Publications
2024
-
First Indication of Solar 8B Neutrinos via Coherent Elastic Neutrino-Nucleus Scattering with XENONnT(2024) Physical Review Letters. 133, 19, 191002. Abstract[All authors]
We present the first measurement of nuclear recoils from solar ^{8}B neutrinos via coherent elastic neutrino-nucleus scattering with the XENONnT dark matter experiment. The central detector of XENONnT is a low-background, two-phase time projection chamber with a 5.9 t sensitive liquid xenon target. A blind analysis with an exposure of 3.51t×yr resulted in 37 observed events above 0.5 keV, with (26.4_{-1.3}^{+1.4}) events expected from backgrounds. The background-only hypothesis is rejected with a statistical significance of 2.73σ. The measured ^{8}B solar neutrino flux of (4.7_{-2.3}^{+3.6})×10^{6}cm^{-2}s^{-1} is consistent with results from the Sudbury Neutrino Observatory. The measured neutrino flux-weighted CEνNS cross section on Xe of (1.1_{-0.5}^{+0.8})×10^{-39}cm^{2} is consistent with the Standard Model prediction. This is the first direct measurement of nuclear recoils from solar neutrinos with a dark matter detector.
-
(2024) European Physical Journal C. 84, 784. Abstract[All authors]
The multi-staged XENON program at INFN Laboratori Nazionali del Gran Sasso aims to detect dark matter with two-phase liquid xenon time projection chambers of increasing size and sensitivity. The XENONnT experiment is the latest detector in the program, planned to be an upgrade of its predecessor XENON1T. It features an active target of 5.9 tonnes of cryogenic liquid xenon (8.5 tonnes total mass in cryostat). The experiment is expected to extend the sensitivity to WIMP dark matter by more than an order of magnitude compared to XENON1T, thanks to the larger active mass and the significantly reduced background, improved by novel systems such as a radon removal plant and a neutron veto. This article describes the XENONnT experiment and its sub-systems in detail and reports on the detector performance during the first science run.
-
(2024) Physical Review D. 110, 1, 012011. Abstract[All authors]
This paper details the first application of a software tagging algorithm to reduce radon-induced backgrounds in liquid noble element time projection chambers, such as XENON1T and XENONnT. The convection velocity field in XENON1T was mapped out using Rn222 and Po218 events, and the rms convection speed was measured to be 0.30±0.01 cm/s. Given this velocity field, Pb214 background events can be tagged when they are followed by Bi214 and Po214 decays, or preceded by Po218 decays. This was achieved by evolving a point cloud in the direction of a measured convection velocity field, and searching for Bi214 and Po214 decays or Po218 decays within a volume defined by the point cloud. In XENON1T, this tagging system achieved a Pb214 background reduction of 6.2-0.9+0.4% with an exposure loss of 1.8±0.2%, despite the timescales of convection being smaller than the relevant decay times. We show that the performance can be improved in XENONnT, and that the performance of such a software-tagging approach can be expected to be further improved in a diffusion-limited scenario. Finally, a similar method might be useful to tag the cosmogenic Xe137 background, which is relevant to the search for neutrinoless double-beta decay.
-
(2024) Physical Review D. 109, 11, 112017. Abstract[All authors]
In this work, we expand on the XENON1T nuclear recoil searches to study the individual signals of dark matter interactions from operators up to dimension eight in a chiral effective field theory (ChEFT) and a model of inelastic dark matter (iDM). We analyze data from two science runs of the XENON1T detector totaling 1 t×yr exposure. For these analyses, we extended the region of interest from [4.9,40.9] keVNR to [4.9,54.4] keVNR to enhance our sensitivity for signals that peak at nonzero energies. We show that the data are consistent with the background-only hypothesis, with a small background overfluctuation observed peaking between 20 and 50 keVNR, resulting in a maximum local discovery significance of 1.7σ for the Vector - Vectorstrange ChEFT channel for a dark matter particle of 70 GeV/c2 and 1.8σ for an iDM particle of 50 GeV/c2 with a mass splitting of 100 keV/c2. For each model, we report 90% confidence level upper limits. We also report upper limits on three benchmark models of dark matter interaction using ChEFT where we investigate the effect of isospin-breaking interactions. We observe rate-driven cancellations in regions of the isospin-breaking couplings, leading to up to 6 orders of magnitude weaker upper limits with respect to the isospin-conserving case.
-
(2024) European Physical Journal C. 84, 2, 138. Abstract[All authors]
The precision in reconstructing events detected in a dual-phase time projection chamber depends on an homogeneous and well understood electric field within the liquid target. In the XENONnT TPC the field homogeneity is achieved through a double-array field cage, consisting of two nested arrays of field shaping rings connected by an easily accessible resistor chain. Rather than being connected to the gate electrode, the topmost field shaping ring is independently biased, adding a degree of freedom to tune the electric field during operation. Two-dimensional finite element simulations were used to optimize the field cage, as well as its operation. Simulation results were compared to 83mKrcalibration data. This comparison indicates an accumulation of charge on the panels of the TPC which is constant over time, as no evolution of the reconstructed position distribution of events is observed. The simulated electric field was then used to correct the charge signal for the field dependence of the charge yield. This correction resolves the inconsistent measurement of the drift electron lifetime when using different calibrations sources and different field cage tuning voltages.
-
(2024) European Physical Journal C. 84, 1, 88. Abstract[All authors]
Xenon dual-phase time projections chambers (TPCs) have proven to be a successful technology in studying physical phenomena that require low-background conditions. With 40t of liquid xenon (LXe) in the TPC baseline design, DARWIN will have a high sensitivity for the detection of particle dark matter, neutrinoless double beta decay (0 ν β β), and axion-like particles (ALPs). Although cosmic muons are a source of background that cannot be entirely eliminated, they may be greatly diminished by placing the detector deep underground. In this study, we used Monte Carlo simulations to model the cosmogenic background expected for the DARWIN observatory at four underground laboratories: Laboratori Nazionali del Gran Sasso (LNGS), Sanford Underground Research Facility (SURF), Laboratoire Souterrain de Modane (LSM) and SNOLAB. We present here the results of simulations performed to determine the production rate of 137 Xe, the most crucial isotope in the search for 0 ν β β of 136 Xe. Additionally, we explore the contribution that other muon-induced spallation products, such as other unstable xenon isotopes and tritium, may have on the cosmogenic background.
2023
-
(2023) European Physical Journal C. 83, 11, 996. Abstract[All authors]
Detailed MC simulation studies of muon-induced neutrons [1] revealed our initial overestimation of the (Formula presented.) Xe activation by neutron capture on (Formula presented.) Xe in the DARWIN TPC located at LNGS. The in-situ (Formula presented.) Xe production rate must be corrected to (0.82 ± 0.10) atoms/(t (Formula presented.) yr), a factor of 8.4 lower than the initially estimated value. This reduces the previously-dominant intrinsic background contribution from (Formula presented.) Xe to a level similar to the (Formula presented.) B neutrino background via (Formula presented.) - (Formula presented.) scattering. This increased importance of the formerly subdominant (Formula presented.) B background calls for a revision of its initially simplified calculation. The neutrino flux spectrum is now convolved with the energy-dependent electron neutrino survival probability (Formula presented.) , according to the MSW-LMA solution [2]. Accordingly, Table 3 and Figures 6, 7 and 8 of the initial manuscript are corrected. The DARWIN sensitivity to the (Formula presented.) decay of (Formula presented.) Xe is recalculated with the updated background rates. The figure-of-merit estimator (section 6.1 of the original manuscript) projects a half-life sensitivity at 90% confidence level (C.L.) of (Formula presented.) ((Formula presented.)) after 10 (4) years of exposure. The frequentist profile-likelihood analysis (section 6.2) yields a (Formula presented.) sensitivity limit of (Formula presented.) for a 10 year exposure with (Formula presented.) fiducial mass. The corresponding (Formula presented.) discovery potential after 10 years is (Formula presented.). (Table presented.) Expected background index averaged in the (Formula presented.) -ROI of [24352481] keV, the corresponding event rate in the (Formula presented.) FV and the relative uncertainty by origin Background source Background index Rate Rel. uncertainty [events/ (t (Formula presented.) yr (Formula presented.) keV)] [events/yr] External sources ((Formula presented.) FV): (Formula presented.) Bi peaks + continuum 0.313 (Formula presented.) Tl continuum 0.143 (Formula presented.) Sc continuum 0.001 (Formula presented.) B ((Formula presented.) scattering) 0.035 (Formula presented.) Xe ((Formula presented.) -induced n-capture) 0.039 (Formula presented.) Xe (Formula presented.) 0.001 (Formula presented.) Rn in LXe (0.1 (Formula presented.) Bq/kg) 0.071 Background rate in the ROI versus fiducial mass. External contributions are combined. Fiducial volume independent intrinsic sources are shown per contribution. Bands indicate (Formula presented.) uncertainties Predicted background spectrum around the (Formula presented.) -ROI for the (Formula presented.) fiducial volume. A hypothetical signal of 0.5 counts per year corresponding to (Formula presented.) is shown for comparison. Bands indicate (Formula presented.) uncertainties DARWIN median (Formula presented.) sensitivity at 90% C.L. as a function of fiducial volume mass for 10 years of operation (left) as well as of the time for the optimized fiducial volume (right). The baseline design is compared to different optimistic scenarios. The latter assume a reduction of the external (ext.) and the intrinsic ((Formula presented.) Rn and (Formula presented.) Xe) backgrounds and improved spatial separation threshold of (Formula presented.) (red) or (Formula presented.) (blue, green). The green line assumes only irreducible intrinsic backgrounds, dominated by (Formula presented.) B neutrinos. Sensitivity projections for future (Formula presented.) Xe (Formula presented.) experiments are shown for comparison The now corrected intrinsic background is dominated by the (Formula presented.) -decay of (Formula presented.) Bi in the baseline scenario (black in Figure 8). Reducing the BiPo tagging inefficiency to 0.1 (Formula presented.) leads to a similar background contribution from (Formula presented.) B, (Formula presented.) Xe, and (Formula presented.) Rn for DARWIN at LNGS (red). Combining a 0.01 (Formula presented.) inefficiency with a (Formula presented.) efficient timed veto on (Formula presented.) Xe activation (discussed in section 7) suppresses the non-neutrino intrinsic backgrounds to approximately half of the (Formula presented.) B contribution (blue). As in the initial manuscript, the optimistic scenarios assume a reduction of the external background and improved topological discrimination.
