a positive correlation between level of FFAs and level of MIR122 in plasma samples from 6 healthy individuals, collected before and during fasting. Conclusions In biochemical and histologic studies of plasma, liver, muscle, and adipose tissues from mice, we found that FFAs increase hepatic expression and secretion of MIR122, which regulates energy storage vs expenditure in liver and peripheral tissues. Strategies to reduce triglyceride levels, by increasing MIR122, might be developed for treatment of metabolic syndrome.
-
(2017) Haematologica. 102, 12, p. 476-480 Abstract
Hematopoietic-specific miR-142 is a critical regulator of various blood cell lineages including CD4+ dendritic cells1 and platelet biogenesis in megakaryocytes.2 Furthermore, we recently reported that miR-142 is required in order to maintain the biconcave shape of erythrocytes, their structural resilience and lifespan, through a mechanism that involves actin filament homeostasis.3 Here, we used a mouse loss of function allele to characterize a new axis, where miR-142 functions upstream of Rac1 in regulating erythropoiesis.
-
(2017) European Journal of Immunology. 47, 7, p. 1142-1152 Abstract
T-cell development is a spatially and temporally regulated process, orchestrated by well-defined contributions of transcription factors and cytokines. Here, we identify the noncoding RNA miR-142 as an additional regulatory layer within murine thymocyte development and proliferation. MiR-142 deficiency impairs the expression of cell cycle-promoting genes in mature mouse thymocytes and early progenitors, accompanied with increased levels of cyclin-dependent kinase inhibitor 1B (Cdkn1b, also known as p27Kip1). By using CRISPR/Cas9 technology to delete the miR-142-3p recognition element in the 3UTR of cdkn1b, we confirm that this gene is a novel target of miR-142-3p in vivo. Increased Cdkn1b protein expression alone however was insufficient to cause proliferation defects in thymocytes, indicating the existence of additional critical miR-142 targets. Collectively, we establish a key role for miR-142 in the control of early and mature thymocyte proliferation, demonstrating the multifaceted role of a single miRNA on several target genes.
-
(2017) Immunity. 46, 6, p. 1030-1044.e8 Abstract
Microglia seed the embryonic neuro-epithelium, expand and actively sculpt neuronal circuits in the developing central nervous system, but eventually adopt relative quiescence and ramified morphology in the adult. Here, we probed the impact of post-transcriptional control by microRNAs (miRNAs) on microglial performance during development and adulthood by generating mice lacking microglial Dicer expression at these distinct stages. Conditional Dicer ablation in adult microglia revealed that miRNAs were required to limit microglial responses to challenge. After peripheral endotoxin exposure, Dicer-deficient microglia expressed more pro-inflammatory cytokines than wild-type microglia and thereby compromised hippocampal neuronal functions. In contrast, prenatal Dicer ablation resulted in spontaneous microglia activation and revealed a role for Dicer in DNA repair and preservation of genome integrity. Accordingly, Dicer deficiency rendered otherwise radio-resistant microglia sensitive to gamma irradiation. Collectively, the differential impact of the Dicer ablation on microglia of the developing and adult brain highlights the changes these cells undergo with time. Microglia of developing and adult brain differ in activation state and function. Here, Varol and colleagues ablated microglial Dicer expression at distinct times. Adult microglia tolerated the perturbation but became hyper-responsive to challenge compromising hippocampus functions. Dicer and microRNA absence during development caused spontaneous microglia activation and impaired genome integrity.
-
-
(2017) Haematologica. 102, 4, p. 676-685 Abstract
Hematopoietic-specific microRNA-142 is a critical regulator of various blood cell lineages, but its role in erythrocytes is unexplored. Herein, we characterize the impact of microRNA-142 on erythrocyte physiology and molecular cell biology, using a mouse loss-of-function allele. We report that microRNA-142 is required for maintaining the typical erythrocyte biconcave shape and structural resilience, for the normal metabolism of reactive oxygen species, and for overall lifespan. microRNA-142 further controls ACTIN filament homeostasis and membrane skeleton organization. The analyses presented reveal previously unappreciated functions of microRNA-142 and contribute to an emerging view of small RNAs as key players in erythropoiesis. Finally, the work herein demonstrates how a housekeeping network of cytoskeletal regulators can be reshaped by a single micro-RNA denominator in a cell type specific manner.
-
(2017) Scientific Reports. 7, 44500. Abstract
Amyotrophic lateral sclerosis (ALS) is a multifactorial lethal motor neuron disease with no known treatment. Although the basic mechanism of its degenerative pathogenesis remains poorly understood, a subcellular spatial alteration in RNA metabolism is thought to play a key role. The nature of these RNAs remains elusive, and a comprehensive characterization of the axonal RNAs involved in maintaining neuronal health has yet to be described. Here, using cultured spinal cord (SC) neurons grown using a compartmented platform followed by next-generation sequencing (NGS) technology, we find that RNA expression differs between the somatic and axonal compartments of the neuron, for both mRNA and microRNA (miRNA). Further, the introduction of SOD1 G93A and TDP43 A315T, established ALS-related mutations, changed the subcellular expression and localization of RNAs within the neurons, showing a spatial specificity to either the soma or the axon. Altogether, we provide here the first combined inclusive profile of mRNA and miRNA expression in two ALS models at the subcellular level. These data provide an important resource for studies on the roles of local protein synthesis and axon degeneration in ALS and can serve as a possible target pool for ALS treatment.
