February 07, 1996 - February 07, 2029

  • Date:06WednesdayJanuary 2021

    M.Sc thesis defense: Band gaps of crystalline solids from a Wannier-localized, optimally tuned screened range-separated hybrid functional

    More information
    Time
    14:30 - 15:30
    LecturerDr. Guy Ohad, Ana Naamat
    Organizer
    Department of Molecular Chemistry and Materials Science
    Contact
    AbstractShow full text abstract about https://weizmann.zoom.us/j/93597285944?pwd=S0FJdHJ6eVpFTGJ3d...»
    https://weizmann.zoom.us/j/93597285944?pwd=S0FJdHJ6eVpFTGJ3dHJHa3c1amJyUT09

    Abstract:
    A long-standing challenge within density functional theory (DFT) is the development of functionals that accurately predict the band gap and electronic structure of crystalline solids. A promising candidate for this task is the screened range-separated hybrid (SRSH) functional, which has been shown to yield accurate results for finite systems when one of the parameters in the functional, the range-separation parameter, is selected a priori. In the bulk limit, however, this parameter cannot be selected non-empirically based on the ionization potential theorem, owing to the delocalized electronic orbitals. Recently, we have developed a new method for the non-empirical tuning of the range-separation parameter, that is based on the removal of an electron in a state that corresponds to a Wannier function. We have applied the method to a set of systems ranging from narrow band gap semiconductors to large band gap insulators, obtaining fundamental band gaps in excellent agreement with experiment.
    Lecture