-
(2023) Physical review D. 108, 7, 072015. Abstract[All authors]
We perform a blind search for particle signals in the XENON1T dark matter detector that occur close in time to gravitational-wave signals in the LIGO and Virgo observatories. No particle signal is observed in the nuclear recoil and electronic recoil channels within ±500 seconds of observations of the gravitational-wave signals GW170104, GW170729, GW170817, GW170818, and GW170823. We use this null result to constrain monoenergetic neutrinos and axion-like particles emitted in the closest coalescence GW170817, a binary neutron star merger. We set new upper limits on the fluence (time-integrated flux) of coincident neutrinos down to 17 keV at the 90% confidence level. Furthermore, we constrain the product of the coincident fluence and cross section of axion-like particles to be less than 10-29 cm2/cm2 in the [5.5-210] keV energy range at the 90% confidence level.
-
(2023) Physical review D. 108, 1, 012016. Abstract
We developed a detector signal characterization model based on a Bayesian network trained on the waveform attributes generated by a dual-phase xenon time projection chamber. By performing inference on the model, we produced a quantitative metric of signal characterization and demonstrate that this metric can be used to determine whether a detector signal is sourced from a scintillation or an ionization process. We describe the method and its performance on electronic-recoil (ER) data taken during the first science run of the XENONnT dark matter experiment. We demonstrate the first use of a Bayesian network in a waveform-based analysis of detector signals. This method resulted in a 3% increase in ER event-selection efficiency with a simultaneously effective rejection of events outside of the region of interest. The findings of this analysis are consistent with the previous analysis from XENONnT, namely a background-only fit of the ER data.
-
(2023) Physical review letters. 131, 4, 041003. Abstract
We report on the first search for nuclear recoils from dark matter in the form of weakly interacting massive particles (WIMPs) with the XENONnT experiment, which is based on a two-phase time projection chamber with a sensitive liquid xenon mass of 5.9 ton. During the (1.09±0.03) ton yr exposure used for this search, the intrinsic Kr85 and Rn222 concentrations in the liquid target are reduced to unprecedentedly low levels, giving an electronic recoil background rate of (15.8±1.3) events/ton yr keV in the region of interest. A blind analysis of nuclear recoil events with energies between 3.3 and 60.5 keV finds no significant excess. This leads to a minimum upper limit on the spin-independent WIMP-nucleon cross section of 2.58×1047 cm2 for a WIMP mass of 28 GeV/c2 at 90% confidence level. Limits for spin-dependent interactions are also provided. Both the limit and the sensitivity for the full range of WIMP masses analyzed here improve on previous results obtained with the XENON1T experiment for the same exposure.
-
(2023) Journal of Instrumentation. 18, 7, P07054. Abstract
The XENONnT detector uses the latest and largest liquid xenon-based time projection chamber (TPC) operated by the XENON Collaboration, aimed at detecting Weakly Interacting Massive Particles and conducting other rare event searches. The XENONnT data acquisition (DAQ) system constitutes an upgraded and expanded version of the XENON1T DAQ system. For its operation, it relies predominantly on commercially available hardware accompanied by open-source and custom-developed software. The three constituent subsystems of the XENONnT detector, the TPC (main detector), muon veto, and the newly introduced neutron veto, are integrated into a single DAQ, and can be operated both independently and as a unified system. In total, the DAQ digitizes the signals of 698 photomultiplier tubes (PMTs), of which 253 from the top PMT array of the TPC are digitized twice, at ×10 and ×0.5 gain. The DAQ for the most part is a triggerless system, reading out and storing every signal that exceeds the digitization thresholds. Custom-developed software is used to process the acquired data, making it available within ∼30 s for live data quality monitoring and online analyses. The entire system with all the three subsystems was successfully commissioned and has been operating continuously, comfortably withstanding readout rates that exceed ∼500 MB/s during calibration. Livetime during normal operation exceeds 99% and is ∼90% during most high-rate calibrations. The combined DAQ system has collected more than 2 PB of both calibration and science data during the commissioning of XENONnT and the first science run.
-
(2023) European Physical Journal C. 83, 6, 542. Abstract[All authors]
A low-energy electronic recoil calibration of XENON1T, a dual-phase xenon time projection chamber, with an internal 37 Ar source was performed. This calibration source features a 35-day half-life and provides two mono-energetic lines at 2.82 keV and 0.27 keV. The photon yield and electron yield at 2.82 keV are measured to be (32.3±0.3) photons/keV and (40.6±0.5) electrons/keV, respectively, in agreement with other measurements and with NEST predictions. The electron yield at 0.27 keV is also measured and it is (68.0-3.7+6.3) electrons/keV. The 37 Ar calibration confirms that the detector is well-understood in the energy region close to the detection threshold, with the 2.82 keV line reconstructed at (2.83±0.02) keV, which further validates the model used to interpret the low-energy electronic recoil excess previously reported by XENON1T. The ability to efficiently remove argon with cryogenic distillation after the calibration proves that 37 Ar can be considered as a regular calibration source for multi-tonne xenon detectors.
-
(2023) arXiv.org. Abstract[All authors]
Xenon dual-phase time projections chambers (TPCs) have proven to be a successful technology in studying physical phenomena that require low-background conditions. With 40t of liquid xenon (LXe) in the TPC baseline design, DARWIN will have a high sensitivity for the detection of particle dark matter, neutrinoless double beta decay (0νββ), and axion-like particles (ALPs). Although cosmic muons are a source of background that cannot be entirely eliminated, they may be greatly diminished by placing the detector deep underground. In this study, we used Monte Carlo simulations to model the cosmogenic background expected for the DARWIN observatory at four underground laboratories: Laboratori Nazionali del Gran Sasso (LNGS), Sanford Underground Research Facility (SURF), Laboratoire Souterrain de Modane (LSM) and SNOLAB. We determine the production rates of unstable xenon isotopes and tritium due to muon-included neutron fluxes and muon-induced spallation. These are expected to represent the dominant contributions to cosmogenic backgrounds and thus the most relevant for site selection.
-
(2023) Physical review letters. 130, 26, 261002. Abstract
Multiple viable theoretical models predict heavy dark matter particles with a mass close to the Planck mass, a range relatively unexplored by current experimental measurements. We use 219.4 days of data collected with the XENON1T experiment to conduct a blind search for signals from multiply interacting massive particles (MIMPs). Their unique track signature allows a targeted analysis with only 0.05 expected background events from muons. Following unblinding, we observe no signal candidate events. This Letter places strong constraints on spin-independent interactions of dark matter particles with a mass between 1×1012 and 2×1017 GeV/c2. In addition, we present the first exclusion limits on spin-dependent MIMP-neutron and MIMP-proton cross sections for dark matter particles with masses close to the Planck scale.