-
(2017) Journal of Neuroscience. 37, 3, p. 546-561 Abstract
MicroRNAs (miRNA) play an important role in post-transcriptional gene regulation of several physiological and pathological processes. In multiple sclerosis (MS), a chronic inflammatory and degenerative disease of the CNS, and in its mouse model, the experimental autoimmune encephalomyelitis (EAE), miRNA dysregulation has been mainly related to immune system dysfunction and white matter (WM) pathology. However, little is known about their role in gray matter pathology. Here, we explored miRNA involvement in the inflammation-driven alterations of synaptic structure and function, collectively known as synaptopathy, a neuropathological process contributing to excitotoxic neurodegeneration in MS/EAE. Particularly, we observed that miR-142-3p is increased in the CSF of patients with active MS and in EAE brains. We propose miR-142-3p as a molecular mediator of the IL-1β-dependent downregulation of the glial glutamate-aspartate transporter (GLAST), which causes an enhancement of the glutamatergic transmission in the EAE cerebellum. The synaptic abnormalities mediated by IL-1β and the clinical and neuropathological manifestations of EAE disappeared in miR-142 knockout mice. Furthermore, we observed that in vivo miR-142-3p inhibition, either by a preventive and local treatment or by a therapeutic and systemic strategy, abolished IL-1β - and GLAST-dependent synaptopathy in EAE wild-type mice. Consistently, miR-142-3p was responsible for the glutamatergic synaptic alterations caused by CSF of patients with MS, and CSF levels of miR-142-3p correlated with prospective MS disease progression. Our findings highlight miR-142-3p as key molecular player in IL-1β -mediated synaptic dysfunction, possibly leading to excitotoxic damage in both EAE and MS diseases. Inhibition of miR-142-3p could be neuroprotective in MS.
2016
-
(2016) MicroRNA Technologies. Jeong Kye M.(eds.). p. 21-27 Abstract
In this chapter, we provide a protocol for design and usage of an in vitro, cell-free Dicing assay. Our assay is based on previously established methods and improves the ability to quantitatively measure the catalytic efficacy of the Dicer complex under various cellular conditions via non-radioactive, emitted fluorescence signal readout. Because radioactive labeling is substituted by measuring fluorescent signal the method is easy to handle. Additionally, the use of a defined amount of Cy3-quenched double-stranded substrate allows for precise detection of small changes in cellular Dicing complex activity. This experimental approach might be valuable for investigating cellular miRNA biogenesis and activity under various conditions in health and disease.
-
(2016) MicroRNA Technologies. Jeong Kye M.(eds.). p. 11-19 Abstract
In this chapter we provide a protocol for the design and usage of automated, high-content microscopy screening that enables the investigation of microRNA (miRNA) impact on primary motor neuron. High-content screening (HCS) platforms facilitate superior precision in research and are scalable to study in parallel multiple genetic, molecular, or cellular conditions. miRNAs are critical for neuronal function and for brain integrity and are considered attractive candidate targets for therapy in many neuropathologies. Therefore, HCS platforms provide a novel paradigm for exploring the impact of miRNA expression, applicable for functional pathways discovery in an academic setting, or towards development of therapeutics in the pharma industry.
-
(2016) Neuromethods. Jeong Kye M.(eds.). p. 1-10 Abstract
microRNAs (miRNAs) are key posttranscriptional regulators of gene expression and are involved in a variety of processes in the central nervous system. miRNAs play numerous roles in neuro-development and are crucial for the proper homeostatic function of neurons in adults. The detection of miRNAs in specific cell types sheds light on differential regulation of their expression and on the potential functional roles of miRNAs in the brain. In this chapter, we present a simple and robust protocol for the detection of miRNAs by in situ hybridization in formalin-fixed paraffin-embedded spinal cords of mature mice and developing embryos.
-
(2016) Brain Research. 1647, p. 105-111 Abstract
The genetics of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) turn our attention to RNA metabolism, primarily because many of the identified diseases-associated genes encode for RNA-binding proteins. microRNAs (miRNAs) are endogenous noncoding RNAs that play critical roles in maintaining brain integrity. The current review sheds light on miRNA dysregulation in neurodegenerative diseases, focusing on FTDALS. We propose that miRNAs are susceptible to fail when protein factors that are critical for miRNA biogenesis malfunction. Accordingly, potential insufficiencies of the microprocessor complex, the nucleo-cytoplasmic export of miRNA precursors or their processing by Dicer were recently reported. Furthermore, specific miRNAs are involved in the regulation of pathways that are essential for neuronal survival or function. Any change in the expression of these specific miRNAs or in their ability to recognize their target sequences will have negative consequences. Taken together, recent reports strengthens the hypothesis that dysregulation of miRNAs might play an important role in the pathogenesis of neurodegenerative diseases, and highlights the miRNA biogenesis machinery as an interesting target for therapeutic interventions for ALS as well as FTD. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease.
2015
-
(2015) The EMBO Journal. 34, 21, p. 2633-2651 Abstract
Interest in RNA dysfunction in amyotrophic lateral sclerosis (ALS) recently aroused upon discovering causative mutations in RNA-binding protein genes. Here, we show that extensive down-regulation of miRNA levels is a common molecular denominator for multiple forms of human ALS. We further demonstrate that pathogenic ALS-causing mutations are sufficient to inhibit miRNA biogenesis at the Dicing step. Abnormalities of the stress response are involved in the pathogenesis of neurodegeneration, including ALS. Accordingly, we describe a novel mechanism for modulating microRNA biogenesis under stress, involving stress granule formation and re-organization of DICER and AGO2 protein interactions with their partners. In line with this observation, enhancing DICER activity by a small molecule, enoxacin, is beneficial for neuromuscular function in two independent ALS mouse models. Characterizing miRNA biogenesis downstream of the stress response ties seemingly disparate pathways in neurodegeneration and further suggests that DICER and miRNAs affect neuronal integrity and are possible therapeutic targets.
