2024 research activities

Head Prof. Israel Bar-Joseph

Picture of Prof. Israel Bar-Joseph
Head

Prof. Israel Bar-Joseph

Office +972-8-934-4534

Overview

The scientific activity of the department is mainly concentrated around the experimental and theoretical research in quantum solid state physics. It includes experimental research of mesoscopic physics, quantum Hall physics, topological states of matter, high temperature superconductors, two and one dimensional superconductors, metal-insulator transition, carbon nanotubes, semiconductor nanowires, and study of material growth. The theoretical efforts concentrate on similar subjects with added work on disordered materials, cold atoms, and quantum optics.
The Braun Center for sub micron research is an integral part of the department. It is a modern and well equipped center, with growth (three MBE's) and characterization systems, which allows to conduct experiments on sub micron semiconductor structures under high magnetic fields, conventional and high temperature superconductors, and nanowires made of carbon nanotubes and semiconductor nanowires.

ScientistsShow details

  • Picture of Dr. Haim Beidenkopf

    Dr. Haim Beidenkopf

    Topological electronic phases
    Weyl/Dirac topological semimetals
    Strong/Weak/Crystalline/Higher-order topological insulators
    Topological superconductivity and Majorana modes
    Topological nano-devices
    Scanning tunneling microscopy and spectroscopy
    Molecular beam epitaxy

    Homepage
  • Picture of Prof. Erez Berg

    Prof. Erez Berg

    Strongly correlated materials
    High temperature superconductivity
    Topological phases of matter
    Correlations in two-dimensional materials
    Topological phenomena in periodically driven systems

    Homepage
  • Picture of Prof. Alexander Finkelstein

    Prof. Alexander Finkelstein

    Effects of the electron-electron interaction in low dimensional and disordered systems.
    Metal-insulator transition in 2D conductors.
    Magnetic fluctuations in high - Tc superconductors.
  • Picture of Prof. Yuval Gefen

    Prof. Yuval Gefen

    Quantum Steering; Quantum State Manipulation
    Exotic excitations in the fractional quantum Hall effect and Topological Insulators.
    Edge reconstruction and edge channels in the fractional quantum Hall effect and Topological Insulators.
  • Picture of Prof. Moty Heiblum

    Prof. Moty Heiblum

    Exotic quantum states with quantum statistics different from elementary particles
    Non-abelian quantum states (e.g., hosting Majorana particles)
    Interference of electrons and fractional charges in the quantum Hall regime
    Thermal conductance of one-dimensional modes, revealing quantum behavior

    Homepage
  • Picture of Prof. Shahal Ilani

    Prof. Shahal Ilani

    Imaging Magic angle graphene and other moiré materials
    Electron hydrodynamics
    Scanning Twistronics
    Imaging experiments of Electron Optics
    Local measurements of exotic quasiparticles

    Homepage
  • Picture of Prof. Shimon Levit

    Prof. Shimon Levit

    Full vector path integrals for light propagation in dielectrics.
    Resonant scattaring off photonic slabs
    Variational Approach to Tunneling Dynamics.
    Application to Hot Superfluid Fermi Systems.
    Application to spontaneous and induced fission
    Tunneling of hot bosonic systems

    Homepage
  • Picture of Prof. Yuval Oreg

    Prof. Yuval Oreg

    Topological Quantum Materials
    Superconducting and fractional topological phases theory and applications to quantum topological computers
    Majorana fermions in superconducting wires and topological superconductors
    Quantum dots and the Kondo effect and the multi channel Kondo effect
    Disorder superconductors and normal metal super-conducting junctions
    Glassy systems
    Luttinger liquids in one-dimensional systems such as: carbon nano tube, edges of a quantum hall systems, edges of two dimensional topological insulator

    Homepage
  • Picture of Prof. Adi Stern

    Prof. Adi Stern

    Quantum interference phenomena in the fractional Quantum Hall effect. Electronic transport in strong magnetic fields.
    Non-abelian electronic states - quantum Hall states, topological superconductors and Majorana fermions.
    Fractionalized topological phases - how to construct them, how to measure them, and how to use them for topological quantum computation
    Low density two dimensional electronic systems.
    One dimensional electronic systems - electronic transport in the presence of interactions.
  • Picture of Prof. Binghai Yan

    Prof. Binghai Yan

    Topological Materials
    Topological Insulators
    Dirac and Weyl Semimetals
    Berry phase
    Shine light to quantum materials
    Light-matter interaction, nonlinear optical response
    Anomalous Hall effect, nonlinear anomalous Hall effect
    Quantum anomaly
    2D Materials
    Chirality in Physics and Chemistry
    Electronic properties in DNA-like chiral molecules
    The interplay between chiral structure, spin, and orbital.

    Homepage
  • Picture of Prof. Eli Zeldov

    Prof. Eli Zeldov

    Scanning nanoSQUID magnetic microscopy
    Scanning nanoscale thermal imaging
    Imaging of dissipation mechanisms in quantum and topological systems
    Magnetism and dissipation in magic angle twisted bilayer graphene
    Quantum anomalous Hall effect
    Imaging of current and dissipation in the quantum Hall effect
    Berry curvature magnetism in topological systems
    Magnetism at oxide interfaces
    Superconductivity
    Vortex matter and dynamics

    Homepage