-
(2023) Journal of Physics G: Nuclear and Particle Physics. 50, 1, 013001. Abstract[All authors]
The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector.
2022
-
(2022) European Physical Journal C. 82, 11, 989. Abstract[All authors]
The XENON collaboration has published stringent limits on specific dark matter nucleon recoil spectra from dark matter recoiling on the liquid xenon detector target. In this paper, we present an approximate likelihood for the XENON1T 1 t-year nuclear recoil search applicable to any nuclear recoil spectrum. Alongside this paper, we publish data and code to compute upper limits using the method we present. The approximate likelihood is constructed in bins of reconstructed energy, profiled along the signal expectation in each bin. This approach can be used to compute an approximate likelihood and therefore most statistical results for any nuclear recoil spectrum. Computing approximate results with this method is approximately three orders of magnitude faster than the likelihood used in the original publications of XENON1T, where limits were set for specific families of recoil spectra. Using this same method, we include toy Monte Carlo simulation-derived binwise likelihoods for the upcoming XENONnT experiment that can similarly be used to assess the sensitivity to arbitrary nuclear recoil signatures in its eventual 20 t-year exposure.
-
(2022) Physical review letters. 129, 16, 161805. Abstract[All authors]
We report on a blinded analysis of low-energy electronic recoil data from the first science run of the XENONnT dark matter experiment. Novel subsystems and the increased 5.9 ton liquid xenon target reduced the background in the (1, 30) keV search region to (15.8±1.3) events/(ton×year×keV), the lowest ever achieved in a dark matter detector and ∼5 times lower than in XENON1T. With an exposure of 1.16 ton-years, we observe no excess above background and set stringent new limits on solar axions, an enhanced neutrino magnetic moment, and bosonic dark matter.
-
(2022) PHYSICAL REVIEW C. 106, 2, 024328. Abstract[All authors]
We present results on the search for two-neutrino double-electron capture (2νECEC) of 124Xe and neutrinoless double-β decay (0νββ) of 136Xe in XENON1T. We consider captures from the K shell up to the N shell in the 2νECEC signal model and measure a total half-life of T1/22νECEC=(1.1±0.2stat±0.1sys)×1022yr with a 0.87kgyr isotope exposure. The statistical significance of the signal is 7.0σ. We use XENON1T data with 36.16kgyr of 136Xe exposure to search for 0νββ. We find no evidence of a signal and set a lower limit on the half-life of T1/20νββ>1.2×1024 yr at 90% CL. This is the best result from a dark matter detector without an enriched target to date. We also report projections on the sensitivity of XENONnT to 0νββ. Assuming a 275 kg yr 136Xe exposure, the expected sensitivity is T1/20νββ>2.1×1025 yr at 90% CL, corresponding to an effective Majorana mass range of ⟨mββ⟩
-
(2022) European Physical Journal C. 82, 7, 599. Abstract[All authors]
The selection of low-radioactive construction materials is of the utmost importance for rare-event searches and thus critical to the XENONnT experiment. Results of an extensive radioassay program are reported, in which material samples have been screened with gamma-ray spectroscopy, mass spectrometry, and 222Rn emanation measurements. Furthermore, the cleanliness procedures applied to remove or mitigate surface contamination of detector materials are described. Screening results, used as inputs for a XENONnT Monte Carlo simulation, predict a reduction of materials background (∼ 17%) with respect to its predecessor XENON1T. Through radon emanation measurements, the expected 222Rn activity concentration in XENONnT is determined to be 4.2 (-0.7+0.5) μ Bq/kg, a factor three lower with respect to XENON1T. This radon concentration will be further suppressed by means of the novel radon distillation system.
-
(2022) Journal of Instrumentation. 17, 7, P07018. Abstract[All authors]
Understanding propagation of scintillation light is critical for maximizing the discovery potential of next-generation liquid xenon detectors that use dual-phase time projection chamber technology. This work describes a detailed optical simulation of the DARWIN detector implemented using Chroma, a GPU-based photon tracking framework. To evaluate the framework and to explore ways of maximizing efficiency and minimizing the time of light collection, we simulate several variations of the conventional detector design. Results of these selected studies are presented. More generally, we conclude that the approach used in this work allows one to investigate alternative designs faster and in more detail than using conventional Geant4 optical simulations, making it an attractive tool to guide the development of the ultimate liquid xenon observatory.
-
(2022) Physical Review D. 106, 2, 022001. Abstract[All authors]
Delayed single- and few-electron emissions plague dual-phase time projection chambers, limiting their potential to search for light-mass dark matter. This paper examines the origins of these events in the XENON1T experiment. Characterization of the intensity of delayed electron backgrounds shows that the resulting emissions are correlated, in time and position, with high-energy events and can effectively be vetoed. In this work we extend previous S2-only analyses down to a single electron. From this analysis, after removing the correlated backgrounds, we observe rates
-
(2022) Progress of Theoretical and Experimental Physics. 2022, 5, 053H01. Abstract
A novel online distillation technique was developed for the XENON1T dark matter experiment to reduce intrinsic background components more volatile than xenon, such as krypton or argon, while the detector was operating. The method is based on a continuous purification of the gaseous volume of the detector system using the XENON1T cryogenic distillation column. A krypton-in-xenon concentration of (360 ± 60) ppq was achieved. It is the lowest concentration measured in the fiducial volume of an operating dark matter detector to date. A model was developed and fitted to the data to describe the krypton evolution in the liquid and gas volumes of the detector system for several operation modes over the time span of 550 days, including the commissioning and science runs of XENON1T. The online distillation was also successfully applied to remove 37Ar after its injection for a low-energy calibration in XENON1T. This makes the usage of 37Ar as a regular calibration source possible in the future. The online distillation can be applied to next-generation liquid xenon time projection chamber experiments to remove krypton prior to, or during, any science run. The model developed here allows further optimization of the distillation strategy for future large-scale detectors.
2021
-
(2021) Journal of Instrumentation. 16, 8, P08033. Abstract[All authors]
Photomultiplier tubes (PMTs) are often used in low-background particle physics experiments, which rely on an excellent response to single-photon signals and stable long-term operation. In particular, the Hamamatsu R11410 model is the light sensor of choice for liquid xenon dark matter experiments, including XENONnT. The same PMT model was also used for the predecessor, XENON1T, where issues affecting its long-term operation were observed. Here, we report on an improved PMT testing procedure which ensures optimal performance in XENONnT. Using both new and upgraded facilities, we tested 368 new PMTs in a cryogenic xenon environment. We developed new tests targeted at the detection of light emission and the degradation of the PMT vacuum through small leaks, which can lead to spurious signals known as afterpulses, both of which were observed in XENON1T. We exclude the use of 26 of the 368 tested PMTs and categorise the remainder according to their performance. Given that we have improved the testing procedure, yet we rejected fewer PMTs, we expect significantly better PMT performance in XENONnT.
-
(2021) European Physical Journal C. 81, 4, 337. Abstract[All authors]
The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the 222Rn emanation measurements performed for the XENON1T dark matter experiment. Together with the bulk impurity screening campaign, the results enabled us to select the radio-purest construction materials, targeting a 222Rn activity concentration of 10μBq/kg in 3.2t of xenon. The knowledge of the distribution of the 222Rn sources allowed us to selectively eliminate problematic components in the course of the experiment. The predictions from the emanation measurements were compared to data of the 222Rn activity concentration in XENON1T. The final 222Rn activity concentration of (4.5±0.1)μBq/kg in the target of XENON1T is the lowest ever achieved in a xenon dark matter experiment.
-
(2021) Physical review letters. 126, 9, 091301. Abstract
We report on a search for nuclear recoil signals from solar B8 neutrinos elastically scattering off xenon nuclei in XENON1T data, lowering the energy threshold from 2.6 to 1.6 keV. We develop a variety of novel techniques to limit the resulting increase in backgrounds near the threshold. No significant B8 neutrinolike excess is found in an exposure of 0.6 t×y. For the first time, we use the nondetection of solar neutrinos to constrain the light yield from 1-2 keV nuclear recoils in liquid xenon, as well as nonstandard neutrino-quark interactions. Finally, we improve upon world-leading constraints on dark matter-nucleus interactions for dark matter masses between 3 and 11 GeV c-2 by as much as an order of magnitude.