-
(2015) EMBO Journal. 34, 9, p. 1143-1144 Abstract
Astrocytes are a subtype of glial cells in the central nervous system that are critical for normal brain activity. In this issue of The EMBO Journal, Shenoy et al provide evidence for the involvement of miRNAs in the molecular mechanism underlying the in vitro differentiation of astrocytes from glial progenitor cells. Let-7 and miR-125 jointly silence multiple mRNA targets that would have potentially disrupted differentiation if expressed, and function in concert with JAK-STAT signaling to promote astrocyte differentiation. Differentiation of astrocytes requires the joint action of two miRNAs that repress a shared set of target genes whose expression would be disruptive for cell fate transitioning.
-
(2015) PLoS ONE. 10, 4, e0122108. Abstract
In-vitro expansion of β cells fromadult human pancreatic islets could provide abundant cells for cell replacement therapy of diabetes. However, proliferation of β-cell-derived (BCD) cells is associated with dedifferentiation. Here we analyzed changes inmicroRNAs (miRNAs) during BCD cell dedifferentiation and identified miR-375 as one of them iRNAs greatly downregulated. We hypothesized that restoration ofmiR-375 expression in expanded BCD cells may contribute to their redifferentiation. Our findings demonstrate that overexpression of miR-375 alone leads to activation of β-cell gene expression, reduced cell proliferation, and a switch from N-cadherin to E-cadherin expression, which characterizes mesenchymal-epithelial transition. These effects, which are reproducible in cells derived from multiple human donors, are likely mediated by repression of PDPK1 transcripts and indirect downregulation of GSK3 activity. These findings support an important role of miR-375 in regulation of human β-cell phenotype, and suggest thatmiR-375 upregulation may facilitate the generation of functional insulin-producing cells following ex-vivo expansion of human islet cells.
2014
-
(2014) Brain Research. 1584, p. 116-128 Abstract
Molecular genetics insight into the pathogenesis of several neurodegenerative diseases, such as Alzheimers disease, Parkinsons disease, Huntingtons disease and amyotrophic lateral sclerosis, encourages direct interference with the activity of neurotoxic genes or the molecular activation of neuroprotective pathways. Oligonucleotide-based therapies are recently emerging as an efficient strategy for drug development and these can be employed as new treatments of neurodegenerative states. Here we review advances in this field in recent years which suggest an encouraging assessment that oligonucleotide technologies for targeting of RNAs will enable the development of new therapies and will contribute to preservation of brain integrity. This article is part of a Special Issue entitled RNA Metabolism 2013.
-
(2014) Trends in Endocrinology and Metabolism. 25, 6, p. 285-292 Abstract
Normal physiology depends on defined functional output of differentiated cells. However, differentiated cells are often surprisingly fragile. As an example, phenotypic collapse and dedifferentiation of β cells were recently discovered in the pathogenesis of type 2 diabetes (T2D). These discoveries necessitate the investigation of mechanisms that function to maintain robust cell type identity. microRNAs (miRNAs), which are small non-coding RNAs, are known to impart robustness to development. miRNAs are interlaced within networks, that include also transcriptional and epigenetic regulators, for continuous control of lineage-specific gene expression. In this Opinion article, we provide a framework for conceptualizing how miRNAs might participate in adult β cell identity and suggest that miRNAs may function as important genetic components in metabolic disorders, including diabetes.
-
(2014) eLife. 2014, 3, e01964. Abstract
Genome-encoded microRNAs (miRNAs) provide a posttranscriptional regulatory layer that controls the differentiation and function of various cellular systems, including hematopoietic cells. miR-142 is one of the most prevalently expressed miRNAs within the hematopoietic lineage. To address the in vivo functions of miR-142 we utilized a novel reporter and loss-of-function mouse allele that we have recently generated. Here, we show that miR-142 is broadly expressed in the adult hematopoietic system. Our data further reveal that miR-142 is critical for megakaryopoiesis. Thus, genetic miR-142 ablation caused impaired megakaryocyte maturation, inhibition of polyploidization, abnormal proplatelet formation, and thrombocytopenia. Finally, we characterize a network of miR-142-3p targets which collectively controls actin filament homeostasis, thereby ensuring proper execution of actin-dependent proplatelet formation. Our study reveals a pivotal role for miR-142 activity in megakaryocyte maturation and function, and demonstrates a critical contribution of a single miRNA in orchestrating cytoskeletal dynamics and normal haemostasis.
-
(2014) EMBO Journal. 33, 13, p. 1428-1437 Abstract
microRNAs (miRNAs) are a family of small, non-coding RNAs, which provides broad silencing activity of mRNA targets in a sequence-dependent fashion. This review explores the hypothesis that the miRNA machinery is intimately linked with the cellular stress pathway and apparatus. Stress signaling potentially alters the function of the miRNA-bioprocessing core components and decompensates regulation. In addition, dysregulation of miRNA activity renders the cell more prone to stress and emerges as a new pathway for age-related insults and diseases, such as neurodegeneration.