-
(2021) Physical review D. 103, 6, 063028. Abstract[All authors]
We report the results of a search for the inelastic scattering of weakly interacting massive particles (WIMPs) in the XENON1T dark matter experiment. Scattering off Xe129 is the most sensitive probe of inelastic WIMP interactions, with a signature of a 39.6 keV deexcitation photon detected simultaneously with the nuclear recoil. Using an exposure of 0.83 tonne-years, we find no evidence of inelastic WIMP scattering with a significance of more than 2σ. A profile-likelihood ratio analysis is used to set upper limits on the cross section of WIMP-nucleus interactions. We exclude new parameter space for WIMPs heavier than 100 GeV/c2, with the strongest upper limit of 3.3×10-39 cm2 for 130 GeV/c2 WIMPs at 90% confidence level.
2020
-
(2020) European Physical Journal C. 80, 12, 1133. Abstract
We detail the sensitivity of the proposed liquid xenon DARWIN observatory to solar neutrinos via elastic electron scattering. We find that DARWIN will have the potential to measure the fluxes of five solar neutrino components: pp, 7Be, 13N, 15O and pep. The precision of the 13N, 15O and pep components is hindered by the double-beta decay of 136Xe and, thus, would benefit from a depleted target. A high-statistics observation of pp neutrinos would allow us to infer the values of the electroweak mixing angle, sin 2θw, and the electron-type neutrino survival probability, Pee, in the electron recoil energy region from a few keV up to 200 keV for the first time, with relative precision of 5% and 4%, respectively, with 10 live years of data and a 30 tonne fiducial volume. An observation of pp and 7Be neutrinos would constrain the neutrino-inferred solar luminosity down to 0.2%. A combination of all flux measurements would distinguish between the high- (GS98) and low-metallicity (AGS09) solar models with 2.12.5σ significance, independent of external measurements from other experiments or a measurement of 8B neutrinos through coherent elastic neutrino-nucleus scattering in DARWIN. Finally, we demonstrate that with a depleted target DARWIN may be sensitive to the neutrino capture process of 131Xe.
-
(2020) Journal of Cosmology and Astroparticle Physics. 2020, 11, 031. Abstract
XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to 12.3 ± 0.6 (keV t y)-1 and (2.2± 0.5)× 10-3 (keV t y)-1, respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of 1.4×10-48 cm2 for a 50 GeV/c2 mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T . In addition, we show that for a 50 GeV/c2 WIMP with cross-sections above 2.6×10-48 cm2 (5.0×10-48 cm2) the median XENONnT discovery significance exceeds 3σ (5σ). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches 2.2×10-43 cm2 (6.0×10-42 cm2).
-
(2020) Physical Review D. 102, 7, 072004. Abstract
We report results from searches for new physics with low-energy electronic recoil data recorded with the XENON1T detector. With an exposure of 0.65 tonne-years and an unprecedentedly low background rate of 76±2stat events/(tonne×year×keV) between 1 and 30 keV, the data enable one of the most sensitive searches for solar axions, an enhanced neutrino magnetic moment using solar neutrinos, and bosonic dark matter. An excess over known backgrounds is observed at low energies and most prominent between 2 and 3 keV. The solar axion model has a 3.4σ significance, and a three-dimensional 90% confidence surface is reported for axion couplings to electrons, photons, and nucleons. This surface is inscribed in the cuboid defined by gae
-
(2020) European Physical Journal C. 80, 9, 808. Abstract
The DARWIN observatory is a proposed next-generation experiment to search for particle dark matter and for the neutrinoless double beta decay of 136Xe. Out of its 50 t total natural xenon inventory, 40 t will be the active target of a time projection chamber which thus contains about 3.6 t of 136Xe. Here, we show that its projected half-life sensitivity is 2.4×1027year, using a fiducial volume of 5 t of natural xenon and 10 year of operation with a background rate of less than 0.2 events/(t · year) in the energy region of interest. This sensitivity is based on a detailed Monte Carlo simulation study of the background and event topologies in the large, homogeneous target. DARWIN will be comparable in its science reach to dedicated double beta decay experiments using xenon enriched in 136Xe.
-
(2020) European Physical Journal C. 80, 8, 785. Abstract
Xenon dual-phase time projection chambers designed to search for weakly interacting massive particles have so far shown a relative energy resolutionwhich degrades with energy above similar to 200 keV due to the saturation effects. This has limited their sensitivity in the search for rare events like the neutrinoless double-beta decay of Xe-136 at its Q value, Q(beta beta) similar or equal to 2.46 MeV. For the XENON1T dual-phase time projection chamber, we demonstrate that the relative energy resolution at 1 sigma/mu is as low as (0.80 +/- 0.02)% in its one-ton fiducial mass, and for single-site interactions at Q(beta beta). We also present a new signal correction method to rectify the saturation effects of the signal readout system, resulting in more accurate position reconstruction and indirectly improving the energy resolution. The very good result achieved in XENON1T opens up new windows for the xenon dual-phase dark matter detectors to simultaneously search for other rare events.
-
(2020) Journal of Instrumentation. 15, 6, 06001. Abstract
We present a detector apparatus, DIREXENO (DIREctional XENOn), designed to measure the spatial and temporal properties of scintillation in liquid xenon to very high accuracy. The properties of scintillation are of primary importance for dark matter and neutrinoless double beta decay experiments; however the complicated microphysics involved limits theoretical predictions. We will explore the possibility that scintillation emission exhibits spatial correlations such as super-radiance which manifests in temporal and spatial structure, depending on the interaction type. Such properties of scintillation light may open a new window for background rejection as well as directionality measurements. We present the apparatus' technical design and the concepts driving it. We demonstrate that for an energy deposition of similar to 2.5 keV (similar to 7.5 keV) electron (nuclear) recoil the detector is sensitive to an anisotropy fraction of as little as similar to 20% of the total photons emitted over a solid angle of similar to 0.85 steradian or less. We show results from commissioning runs in which the detector operated with 17 PMTs for over 44 days in stable conditions. The time resolution for individual photons in different PMTs was measured to be less than or similar to 1.4 ns full-width at half-maximum
2019
-
Search for Light Dark Matter Interactions Enhanced by the Migdal Effect or Bremsstrahlung in XENON1T(2019) Physical Review Letters. 123, 24, 241803. Abstract
Direct dark matter detection experiments based on a liquid xenon target are leading the search for dark matter particles with masses above similar to 5 GeV/c(2), but have limited sensitivity to lighter masses because of the small momentum transfer in dark matter-nucleus elastic scattering. However, there is an irreducible contribution from inelastic processes accompanying the elastic scattering, which leads to the excitation and ionization of the recoiling atom (the Migdal effect) or the emission of a bremsstrahlung photon. In this Letter, we report on a probe of low-mass dark matter with masses down to about 85 MeV/c(2) by looking for electronic recoils induced by the Migdal effect and bremsstrahlung using data from the XENON1T experiment. Besides the approach of detecting both scintillation and ionization signals, we exploit an approach that uses ionization signals only, which allows for a lower detection threshold. This analysis significantly enhances the sensitivity of XENON1T to light dark matter previously beyond its reach.
-
(2019) Physical Review Letters. 123, 25, 251801. Abstract
We report constraints on light dark matter (DM) models using ionization signals in the XENON1T experiment. We mitigate backgrounds with strong event selections, rather than requiring a scintillation signal, leaving an effective exposure of (22 +/- 3) tonne day. Above similar to 0.4 keV(ee), we observe 30 MeV/c(2), and absorption of dark photons and axionlike particles for m(chi) within 0.186-1 keV/c(2).
-
(2019) Physical Review D. 100, 9, 095021. Abstract
We consider liquid xenon dark matter detectors for searching a light scalar particle produced in the solar core, specifically one that couples to electrons. Through its interaction with the electrons, the scalar particle can be produced in the Sun, mainly through Bremsstrahlung process, and subsequently it is absorbed by liquid xenon atoms, leaving prompt scintillation light and ionization events. Using the latest experimental results of XENON1T and Large Underground Xenon, we place bounds on the coupling between electrons and a light scalar as gφee
-
(2019) Journal of Instrumentation. 14, 7, 07016. Abstract
The XENON1T liquid xenon time projection chamber is the most sensitive detector built to date for the measurement of direct interactions of weakly interacting massive particles with normal matter. The data acquisition system (DAQ) is constructed from commercial, open source, and custom components to digitize signals from the detector and store them for later analysis. The system achieves an extremely low signal threshold by triggering each channel independently, achieving a single photoelectron acceptance of (93 +/- 3)%, and deferring the global trigger to a later, software stage. The event identification is based on MongoDB database queries and has over 98% efficiency at recognizing interactions at the analysis threshold in the center of the target. A readout bandwidth over 300 MB/s is reached in calibration modes and is further expandable via parallelization. This DAQ system was successfully used during three years of operation of XENON1T.