2013
-
(2013) Stem Cells. 31, 10, p. 2266-2272 Abstract
microRNAs of the miR-290-295 family are selectively expressed at high levels in mouse embryonic stem cells (mESCs) and have established roles in regulating self-renewal. However, the potential influence of these microRNAs on cell fate acquisition during differentiation has been overlooked. Here, we show that miR-290-295 regulate the propensity of mESCs to acquire specific fates. We generated a new miR-290-295-null mESC model, which exhibits increased propensity to generate ectoderm, at the expense of endoderm and mesoderm lineages. We further found that in wild-type cells, miR-290-295 repress Pax6 and ectoderm differentiation; accordingly, Pax6 knockdown partially rescues the mESCs differentiation impairment that is caused by loss of miR-290-295. Thus, in addition to regulating self-renewal, the large reservoir of miR-290-295 in undifferentiated mESCs fine-tunes the expression of master transcriptional factors, such as Pax6, thereby regulating the equilibrium of fate acquisition by mESC descendants. Stem Cells 2013;31:2266-2272
-
(2013) Blood. 121, 6, p. 1016-1027 Abstract
The mononuclear phagocyte system comprises cells as diverse as monocytes, macrophages, and dendritic cells (DCs), which collectively play key roles in innate immune responses and the triggering of adaptive immunity. Recent studies have highlighted the role of growth and transcription factors in defining developmental pathways and lineage relations within this cellular compartment. However, contributions of miRNAs to the development of mononuclear phagocytes remain largely unknown. In the present study, we report a comprehensive map of miRNA expression profiles for distinct myeloid populations, including BM-resident progenitors, monocytes, and mature splenic DCs. Each of the analyzed cell populations displayed a distinctive miRNA profile, suggesting a role for miRNAs in defining myeloid cell identities. Focusing on DC development, we found miR-142 to be highly expressed in classic FLT3-L-dependent CD4+ DCs, whereas reduced expression was observed in closely related CD8α + or CD4-CD8α- DCs. Moreover, mice deficient for miR-142 displayed an impairment of CD4+ DC homeostasis both in vitro and in vivo. Furthermore, loss of miR-142-dependent CD4 + DCs was accompanied by a severe and specific defect in the priming of CD4+ T cells. The results of our study establish a novel role for miRNAs in myeloid cell specification and define miR-142 as a pivotal genetic component in the maintenance of CD4+ DCs.
2012
-
(2012) Development (Cambridge). 139, 16, p. 3021-3031 Abstract
Genome-encoded microRNAs (miRNAs) provide a post-transcriptional regulatory layer that is important for pancreas development. However, how specific miRNAs are intertwined into the transcriptional network, which controls endocrine differentiation, is not well understood. Here, we show that microRNA-7 (miR-7) is specifically expressed in endocrine precursors and in mature endocrine cells. We further demonstrate that Pax6 is an important target of miR-7. miR-7 overexpression in developing pancreas explants or in transgenic mice led to Pax6 downregulation and inhibition of α- and β-cell differentiation, resembling the molecular changes caused by haploinsufficient expression of Pax6. Accordingly, miR-7 knockdown resulted in Pax6 upregulation and promoted α- and β-cell differentiation. Furthermore, Pax6 downregulation reversed the effect of miR-7 knockdown on insulin promoter activity. These data suggest a novel miR-7-based circuit that ensures precise control of endocrine cell differentiation.
-
(2012) Blood. 120, 9, p. 1843-1855 Abstract
Cytokine-induced expansion of hematopoietic stem and progenitor cells (HSPCs) is not fully understood. In the present study, we show that whereas steady-state hematopoiesis is normal in basic fibroblast growth factor (FGF-2)-knockout mice, parathyroid hormone stimulation and myeloablative treatments failed to induce normal HSPC proliferation and recovery. In vivo FGF-2 treatment expanded stromal cells, including perivascular Nestin + supportive stromal cells, which may facilitate HSPC expansion by increasing SCF and reducing CXCL12 via mir-31 up-regulation. FGF-2 predominantly expanded a heterogeneous population of undifferentiated HSPCs, preserving and increasing durable short- and long-term repopulation potential. Mechanistically, these effects were mediated by c-Kit receptor activation, STAT5 phosphorylation, and reduction of reactive oxygen species levels. Mice harboring defective c-Kit signaling exhibited abrogated HSPC expansion in response to FGF-2 treatment, which was accompanied by elevated reactive oxygen species levels. The results of the present study reveal a novel mechanism underlying FGF-2-mediated in vivo expansion of both HSPCs and their supportive stromal cells, which may be used to improve stem cell engraftment after clinical transplantation.
-
(2012) Nature Structural & Molecular Biology. 19, 6, p. 650-652 Abstract
Primary microRNA cleavage by the Droshag-Dgcr8 'Microprocessor' complex is critical for microRNA biogenesis. Yet, the Microprocessor may also cleave other nuclear RNAs in a nonspecific manner. We studied Microprocessor function using mathematical modeling and experiments in mouse and human tissues. We found that the autoregulatory feedback on Microprocessor expression is instrumental for balancing the efficiency and specificity of its activity by effectively tuning Microprocessor levels to those of its pri-miRNA substrate.
-
(2012) Developmental Biology. 362, 1, p. 50-56 Abstract
DiGeorge syndrome (DGS), characterized genetically by a deletion within chromosome 22q11.2, is associated with a constellation of congenital heart defects. DiGeorge critical region 8 (Dgcr8), a gene that maps to the common deletion region of DGS, encodes a double stranded RNA-binding protein that is essential for miRNA biogenesis. To address the potential contribution of Dgcr8 insufficiency to cardiovascular development, we have inactivated Dgcr8 in cardiac neural crest cells (cNCCs). Dgcr8 mutants displayed a wide spectrum of malformations, including persistent truncus arteriosus (PTA) and ventricular septal defect (VSD). Interestingly, Dgcr8-null cNCCs that properly migrated into the cardiac outflow tract (OFT), proliferate normally and differentiate into vascular smooth muscle cells. However, loss of Dgcr8 causes a significant portion of the cNCCs to undergo apoptosis, causing a decrease in the pool of progenitors required for OFT remodeling. Our data uncover a new role of Dgcr8 in cardiovascular morphogenesis, plausibly as part of transmission mechanism for FGF-dependent survival cue for migrating cNCCs.