-
(2019) Physical Review D. 99, 11, 112009. Abstract
The XENON1T experiment searches for dark matter particles through their scattering off xenon atoms in a 2 metric ton liquid xenon target. The detector is a dual-phase time projection chamber, which measures simultaneously the scintillation and ionization signals produced by interactions in target volume, to reconstruct energy and position, as well as the type of the interaction. The background rate in the central volume of XENON1T detector is the lowest achieved so far with a liquid xenon-based direct detection experiment. In this work we describe the response model of the detector, the background and signal models, and the statistical inference procedures used in the dark matter searches with a 1 metric ton x year exposure of XENON1T data, that leads to the best limit to date on WIMP-nucleon spin-independent elastic scatter cross section for WIMP masses above 6 GeV/c(2).
-
(2019) Nature. 568, 7753, p. 532-535 Abstract
Two-neutrino double electron capture (2 nu ECEC) is a second-order weak-interaction process with a predicted half-life that surpasses the age of the Universe by many orders of magnitude(1). Until now, indications of 2 nu ECEC decays have only been seen for two isotopes(2-5), Kr-78 and Ba-130, and instruments with very low background levels are needed to detect them directly with high statistical significance(6,7). The 2 nu ECEC half-life is an important observable for nuclear structure models(8-14) and its measurement represents a meaningful step in the search for neutrinoless double electron capture-the detection of which would establish the Majorana nature of the neutrino and would give access to the absolute neutrino mass(15-17). Here we report the direct observation of 2 nu ECEC in Xe-124 with the XENON1T dark-matter detector. The significance of the signal is 4.4 standard deviations and the corresponding half-life of 1.8 x 10(22) years (statistical uncertainty, 0.5 x 10(22) years; systematic uncertainty, 0.1 x 10(22) years) is the longest measured directly so far. This study demonstrates that the low background and large target mass of xenon-based dark-matter detectors make them well suited for measuring rare processes and highlights the broad physics reach of larger next-generation experiments(18-20).
-
(2019) Physical Review Letters. 122, 7, 071301. Abstract[All authors]
We present first results on the scalar coupling of weakly interacting massive particles (WIMPs) to pions from 1 t yr of exposure with the XENON1T experiment. This interaction is generated when the WIMP couples to a virtual pion exchanged between the nucleons in a nucleus. In contrast to most nonrelativistic operators, these pion-exchange currents can be coherently enhanced by the total number of nucleons and therefore may dominate in scenarios where spin-independent WIMP-nucleon interactions are suppressed. Moreover, for natural values of the couplings, they dominate over the spin-dependent channel due to their coherence in the nucleus. Using the signal model of this new WIMP-pion channel, no significant excess is found, leading to an upper limit cross section of 6.4 x 10(-46) cm(2) (90% confidence level) at 30 GeV/c(2) WIMP mass.
2018
-
(2018) Physical Review Letters. 121, 11, 111302. Abstract[All authors]
We report on a search for weakly interacting massive particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS. XENON1T utilizes a liquid xenon time projection chamber with a fiducial mass of (1.30 +/- 0.01) ton, resulting in a 1.0 ton yr exposure. The energy region of interest, [1.4; 10.6] keV(ee) ([4.9; 40.9] keV(nr)), exhibits an ultralow electron recoil background rate of [82(-3)(+5) (syst) +/- 3 stat)] events/ton yr keV(ee)). No significant excess over background is found, and a profile likelihood analysis parametrized in spatial and energy dimensions excludes new parameter space for the WIMP-nucleon spin-independent elastic scatter cross section for WIMP masses above 6 GeV/c(2), with a minimum of 4.1 x 10(-47) cm(2) at 30 GeV/c(2) and a 90% confidence level.
-
(2018) Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. 782, p. 242-250 Abstract
We propose a new low-threshold direct-detection concept for dark matter and for coherent nuclear scattering of solar neutrinos, based on the dissociation of atoms and subsequent creation of color center type defects within a lattice. The novelty in our approach lies in its ability to detect single defects in a macroscopic bulk of material. This class of experiments features ultra-low energy thresholds which allows for the probing of dark matter as light as O(10) MeV through nuclear scattering. Another feature of defect creation in crystals is directional information, which presents as a spectacular signal and a handle on background reduction in the form of daily modulation of the interaction rate. We discuss the envisioned setup and detection technique, as well as background reduction. We further calculate the expected rates for dark matter and solar neutrinos in two example crystals for which available data exists, demonstrating the prospective sensitivity of such experiments. (c) 2018 The Authors. Published by Elsevier B.V.
-
(2018) Physical Review D. 97, 9, 092007. Abstract
We report on the response of liquid xenon to low energy electronic recoils below 15 keV from beta decays of tritium at drift fields of 92 V/cm, 154 V/cm and 366 V/cm using the XENON100 detector. A data-to-simulation fitting method based on Markov Chain Monte Carlo is used to extract the photon yields and recombination fluctuations from the experimental data. The photon yields measured at the two lower fields are in agreement with those from literature; additional measurements at a higher field of 366 V/cm are presented. The electronic and nuclear recoil discrimination as well as its dependence on the drift field and photon detection efficiency are investigated at these low energies. The results provide new measurements in the energy region of interest for dark matter searches using liquid xenon.
2017
-
(2017) European Physical Journal C. 77, 12, 881. Abstract[All authors]
The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2 t liquid xenon inventory, 2.0 t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented.
-
(2017) Physical review D. 96, 12, 122002. Abstract[All authors]
We present results of searches for vector and pseudoscalar bosonic super-weakly interacting massive particles (WIMPs), which are dark matter candidates with masses at the keV-scale, with the XENON100 experiment. XENON100 is a dual-phase xenon time projection chamber operated at the Laboratori Nazionali del Gran Sasso. A profile likelihood analysis of data with an exposure of 224.6 live days ×34 kg showed no evidence for a signal above the expected background. We thus obtain new and stringent upper limits in the (8-125) keV/c2 mass range, excluding couplings to electrons with coupling constants of gae>3×10-13 for pseudo-scalar and α/α>2×10-28 for vector super-WIMPs, respectively. These limits are derived under the assumption that super-WIMPs constitute all of the dark matter in our galaxy.
-
(2017) European Physical Journal C. 77, 12, 890. Abstract[All authors]
The XENON1T dark matter experiment aims to detect weakly interacting massive particles (WIMPs) through low-energy interactions with xenon atoms. To detect such a rare event necessitates the use of radiopure materials to minimize the number of background events within the expected WIMP signal region. In this paper we report the results of an extensive material radioassay campaign for the XENON1T experiment. Using gamma-ray spectroscopy and mass spectrometry techniques, systematic measurements of trace radioactive impurities in over one hundred samples within a wide range of materials were performed. The measured activities allowed for stringent selection and placement of materials during the detector construction phase and provided the input for XENON1T detection sensitivity estimates through Monte Carlo simulations.
-
(2017) Journal of Cosmology and Astroparticle Physics. 2017, 10, 039. Abstract
We present the first search for dark matter-induced delayed coincidence signals in a dual-phase xenon time projection chamber, using the 224.6 live days of the XENON100 science run II. This very distinct signature is predicted in the framework of magnetic inelastic dark matter which has been proposed to reconcile the modulation signal reported by the DAMA/LIBRA collaboration with the null results from other direct detection experiments. No candidate event has been found in the region of interest and upper limits on the WIMP's magnetic dipole moment are derived. The scenarios proposed to explain the DAMA/LIBRA modulation signal by magnetic inelastic dark matter interactions of WIMPs with masses of 58.0 GeV/c 2 and 122.7 GeV/c 2 are excluded at 3.3 σ and 9.3 σ, respectively.
[All authors] -
(2017) Physical review letters. 119, 18, 181301. Abstract[All authors]
We report the first dark matter search results from XENON1T, a ∼2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this kind. The blinded search used 34.2 live days of data acquired between November 2016 and January 2017. Inside the (1042±12)-kg fiducial mass and in the [5,40] keVnr energy range of interest for weakly interacting massive particle (WIMP) dark matter searches, the electronic recoil background was (1.93±0.25)×10-4 events/(kg×day×keVee), the lowest ever achieved in such a dark matter detector. A profile likelihood analysis shows that the data are consistent with the background-only hypothesis. We derive the most stringent exclusion limits on the spin-independent WIMP-nucleon interaction cross section for WIMP masses above 10 GeV/c2, with a minimum of 7.7×10-47 cm2 for 35-GeV/c2 WIMPs at 90% C.L.