-
(2012) Experimental Diabetes Research. 2012, 695214. Abstract
Genome-encoded microRNAs (miRNAs) provide a posttranscriptional regulatory layer, which is important for pancreas development. Differentiation of endocrine cells is controlled by a network of pancreatic transcription factors including Ngn3 and NeuroD/Beta2. However, how specific miRNAs are intertwined into this transcriptional network is not well understood. Here, we characterize the regulation of microRNA-7 (miR-7) by endocrine-specific transcription factors. Our data reveal that three independent miR-7 genes are coexpressed in the pancreas. We have identified conserved blocks upstream of pre-miR-7a-2 and pre-miR-7b and demonstrated by functional assays that they possess promoter activity, which is increased by the expression of NeuroD/Beta2. These data suggest that the endocrine specificity of miR-7 expression is governed by transcriptional mechanisms and involves members of the pancreatic endocrine network of transcription factors.
-
(2012) Experimental Diabetes Research. 2012, 470302. Abstract
microRNAs (miRNAs) play important roles in pancreas development and in regulation of insulin expression in the adult. Here we show that loss of miRNAs activity in beta-cells during embryonic development results in lower beta-cell mass and in impaired glucose tolerance. Dicer1-null cells initially constitute a significant portion of the total beta-cell population. However, during postnatal development, Dicer1-null cells are depleted. Furthermore, wild-type beta cells are repopulating the islets in complex compensatory dynamics. Because loss of Dicer1 is also associated with changes in the distribution of membranous E-cadherin, we hypothesized that E-cadherin activity may play a role in beta cell survival or islet architecture. However, genetic loss of E-cadherin function does not impair islet architecture, suggesting that miRNAs likely function through other or redundant effectors in the endocrine pancreas.
2011
-
(2011) Developmental Biology. 360, 1, p. 58-65 Abstract
The specific program that enables the stereotypic differentiation of specialized cartilages, including the trachea, is intrinsically distinct from the program that gives rise to growth plate hypertrophic chondrocytes. For example, Snail1 is an effector of FGF signaling in growth plate pre-hypertrophic chondrocytes, but it derails the normal program of permanent chondrocytes, repressing the transcription of Aggrecan and Collagen type 2a1 (Col2a1). Here we show that miRNA activity is essential for normal trachea development and that miR-125b and miR-30a/c keep Snail1 at low levels, thus enabling full functional differentiation of Col2a1 tracheal chondrocytes. Specific inhibition of miR-125b and miR-30a/c in chondrocytes or Dicer1 knockout in the trachea, de-repress Snail1. As a consequence, the transcription of Aggrecan and Col2a1 is hampered and extracellular matrix deposition is decreased. Our data reveals a new miRNA pathway that is safekeeping the specific genetic program of differentiated and matrix-producing tracheal chondrocytes from acquisition of unwanted signals. This pathway may improve understanding of human primary tracheomalacia and improve protocols for cartilage tissue engineering.
-
(2011) Current Opinion in Cell Biology. 23, 6, p. 663-667 Abstract
The patterning of multicellular organisms is robust to environmental, genetic, or stochastic fluctuations. Mathematical modeling is instrumental in identifying mechanisms supporting this robustness. The principle of lateral inhibition, whereby a differentiating cell inhibits its neighbors from adopting the same fate, is frequently used for selecting a single cell out of a cluster of equipotent cells. For example, Sensory Organ Precursors (SOP) in the fruit-fly Drosophila implement lateral inhibition by activating the Notch-Delta pathway. We discuss parameters affecting the rate of errors in this process, and the mechanism (inhibitory cis interaction between Notch and Delta) predicted to reduce this error.
-
(2011) Journal of Neuroscience. 31, 40, p. 14191-14203 Abstract
The etiology and pathophysiology of anxiety and mood disorders is linked to inappropriate regulation of the central stress response. To determine whether microRNAs have a functional role in the regulation of the stress response, we inactivated microRNA processing by a lentiviral-induced local ablation of the Dicer gene in the central amygdala (CeA) of adult mice. CeA Dicer ablation induced a robust increase in anxiety-like behavior, whereas manipulated neurons survive and appear to exhibit normal gross morphology in the time period examined. We also observed that acute stress in wild-type mice induced a differential expression profile of microRNAs in the amygdala. Bioinformatic analysis identified putative gene targets for these stress-responsive microRNAs, some of which are known to be associated with stress. One of the prominent stress-induced microRNAs found in this screen, miR-34c, was further confirmed to be upregulated after acute and chronic stressful challenge and downregulated in Dicer ablated cells. Lentivirally mediated overexpression of miR34c specifically within the adult CeA induced anxiolytic behavior after challenge. Of particular interest, one of the miR-34c targets is the stress-related corticotropin releasing factor receptor type 1 (CRFR1) mRNA, regulated via a single evolutionary conserved seed complementary site on its 3' UTR. Additional in vitro studies demonstrated that miR-34c reduces the responsiveness of cells to CRF in neuronal cells endogenously expressing CRFR1. Our results suggest a physiological role for microRNAs in regulating the central stress response and position them as potential targets for treatment of stress-related disorders.
-
(2011) Proceedings of the National Academy of Sciences of the United States of America. 108, 29, p. 11936-11941 Abstract
Commitment of progenitors in the dermomyotome to myoblast fate is the first step in establishing the body musculature. Pax3 is a crucial transcription factor, important for skeletal muscle development and expressed inmyogenic progenitors in the dermomyotome of developing somites and in migratory muscle progenitors that populate the limb buds. Down-regulation of Pax3 is essential to ignite the myogenic program, including up-regulation of myogenic regulators, Myf-5 and MyoD. MicroRNAs (miRNAs) confer robustness to developmental timing by posttranscriptional repression of genetic programs that are related to previous developmental stages or to alternative cell fates. Here we demonstrate that the muscle-specific miRNAs miR-1 and miR-206 directly target Pax3. Antagomir-mediated inhibition of miR-1/miR-206 led to delayed myogenic differentiation in developing somites, as shown by transient loss of myogenin expression. This correlated with increased Pax3 and was phenocopied using Pax3-specific target protectors. Loss of myogenin after antagomir injection was rescued by Pax3 knockdown using a splice morpholino, suggesting that miR-1/miR-206 control somite myogenesis primarily through interactions with Pax3. Our studies reveal an important role for miR-1/miR-206 in providing precision to the timing of somite myogenesis. We propose that posttranscriptional control of Pax3 downstream of miR-1/miR-206 is required to stabilize myoblast commitment and subsequent differentiation. Given that mutually exclusive expression of miRNAs and their targets is a prevailing theme in development, our findings suggest that miRNA may provide a general mechanism for the unequivocal commitment underlying stem cell differentiation.
-
(2011) Nature Immunology. 12, 3, p. 239-246 Abstract
Colonic homeostasis entails epithelium-lymphocyte cooperation, yet many participants in this process are unknown. We show here that epithelial microRNAs mediate the mucosa-immune system crosstalk necessary for mounting protective T helper type 2 (T(H)2) responses. Abolishing the induction of microRNA by gut-specific deletion of Dicer1 (Dicer1(Delta gut)), which encodes an enzyme involved in microRNA biogenesis, deprived goblet cells of RELM beta, a key T(H)2 antiparasitic cytokine; this predisposed the host to parasite infection. Infection of Dicer1(Delta gut) mice with helminths favored a futile T(H)1 response with hallmarks of inflammatory bowel disease. Interleukin 13 (IL-13) induced the microRNA miR-375, which regulates the expression of TSLP, a T(H)2-facilitating epithelial cytokine; this indicated a T(H)2-amplification loop. We found that miR-375 was required for RELM beta expression in vivo; miR-375-deficient mice had significantly less intestinal RELM beta, which possibly explains the greater susceptibility of Dicer1(Delta gut) mice to parasites. Our findings indicate that epithelial microRNAs are key regulators of gut homeostasis and mucosal immunity.
-
(2011) EMBO Journal. 30, 5, p. 835-845 Abstract
MicroRNAs (miRNAs) were shown to be important for pancreas development, yet their roles in differentiated β 2-cells remain unclear. Here, we show that miRNA inactivation in β 2-cells of adult mice results in a striking diabetic phenotype. While islet architecture is intact and differentiation markers are maintained, Dicer1-deficient β 2-cells show a dramatic decrease in insulin content and insulin mRNA. As a consequence of the change in insulin content, the animals become diabetic. We provide evidence for involvement of a set of miRNAs in regulating insulin synthesis. The specific knockdown of miR-24, miR-26, miR-182 or miR-148 in cultured β 2-cells or in isolated primary islets downregulates insulin promoter activity and insulin mRNA levels. Further, miRNA-dependent regulation of insulin expression is associated with upregulation of transcriptional repressors, including Bhlhe22 and Sox6. Thus, miRNAs in the adult pancreas act in a new network that reinforces insulin expression by reducing the expression of insulin transcriptional repressors.
-
(2011) Micrornas In Development. p. 89-97 Abstract
Here, we detail a protocol to design and introduce sequence-specific cholesterol-conjugated antisense oligonucleotides into mouse organ culture. We review design principles for \u201cantagomirs\u201d, antisense oligos with a cholesterol-moiety modification at the 3, and present an optimized method to apply them onto 3D cultured embryonic pancreas. The method offers an approach to study the developmental functions of individual miRNAs and to evaluate miRNA targets, which is significantly faster and simpler than comparable genetics-based approaches.
-
(2011) PLoS ONE. 6, 6, e20916. Abstract
Background: Psoriasis is a complex disease at the cellular, genomic and genetic levels. The role of microRNAs in skin development was shown in a keratinocyte-specific Dicer knockout mouse model. Considering that two main characteristics of psoriasis are keratinocytes hyperproliferation and abnormal skin differentiation, we hypothesized that aberrant microRNA expression contributes to the psoriatic phenotype. Here, we describe the differential expression of miRNAs in psoriatic involved and uninvolved skin as compared to normal skin, revealing an additional aspect of this complex disorder. Methodology/Principal Findings: Expression arrays were used to compare microRNA expression in normal skin versus psoriatic involved and uninvolved skin. Fourteen differentially expressed microRNAs were identified, including hsa-miR-99a, hsa-miR-150, hsa-miR-423 and hsa-miR-197. The expression of these microRNAs was reevaluated by qPCR. IGF-1R, which is involved in skin development and the pathogenesis of psoriasis, is a predicted target of hsa-miR-99a. In an in situ hybridization assay, we found that IGF-1R and miR-99a are reciprocally expressed in the epidermis. Using a reporter assay, we found that IGF-1R is targeted by hsa-miR-99a. Moreover, over expression of miR-99a in primary keratinocytes down-regulates the expression of the endogenous IGF-1R protein. Over expression of miR-99a also inhibits keratinocyte proliferation and increases Keratin 10 expression. These findings suggest that overexpression of hsa-miR-99a in keratinocytes drives them towards differentiation. In primary keratinocytes grown in high Ca++, miR-99a expression increases over time. Finally, we found that IGF1 increases the expression of miR-99a. Conclusions/Significance: We identified several microRNAs that are expressed differentially in normal and psoriatic skin. One of these miRNAs is miR-99a that regulates the expression of IGF-1R. Moreover, miR-99a seems to play a role in the differentiation of keratinocytes. We suggest that miR-99a is one of the regulators of the IGF-1R signaling pathway in keratinocytes. Activation of IGF1 signaling results in elevation of miR-99a which represses the expression of IGF-1R.