-
(2017) Physical Review D. 96, 4, 042004. Abstract
We report on weakly interacting massive particles (WIMPs) search results in the XENON100 detector using a nonrelativistic effective field theory approach. The data from science run II (34 kg×224.6 live days) were reanalyzed, with an increased recoil energy interval compared to previous analyses, ranging from (6.6-240) keVnr. The data are found to be compatible with the background-only hypothesis. We present 90% confidence level exclusion limits on the coupling constants of WIMP-nucleon effective operators using a binned profile likelihood method. We also consider the case of inelastic WIMP scattering, where incident WIMPs may up-scatter to a higher mass state, and set exclusion limits on this model as well.
[All authors] -
(2017) Physical Review D. 96, 2, 022008. Abstract
We present the first constraints on the spin-dependent, inelastic scattering cross section of weakly interacting massive particles (WIMPs) on nucleons from XENON100 data with an exposure of 7.64×103 kg·days. XENON100 is a dual-phase xenon time projection chamber with 62 kg of active mass, operated at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy and designed to search for nuclear recoils from WIMP-nucleus interactions. Here we explore inelastic scattering, where a transition to a low-lying excited nuclear state of Xe129 is induced. The experimental signature is a nuclear recoil observed together with the prompt deexcitation photon. We see no evidence for such inelastic WIMP-Xe129 interactions. A profile likelihood analysis allows us to set a 90% C.L. upper limit on the inelastic, spin-dependent WIMP-nucleon cross section of 3.3×10-38 cm2 at 100 GeV/c2. This is the most constraining result to date, and sets the pathway for an analysis of this interaction channel in upcoming, larger dual-phase xenon detectors.
[All authors] -
(2017) European Physical Journal C. 77, 6, 358. Abstract
We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant 222Rn background originating from radon emanation. After inserting an auxiliary 222Rn emanation source in the gas loop, we determined a radon reduction factor of R>27 (95% C.L.) for the distillation column by monitoring the 222Rn activity concentration inside the XENON100 detector.
[All authors] -
(2017) Journal of Cosmology and Astroparticle Physics. 5, 013. Abstract
We propose a safeguard procedure for statistical inference that provides universal protection against mismodeling of the background. The method quantifies and incorporates the signal-like residuals of the background model into the likelihood function, using information available in a calibration dataset. This prevents possible false discovery claims that may arise through unknown mismodeling, and corrects the bias in limit setting created by overestimated or underestimated background. We demonstrate how the method removes the bias created by an incomplete background model using three realistic case studies.
-
(2017) European Physical Journal C. 77, 5, 275. Abstract
The XENON1T experiment aims for the direct detection of dark matter in a detector filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the β-emitter 85Kr which is present in the xenon. For XENON1T a concentration of natural krypton in xenon natKr/Xe
-
(2017) Physical Review D. 95, 7, 072008. Abstract
A Rn220 source is deployed on the XENON100 dark matter detector in order to address the challenges in calibration of tonne-scale liquid noble element detectors. We show that the Pb212 beta emission can be used for low-energy electronic recoil calibration in searches for dark matter. The isotope spreads throughout the entire active region of the detector, and its activity naturally decays below background level within a week after the source is closed. We find no increase in the activity of the troublesome Rn222 background after calibration. Alpha emitters are also distributed throughout the detector and facilitate calibration of its response to Rn222. Using the delayed coincidence of Rn220-Po216, we map for the first time the convective motion of particles in the XENON100 detector. Additionally, we make a competitive measurement of the half-life of Po212, t1/2=(293.9±(1.0)stat±(0.6)sys) ns.
-
(2017) Physical Review Letters. 118, 10, 101101. Abstract[All authors]
We report on a search for electronic recoil event rate modulation signatures in the XENON100 data accumulated over a period of 4 yr, from January 2010 to January 2014. A profile likelihood method, which incorporates the stability of the XENON100 detector and the known electronic recoil background model, is used to quantify the significance of periodicity in the time distribution of events. There is a weak modulation signature at a period of 431(-14)(+16) day in the low energy region of (2.0-5.8) keV in the single scatter event sample, with a global significance of 1.9 sigma; however, no other more significant modulation is observed. The significance of an annual modulation signature drops from 2.8 sigma, from a previous analysis of a subset of this data, to 1.8 sigma with all data combined. Single scatter events in the low energy region are thus used to exclude the DAMA/LIBRA annual modulation as being due to dark matter electron interactions via axial vector coupling at 5.7 sigma.
-
(2017) PHYSICAL REVIEW C. 95, 2, 024605. Abstract
Two-neutrino double electron capture is a rare nuclear decay where two electrons are simultaneously captured from the atomic shell. For Xe124 this process has not yet been observed and its detection would provide a new reference for nuclear matrix element calculations. We have conducted a search for two-neutrino double electron capture from the K shell of Xe124 using 7636 kgd of data from the XENON100 dark matter detector. Using a Bayesian analysis we observed no significant excess above background, leading to a lower 90% credibility limit on the half-life T1/2>6.5×1020 yr. We have also evaluated the sensitivity of the XENON1T experiment, which is currently being commissioned, and found a sensitivity of T1/2>6.1×1022 yr after an exposure of 2 tyr.
2016
-
(2016) Physical review D. 94, 12, 122001. Abstract[All authors]
We report on WIMP search results of the XENON100 experiment, combining three runs summing up to 477 live days from January 2010 to January 2014. Data from the first two runs were already published. A blind analysis was applied to the last run recorded between April 2013 and January 2014 prior to combining the results. The ultralow electromagnetic background of the experiment, ∼5×10-3 events/(keVee×kg×day)) before electronic recoil rejection, together with the increased exposure of 48 kg×yr, improves the sensitivity. A profile likelihood analysis using an energy range of (6.6-43.3) keVnr sets a limit on the elastic, spin-independent WIMP-nucleon scattering cross section for WIMP masses above 8 GeV/c2, with a minimum of 1.1×10-45 cm2 at 50 GeV/c2 and 90% confidence level. We also report updated constraints on the elastic, spin-dependent WIMP-nucleon cross sections obtained with the same data. We set upper limits on the WIMP-neutron (proton) cross section with a minimum of 2.0×10-40 cm2 (52×10-40 cm2) at a WIMP mass of 50 GeV/c2, at 90% confidence level.
-
(2016) Physical Review D. 94, 9, 092001. Abstract
We perform a low-mass dark matter search using an exposure of 30 kg×yr with the XENON100 detector. By dropping the requirement of a scintillation signal and using only the ionization signal to determine the interaction energy, we lowered the energy threshold for detection to 0.7 keV for nuclear recoils. No dark matter detection can be claimed because a complete background model cannot be constructed without a primary scintillation signal. Instead, we compute an upper limit on the WIMP-nucleon scattering cross section under the assumption that every event passing our selection criteria could be a signal event. Using an energy interval from 0.7 keV to 9.1 keV, we derive a limit on the spin-independent WIMP-nucleon cross section that excludes WIMPs with a mass of 6 GeV/c2 above 1.4×10-41 cm2 at 90% confidence level.
-
(2016) Journal of Cosmology and Astroparticle Physics. 2016, 11, 17. Abstract
DARk matter Wimp search with liquid xenoN (DARWIN2) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs above a mass of 5 GeV/c2, such a detector with its large mass, low-energy threshold and ultra-low background level will also be sensitive to other rare interactions. It will search for solar axions, galactic axion-like particles and the neutrinoless double-beta decay of 136Xe, as well as measure the low-energy solar neutrino flux with
-
(2016) Acta Physica Polonica B. 47, 1, p. 217-223 Abstract
Dark Matter (DM) is thought to comprise the majority of matter in the universe. In these proceedings, we will briefly describe the plethora of evidence for the existence of Dark Matter, discuss alternatives in the form of changing the laws of gravitation and present some experimental efforts to discover the particle nature of the Dark Matter.