-
(2011) Science. 331, 6014, p. 183-185 Abstract
Computational and biological systems are often distributed so that processors (cells) jointly solve a task, without any of them receiving all inputs or observing all outputs. Maximal independent set (MIS) selection is a fundamental distributed computing procedure that seeks to elect a set of local leaders in a network. A variant of this problem is solved during the development of the fly's nervous system, when sensory organ precursor (SOP) cells are chosen. By studying SOP selection, we derived a fast algorithm for MIS selection that combines two attractive features. First, processors do not need to know their degree; second, it has an optimal message complexity while only using one-bit messages. Our findings suggest that simple and efficient algorithms can be developed on the basis of biologically derived insights.
2010
-
(2010) Cell Cycle. 9, 20, p. 4041-4042 Abstract
miR-155 function in the differentiation of monocyte cells uncovers one of the key features of miRNA-based regulation - to allow robust fate acquisition by repressing alternative programs. Several lines of evidence promote a general view of miRNA-based mechanisms, underlying the commitment of stem cells to a single cell fate while blocking other alternatives.
-
(2010) Proceedings of the National Academy of Sciences of the United States of America. 107, 36, p. 15804-15809 Abstract
When stem cells and multipotent progenitors differentiate, they undergo fate restriction, enabling a single fate and blocking differentiation along alternative routes. We herein present a mechanism whereby such unequivocal commitment is achieved, based on microRNA (miRNA)-dependent repression of an alternative cell fate. We show that the commitment of monocyte RAW264.7 progenitors to active macrophage differentiation involves rapid up-regulation of miR-155 expression, which leads to the suppression of the alternative pathway, namely RANK ligand-induced osteoclastogenesis, by repressing the expression of MITF, a transcription factor essential for osteoclast differentiation. A temporal asymmetry, whereby miR-155 expression precedes and overrides the activation of the osteoclast transcriptional program, provides the means for coherent macrophage differentiation, even in the presence of osteoclastogenic signals. Based on these findings, we propose that miRNA may provide a general mechanism for the unequivocal commitment underlying stem cell differentiation.
-
(2010) Science Signaling. 3, 129, p. rs51 Abstract
The pattern of the sensory bristles in the fruit fly Drosophila is remarkably reproducible. Each bristle arises from a sensory organ precursor (SOP) cell that is selected, through a lateral inhibition process, from a cluster of proneural cells. Although this process is well characterized, the mechanism ensuring its robustness remains obscure. Using probabilistic modeling, we defined the sources of error in SOP selection and examined how they depend on the underlying molecular circuit. We found that rapid inhibition of the neural differentiation of nonselected cells, coupled with high cell-to-cell variability in the timing of selection, is crucial for accurate SOP selection. Cell-autonomous interactions (cis interactions) between the Notch receptor and its ligands Delta or Serrate facilitate accurate SOP selection by shortening the effective delay between the time when the inhibitory signal is initiated in one cell and the time when it acts on neighboring cells, suggesting that selection relies on competition between cis and trans interactions of Notch with its ligands. The cis interaction model predicts that the increase in ectopic SOP selections observed with reduced Notch abundance can be compensated for by reducing the abundance of the Notch ligands Delta and Serrate. We validated this prediction experimentally by quantifying the frequency of ectopic bristles in flies carrying heterozygous null mutations of Notch, Delta, or Serrate or combinations of these alleles. We propose that susceptibility to errors distinguishes seemingly equivalent designs of developmental circuits regulating pattern formation.
-
(2010) Proceedings of the National Academy of Sciences of the United States of America. 107, 29, p. 13111-13116 Abstract
Defective RNA metabolism is an emerging mechanism involved in ALS pathogenesis and possibly in other neurodegenerative disorders. Here, we show that microRNA (miRNA) activity is essential for long-term survival of postmitotic spinal motor neurons (SMNs) in vivo. Thus, mice that do not process miRNA in SMNs exhibit hallmarks of spinal muscular atrophy (SMA), including sclerosis of the spinal cord ventral horns, aberrant end plate architecture, and myofiber atrophy with signs of denervation. Furthermore, a neurofilament heavy subunit previously implicated in motor neuron degeneration is specifically up-regulated in miRNA-deficient SMNs. We demonstrate that the heavy neurofilament subunit is a target of miR-9, a miRNA that is specifically down-regulated in a genetic model of SMA. These data provide evidence for miRNA function in SMN diseases and emphasize the potential role of miR-9-based regulatory mechanisms in adult neurons and neurodegenerative states.
-
2009
-
-
(2009) Proceedings of the National Academy of Sciences of the United States of America. 106, 19, p. 7915-7920 Abstract
MicroRNAs (miRNAs) inhibit the translation of target mRNAs and affect, directly or indirectly, the expression of a large portion of the protein-coding genes. This study focuses on miRNAs that are expressed in the mouse cochlea and vestibule, the 2 inner ear compartments. A conditional knock-out mouse for Dicer1 demonstrated that miRNAs are crucial for postnatal survival of functional hair cells of the inner ear. We identified miRNAs that have a role in the vertebrate developing inner ear by combining miRNA transcriptome analysis, spatial and temporal expression patterns, and bioinformatics. Microarrays revealed similar miRNA profiles in newborn-mouse whole cochleae and vestibules, but different temporal and spatial expression patterns of six miRNAs (miR-15a, miR-18a, miR-30b, miR-99a, miR-182, and miR-199a) may reflect their roles. Two of these miRNAs, miR-15a-1 and miR-18a, were also shown to be crucial for zebrafish inner ear development and morphogenesis. To suggest putative target mRNAs whose translation may be inhibited by selected miRNAs, we combined bioinformatics-based predictions and mRNA expression data. Finally, we present indirect evidence that Slc12a2, Cldn12, and Bdnf mRNAs may be targets for miR-15a. Our data support the hypothesis that inner ear tissue differentiation and maintenance are regulated and controlled by conserved sets of cell-specific miRNAs in both mouse and zebrafish.