-
(2016) Journal of Cosmology and Astroparticle Physics. 2016, 4, 27. Abstract[All authors]
The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds.The total electronic recoil background in 1 tonne fiducial volume and (1, 12) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is (1.80 ± 0.15) centerdot 10−4 (kgcenterdotdaycenterdotkeV)−1, mainly due to the decay of 222Rn daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region (4, 50) keV, is composed of (0.6 ± 0.1) (tcenterdoty)−1 from radiogenic neutrons, (1.8 ± 0.3) centerdot 10−2 (tcenterdoty)−1 from coherent scattering of neutrinos, and less than 0.01 (tcenterdoty)−1 from muon-induced neutrons. The sensitivity of XENON1T is calculated with the Profile Likelihood Ratio method, after converting the deposited energy of electronic and nuclear recoils into the scintillation and ionization signals seen in the detector. We take into account the systematic uncertainties on the photon and electron emission model, and on the estimation of the backgrounds, treated as nuisance parameters. The main contribution comes from the relative scintillation efficiency Script Leff, which affects both the signal from WIMPs and the nuclear recoil backgrounds. After a 2 y measurement in 1 t fiducial volume, the sensitivity reaches a minimum cross section of 1.6 centerdot 10−47 cm2 at mχ = 50 GeV/c2.
2015
-
(2015) European Physical Journal C. 75, 11, p. 1-10 546. Abstract
The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410 has been developed by Hamamatsu for dark matter direct detection experiments using liquid xenon as the target material. We present the results from the joint effort between the XENON collaboration and the Hamamatsu company to produce a highly radio-pure photosensor (version R11410-21) for the XENON1T dark matter experiment. After introducing the photosensor and its components, we show the methods and results of the radioactive contamination measurements of the individual materials employed in the photomultiplier production. We then discuss the adopted strategies to reduce the radioactivity of the various PMT versions. Finally, we detail the results from screening 286 tubes with ultra-low background germanium detectors, as well as their implications for the expected electronic and nuclear recoil background of the XENON1T experiment.
[All authors] -
(2015) Science. 349, 6250, p. 851-854 Abstract[All authors]
Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our experiment, we exclude a variety of representative dark matter models that would induce electronic recoils. For axial-vector couplings to electrons, we exclude cross sections above 6 × 10-35 cm2 for particle masses of mχ = 2 GeV/c2. Independent of the dark matter halo, we exclude leptophilic models as an explanation for the long-standing DAMA/LIBRA signal, such as couplings to electrons through axial-vector interactions at a 4.4σ confidence level, mirror dark matter at 3.6σ, and luminous dark matter at 4.6σ.
-
(2015) Physical Review Letters. 115, 9, 091302. Abstract
We have searched for periodic variations of the electronic recoil event rate in the (26) keV energy range recorded between February 2011 and March 2012 with the XENON100 detector, adding up to 224.6 live days in total. Following a detailed study to establish the stability of the detector and its background contributions during this run, we performed an unbinned profile likelihood analysis to identify any periodicity up to 500 days. We find a global significance of less than 1σ for all periods, suggesting no statistically significant modulation in the data. While the local significance for an annual modulation is 2.8σ, the analysis of a multiple-scatter control sample and the phase of the modulation disfavor a dark matter interpretation. The DAMA/LIBRA annual modulation interpreted as a dark matter signature with axial-vector coupling of weakly interacting massive particles to electrons is excluded at 4.8σ.
2014
-
(2014) Journal of Instrumentation. 9, 11, P11006. Abstract[All authors]
XENON is a dark matter direct detection project, consisting of a time projection chamber (TPC) filled with liquid xenon as detection medium. The construction of the next generation detector, XENON1T, is presently taking place at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It aims at a sensitivity to spin-independent cross sections of 2·10-47 c 2 for WIMP masses around 50 GeV2, which requires a background reduction by two orders of magnitude compared to XENON100, the current generation detector. An active system that is able to tag muons and muon-induced backgrounds is critical for this goal. A water Cherenkov detector of ∼ 10 m height and diameter has been therefore developed, equipped with 8 inch photomultipliers and cladded by a reflective foil. We present the design and optimization study for this detector, which has been carried out with a series of Monte Carlo simulations. The muon veto will reach very high detection efficiencies for muons (>99.5%) and showers of secondary particles from muon interactions in the rock (>70%). Similar efficiencies will be obtained for XENONnT, the upgrade of XENON1T, which will later improve the WIMP sensitivity by another order of magnitude. With the Cherenkov water shield studied here, the background from muon-induced neutrons in XENON1T is negligible.
-
(2014) Physical Review D. 90, 6, 062009. Abstract[All authors]
We present the first results of searches for axions and axionlike particles with the XENON100 experiment. The axion-electron coupling constant, gAe, has been probed by exploiting the axioelectric effect in liquid xenon. A profile likelihood analysis of 224.6 live days × 34-kg exposure has shown no evidence for a signal. By rejecting gAe larger than 7.7×10-12 (90% C.L.) in the solar axion search, we set the best limit to date on this coupling. In the frame of the DFSZ and KSVZ models, we exclude QCD axions heavier than 0.3 and 80eV/c2, respectively. For axionlike particles, under the assumption that they constitute the whole abundance of dark matter in our galaxy, we constrain gAe to be lower than 1×10-12 (90% C.L.) for masses between 5 and 10keV/c2.
-
(2014) Journal Of Physics G-Nuclear And Particle Physics. 41, 3, 035201. Abstract[All authors]
The XENON100 dark matter experiment uses liquid xenon in a time projection chamber (TPC) to measure xenon nuclear recoils resulting from the scattering of dark matter weakly interacting massive particles (WIMPs). In this paper, we report the observation of single-electron charge signals which are not related to WIMP interactions. These signals, which show the excellent sensitivity of the detector to small charge signals, are explained as being due to the photoionization of impurities in the liquid xenon and of the metal components inside the TPC. They are used as a unique calibration source to characterize the detector. We explain how we can infer crucial parameters for the XENON100 experiment: the secondary-scintillation gain, the extraction yield from the liquid to the gas phase and the electron drift velocity.
-
(2014) Astroparticle Physics. 54, p. 11-24 Abstract
The XENON100 experiment, situated in the Laboratori Nazionali del Gran Sasso, aims at the direct detection of dark matter in the form of weakly interacting massive particles (WIMPs), based on their interactions with xenon nuclei in an ultra low background dual-phase time projection chamber. This paper describes the general methods developed for the analysis of the XENON100 data. These methods have been used in the 100.9 and 224.6 live days science runs from which results on spin-independent elastic, spin-dependent elastic and inelastic WIMP-nucleon cross-sections have already been reported.
[All authors]
2013
-
(2013) Journal Of Physics G-Nuclear And Particle Physics. 40, 11, 115201. Abstract[All authors]
TheXENON100 experiment, installed underground at the LaboratoriNazionali del Gran Sasso, aims to directly detect dark matter in the form of weakly interacting massive particles (WIMPs) via their elastic scattering off xenon nuclei. This paper presents a study on the nuclear recoil background of the experiment, taking into account neutron backgrounds from (?, n) reactions and spontaneous fission due to natural radioactivity in the detector and shield materials, as well as muon-induced neutrons.Based on MonteCarlo simulations and using measured radioactive contaminations of all detector components, we predict the nuclear recoil backgrounds for the WIMP search results published by theXENON100 experiment in 2011 and 2012, 0.11-0.04+0.08 events and 0.17-0.07+0.12 events, respectively, and conclude that they do not limit the sensitivity of the experiment.
-
(2013) Physical Review D. 88, 1, 012006. Abstract
Results from the nuclear recoil calibration of the XENON100 dark matter detector installed underground at the Laboratori Nazionali del Gran Sasso, Italy are presented. Data from measurements with an external AmBe241 neutron source are compared with a detailed Monte Carlo simulation which is used to extract the energy-dependent charge-yield Qy and relative scintillation efficiency Leff. A very good level of absolute spectral matching is achieved in both observable signal channels - scintillation S1 and ionization S2 - along with agreement in the two-dimensional particle discrimination space. The results confirm the validity of the derived signal acceptance in earlier reported dark matter searches of the XENON100 experiment.
[All authors] -
(2013) Physical review letters. 111, 2, 021301. Abstract[All authors]
We present new experimental constraints on the elastic, spin-dependent WIMP-nucleon cross section using recent data from the XENON100 experiment, operated in the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 224.6 live days×34 kg of exposure acquired during 2011 and 2012 revealed no excess signal due to axial-vector WIMP interactions with Xe129 and Xe131 nuclei. This leads to the most stringent upper limits on WIMP-neutron cross sections for WIMP masses above 6 GeV/c2, with a minimum cross section of 3.5×10-40 cm2 at a WIMP mass of 45 GeV/c2, at 90% confidence level.
2012
-
(2012) Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors And Associated Equipment. 695, p. 163-167 Abstract
Gaseous PhotoMultipliers (GPM) are a very promising alternative of vacuum PMTs especially for large-size noble-liquid detectors in the field of Functional Nuclear Medical Imaging and Direct Dark Matter Detection. We present recent characterization results of a Hybrid-GPM made of three Micropattern Gaseous Structures; a Thick Gaseous Electron Multiplier (THGEM), a Parallel Ionization Multiplier (PIM) and a MICROMesh GAseous Structure (MICROMEGAS), operating in Ne/CF 4 (90:10). Gain values close to 10 7 were recorded in this mixture, with 5.9 keV x-rays at 1100 mbar, both at room temperature and at that of liquid xenon (T=171 K). The results are discussed in term of scintillation detection. While the present multiplier was investigated without photocathode, complementary results of photoextraction from CsI UV-photocathodes are presented in Ne/CH 4 (95:5) and CH 4 in cryogenic conditions.
[All authors] -
(2012) Journal of Instrumentation. 7, 12, T12001. Abstract
The XENON100 experiment, in operation at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, was designed to search for evidence of dark matter interactions inside a volume of liquid xenon using a dual-phase time projection chamber. This paper describes the Slow Control System (SCS) of the experiment with emphasis on the distributed architecture as well as on its modular and expandable nature. The system software was designed according to the rules of Object-Oriented Programming and coded in Java, thus promoting code reusability and maximum flexibility during commissioning of the experiment. The SCS has been continuously monitoring the XENON100 detector since mid 2008, remotely recording hundreds of parameters on a few dozen instruments in real time, and setting emergency alarms for the most important variables.
[All authors] -
(2012) Physical review letters. 109, 18, 181301. Abstract[All authors]
We report on a search for particle dark matter with the XENON100 experiment, operated at the Laboratori Nazionali del Gran Sasso for 13 months during 2011 and 2012. XENON100 features an ultralow electromagnetic background of (5.3±0.6)×10 -3events/(keV ee× kg×day) in the energy region of interest. A blind analysis of 224.6live days×34kg exposure has yielded no evidence for dark matter interactions. The two candidate events observed in the predefined nuclear recoil energy range of 6.6-30.5keV nr are consistent with the background expectation of (1.0±0.2) events. A profile likelihood analysis using a 6.6-43.3keV nr energy range sets the most stringent limit on the spin-independent elastic weakly interacting massive particle-nucleon scattering cross section for weakly interacting massive particle masses above 8GeV/c2, with a minimum of 2×10 -45cm2 at 55GeV/c2 and 90% confidence level.
2011
-
(2011) Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors And Associated Equipment. 639, 1, p. 117-120 Abstract[All authors]
The properties of UV-photon imaging detectors consisting of CsI-coated THGEM electron multipliers are summarized. New results related to detection of Cherenkov light (RICH) and scintillation photons in noble-liquid are presented.
-
(2011) Journal of Instrumentation. 6, 4, P04007. Abstract
Operation results are presented of a UV-sensitive gaseous photomultiplier (GPM) coupled through a MgF2 window to a liquid-xenon scintillator. It consisted of a reflective CsI photocathode deposited on top of a THick Gaseous Electron Multiplier (THGEM); further multiplication stages were either a second THGEM or a Parallel Ionization Multiplier (PIM) followed by a MICROMEsh GAseous Structure (MICROMEGAS). The GPM operated in gas-flow mode with non-condensable gas mixtures. Gains of 104 were measured with a CsI-coated double-THGEM detector in Ne/CH4(95:5), Ne/CF 4(95:5) and Ne/CH4/CF4 (90:5:5), with soft X-rays at 173 K. Scintillation signals induced by alpha particles in liquid xenon were measured here for the first time with a double-THGEM GPM in He/CH4(92.5:7.5) and a triple-structure THGEM/PIM/MICROMEGAS GPM in Ne/CH4(90:10) with a fast-current preamplifier.
[All authors]
2010
-
(2010) Astrophysical Journal. 725, 1, p. 63-90 Abstract
The structure of relativistic radiation mediated shocks (RRMSs) propagating into a cold electron-proton plasma is calculated and analyzed. A qualitative discussion of the physics of relativistic and non-relativistic shocks, including order of magnitude estimates for the relevant temperature and length scales, is presented. Detailed numerical solutions are derived for shock Lorentz factors Τu in the range 6 ≤ Τu ≤ 30, using a novel iteration technique solving the hydrodynamics and radiation transport equations (the protons, electrons, and positrons are argued to be coupled by collective plasma processes and are treated as a fluid). The shock transition (deceleration) region, where the Lorentz factor Τ drops from Τu to ∼1, is characterized by high plasma temperatures T ∼ Τmec2 and highly anisotropic radiation, with characteristic shock-frame energy of upstream (US) and downstream (DS) going photons of a few ×mec2 and ∼Τ2m ec2, respectively. Photon scattering is dominated by e± pairs, with the pair-to-proton density ratio reaching ≈102Τu. The width of the deceleration region, in terms of Thomson optical depths for US-going photons, is large, Δτ ∼ Τ2 u (Δτ ∼ 1 neglecting the contribution of pairs) due to Klein-Nishina suppression of the scattering cross section. A high-energy photon component, narrowly beamed in the DS direction, with a nearly flat power-law-like spectrum, νIν∞ν0, and an energy cutoff at ∼Τ2umec 2 carries a fair fraction of the energy flux at the end of the deceleration region. An approximate analytic model of RRMS, reproducing the main features of the numerical results, is provided.
-
(2010) Astrophysical Journal. 716, 1, p. 781-791 Abstract
We present a simple analytic model for the structure of non-relativistic and relativistic radiation mediated shocks. At shock velocities βs ≡ vs /c ≳ 0.1, the shock transition region is far from thermal equilibrium since the transition crossing time is too short for the production of a blackbody photon density (by bremsstrahlung emission). In this region, electrons and photons (and positrons) are in Compton (pair) equilibrium at temperatures Ts significantly exceeding the far downstream temperature, Ts ≫ Td≈ 2(εn u3 c 3)1/4. Ts ≳ 10keV is reached at shock velocities βs 0.2. At higher velocities, βs ≳ 0.6, the plasma is dominated in the transition region by e pairs and 60keV ≲ Ts ≲ 200keV. We argue that the spectrum emitted during the breaking out of supernova (SN) shocks from the stellar envelopes (or the surrounding winds) of blue supergiants and Wolf-Rayet stars, which reach βs>0.1 for reasonable stellar parameters, may include a hard component with photon energies reaching tens or even hundreds of keV. Our breakout analysis is restricted to temperatures T s ≲ 50keV corresponding to photon energies hν ≲ 150keV, where pair creation can be neglected. This may account for the X-ray outburst associated with SN2008D, and possibly for other SN-associated outbursts with spectra not extending beyond few 100keV (e.g., XRF060218/SN2006aj).
2009
-
(2009) Journal of Cosmology and Astroparticle Physics. 2009, 3, 020. Abstract
We derive simple analytic expressions for the flux and spectrum of ultra-high energy cosmic-rays (UHECRs) predicted in models where the CRs are protons produced by extra-Galactic sources. For a power-law scaling of the CR production rate with redshift and energy, d/d -α(1+z) m, our results are accurate at high energy, 10 {18.7} $">10 18.7eV, to better than 15%, providing a simple and straightforward method for inferring d/d() from the observed flux at . We show that current measurements of the UHECR spectrum, including the latest Auger data, imply 2d/d(z = 0) = (0.450.15)(α-1)×10 44ergMpc -3yr -1 at 10 {19.5}\text{eV} $" >10 19.5eV with α roughly confined to 2α
2008
-
(2008) Astrophysical Journal. 673, 2, p. 928-933 Abstract
We derive constraints that must be satisfied by the sources of ∼10 15 to ∼1018eV cosmic rays, under the assumption that the sources are Galactic. We show that while these constraints are not satisfied by ordinary supernovae (SNe), which are believed to be the sources of ≲1015 eV cosmic rays, they may be satisfied by the recently discovered class of transrelativistic supernovae (TRSNe), which were observed in association with gamma-ray bursts. We define TRSNe as SNe that deposit a large fraction, fR > 10-2, of their kinetic energy in mildly relativistic, γβ > 1, ejecta. The high-velocity ejecta enable particle acceleration to ∼1018 eV, and the large value of f R (compared to fR ∼ 10-7 for ordinary SNe) ensures that if TRSNe produce the observed ∼1018 eV cosmic-ray flux, they do not overproduce the flux at lower energies. This, combined with the estimated rate and energy production of TRSNe, imply that Galactic TRSNe may be the sources of cosmic rays with energies up to ∼1018 eV.