-
(2009) PLoS ONE. 4, 4, e5033. Abstract
microRNAs (miRNAs) are known to play an essential role in controlling a broad range of biological processes including animal development. Accordingly, many miRNAs are expressed preferentially in one or a small number of cell types. Yet the mechanisms responsible for this selectivity are not well understood. The aim of this study was to elucidate the molecular basis of cell-specific expression of the pri-miR-375 gene, which is selectively expressed in pancreatic islets, and has been implicated both in the development of islets, and the function of mature pancreatic beta cells. An evolutionarily conserved 768 bp region of DNA upstream of the pri-miR-375 gene was linked to GFP and luciferase reporter genes, and expression monitored in transgenic mice and transfected cultured cells. Deletion and targeted mutagenesis analysis was used to evaluate the functional significance of sequence blocks within the upstream fragment. 5-RACE analysis was used for mapping the pri-miR-375 gene transcription start site. The conserved 768 bp region was able to direct preferential expression of a GFP reporter gene to pancreatic islets in transgenic mice. Deletion analysis using a luciferase reporter gene in transfected cultured cell lines confirmed the cell specificity of the putative promoter region, and identified several key cis-elements essential for optimal activity, including E-boxes and a TATA sequence. Consistent with this, 5-RACE analysis identified a transcription start site within this DNA region, 24 bp downstream of the TATA sequence. These studies define the promoter of the pri-miR-375 gene, and show that islet-specific expression of the pri-miR-375 gene is controlled at the transcriptional level. Detailed analysis of the transcriptional mechanisms controlling expression of miRNA genes will be essential to permit a comprehensive understanding of the complex role of miRNAs such as miR-375 in developmental processes.
-
(2009) Journal of Biomedicine and Biotechnology. 2009, 594738. Abstract
MicroRNAs (miRNAs) are short noncoding RNAs that regulate gene expression through translational inhibition or mRNA degradation by binding to sequences on the target mRNA. miRNA regulation appears to be the most abundant mode of posttranscriptional regulation affecting 50 of the transcriptome. miRNA genes are often clustered and/or located in introns, and each targets a variable and often large number of mRNAs. Here we discuss the genomic architecture of animal miRNA genes and their evolving interaction with their target mRNAs.
2007
-
(2007) RNA. 13, 11, p. 1894-1910 Abstract
Vertebrate mRNAs are frequently targeted for post-transcriptional repression by microRNAs (miRNAs) through mechanisms involving pairing of 3 UTR seed matches to bases at the 5 end of miRNAs. Through analysis of expression array data following miRNA or siRNA overexpression or inhibition, we found that mRNA fold change increases multiplicatively (i.e., log-additively) with seed match count and that a single 8 mer seed match mediates down-regulation comparable to two 7 mer seed matches. We identified several targeting determinants that enhance seed match-associated mRNA repression, including the presence of adenosine opposite miRNA base 1 and of adenosine or uridine opposite miRNA base 9, independent of complementarity to the siRNA/miRNA. Increased sequence conservation in the ∼50 bases 5 and 3 of the seed match and increased AU content 3 of the seed match were each independently associated with increased mRNA down-regulation. All of these determinants are enriched in the vicinity of conserved miRNA seed matches, supporting their activity in endogenous miRNA targeting. Together, our results enable improved siRNA off-target prediction, allow integrated ranking of conserved and nonconserved miRNA targets, and show that targeting by endogenous and exogenous miRNAs/siRNAs involves similar or identical determinants. Published by Cold Spring Harbor Laboratory Press.
2006
-
(2006) Nature Genetics. 38, 6S, p. S20 Abstract
Animal development is an extremely robust process resulting in stereotyped outcomes. Canalization is a design principle wherein developmental pathways are stabilized to increase phenotypic reproducibility. Recent revelations into microRNA (miRNA) function suggest that miRNAs act as key players in canalizing genetic programs. We suggest that miRNA interactions with the network of protein-coding genes evolved to buffer stochastic perturbations and thereby confer robustness to developmental genetic programs.
-
(2006) Stem Cells. 24, 2, p. 221-229 Abstract
Differentiated cell types derived from human embryonic stem cells (hESCs) may serve in the future to treat various human diseases. A crucial step toward their successful clinical application is to examine the immune response that might be launched against them after transplantation. We used two experimental platforms to examine the in vivo leukocyte response toward hESCs. First, immunocompetent and immunodeficient mouse strains were used to identify T cells as the major component that causes xenorejection of hESCs. Second, mice that were conditioned to carry peripheral blood leukocytes from human origin were used to test the human leukocyte alloresponse toward undifferentiated and differentiated hESCs. Using this model, we have detected only a minute immune response toward undifferentiated as well as differentiated hESCs over the course of 1 month, although control adult grafts were repeatedly infiltrated with lymphocytes and destroyed. Our data show that the cells evade immune destruction due to a low immunostimulatory potential. Nevertheless, a human cytotoxic T lymphocyte clone that was specifically prepared to recognize two hESC lines could lyse the cells after major histocompatibility complex class I (MHC-I) induction. Although MHC-I levels in hESCs are sufficient for rejection by cytotoxic T cells, our data suggest that the immunostimulatory capacity of the cells is very low. Thus, immunosuppressive regimens for hESC-based therapeutics could be highly reduced compared with conventional organ transplantation because direct allorejection processes of hESCs and their derivatives are considerably weaker.