Publications
-
40.(2023) Current Opinion in Structural Biology. 83, 102724. Abstract
Allostery is probably the most important concept in the regulation of cellular processes. Models to explain allostery are plenty. Each sheds light on different aspects but their entirety conveys an ambiguous feeling of comprehension and disappointment. Here, I discuss the most popular allostery models, their roots, similarities, and limitations. All of them are thermodynamic models. Naturally this bears a certain degree of redundancy, which forms the center of this review. After sixty years, many questions remain unanswered, mainly because our human longing for causality as base for understanding is not satisfied by thermodynamics alone. A description of allostery in terms of pathways, i.e., as a temporal chain of events, has been-, and still is-, a missing piece of the puzzle.
-
39.(2023) European Physical Journal E. 46, 12, 133. Abstract
Internal friction is a major contribution to the dynamics of intrinsically disordered proteins (IDPs). Yet, the molecular origin of internal friction has so far been elusive. Here, we investigate whether attractive electrostatic interactions in IDPs modulate internal friction differently than the hydrophobic effect. To this end, we used nanosecond fluorescence correlation spectroscopy (nsFCS) and single-molecule Förster resonance energy transfer (FRET) to quantify the conformation and dynamics of the disordered DNA-binding domains Myc, Max and Mad at different salt concentrations. We find that internal friction effects are stronger when the chain is compacted by electrostatic attractions compared to the hydrophobic effect. Although the effect is moderate, the results show that the heteropolymeric nature of IDPs is reflected in their dynamics.
-
38.(2023) Biophysical Reports. 3, 3, 100116. Abstract
Quantifying biomolecular dynamics has become a major task of single-molecule fluorescence spectroscopy methods. In single-molecule Förster resonance energy transfer (smFRET), kinetic information is extracted from the stream of photons emitted by attached donor and acceptor fluorophores. Here, we describe a time-resolved version of burst variance analysis that can quantify kinetic rates at microsecond to millisecond timescales in smFRET experiments of diffusing molecules. Bursts are partitioned into segments with a fixed number of photons. The FRET variance is computed from these segments and compared with the variance expected from shot noise. By systematically varying the segment size, dynamics at different timescales can be captured. We provide a theoretical framework to extract kinetic rates from the decay of the FRET variance with increasing segment size. Compared to other methods such as filtered fluorescence correlation spectroscopy, recurrence analysis of single particles, and two-dimensional lifetime correlation spectroscopy, fewer photons are needed to obtain reliable timescale estimates, which reduces the required measurement time.
-
37.(2021) Chembiochem : a European journal of chemical biology. 22, 17, p. 2657-2671 Abstract
Uncovering the structure and function of biomolecules is a fundamental goal in structural biology. Membrane-embedded transport proteins are ubiquitous in all kingdoms of life. Despite structural flexibility, their mechanisms are typically studied by ensemble biochemical methods or by static high-resolution structures, which complicate a detailed understanding of their dynamics. Here, we review the recent progress of single molecule Förster Resonance Energy Transfer (smFRET) in determining mechanisms and timescales of substrate transport across membranes. These studies do not only demonstrate the versatility and suitability of state-of-the-art smFRET tools for studying membrane transport proteins but they also highlight the importance of membrane mimicking environments in preserving the function of these proteins. The current achievements advance our understanding of transport mechanisms and have the potential to facilitate future progress in drug design.
-
36.(2021) Proceedings of the National Academy of Sciences. 118, 37, e210669011. Abstract
Intrinsically disordered proteins often form dynamic complexes with their ligands. Yet, the speed and amplitude of these motions are hidden in classical binding kinetics. Here, we directly measure the dynamics in an exceptionally mobile, high-affinity complex. We show that the disordered tail of the cell adhesion protein E-cadherin dynamically samples a large surface area of the protooncogene β-catenin. Single-molecule experiments and molecular simulations resolve these motions with high resolution in space and time. Contacts break and form within hundreds of microseconds without a dissociation of the complex. The energy landscape of this complex is rugged with many small barriers (3 to 4 kBT) and reconciles specificity, high affinity, and extreme disorder. A few persistent contacts provide specificity, whereas unspecific interactions boost affinity.
-
35.(2021) Proceedings of the National Academy of Sciences. 118, 28, e210114411. Abstract
Dynamin is a protein that is a central player in endocytosis, a process that mediates the entry of diverse particles into cells, from nutrients to viruses. Dynamins primary activity is to use guanosine triphosphate as fuel to constrict and cut membrane tubes. Key quantitative aspects of its function remain yet unclear. In this work, we determine the strength of an individual dynamin motor. Then, by building a detailed computational model resolving individual motors, we demonstrate that dynamin produces sufficient force to tightly constrict a membrane tube when most of its motors are simultaneously cooperating. Hence, we quantitatively validate the prevailing constriction-by-ratchet model for natures strongest torque-generating motor: the dynamin \u201cnanomuscle.\u201dDynamin oligomerizes into helical filaments on tubular membrane templates and, through constriction, cleaves them in a GTPase-driven way. Structural observations of GTP-dependent cross-bridges between neighboring filament turns have led to the suggestion that dynamin operates as a molecular ratchet motor. However, the proof of such mechanism remains absent. Particularly, it is not known whether a powerful enough stroke is produced and how the motor modules would cooperate in the constriction process. Here, we characterized the dynamin motor modules by single-molecule Förster resonance energy transfer (smFRET) and found strong nucleotide-dependent conformational preferences. Integrating smFRET with molecular dynamics simulations allowed us to estimate the forces generated in a power stroke. Subsequently, the quantitative force data and the measured kinetics of the GTPase cycle were incorporated into a model including both a dynamin filament, with explicit motor cross-bridges, and a realistic deformable membrane template. In our simulations, collective constriction of the membrane by dynamin motor modules, based on the ratchet mechanism, is directly reproduced and analyzed. Functional parallels between the dynamin system and actomyosin in the muscle are seen. Through concerted action of the motors, tight membrane constriction to the hemifission radius can be reached. Our experimental and computational study provides an example of how collective motor action in megadalton molecular assemblies can be approached and explicitly resolved.
-
34.(2021) The Journal of Physical Chemistry B. 125, 23, p. 6144-6153 Abstract
The thermal motion of charged proteins causes randomly fluctuating electric fields inside cells. According to the fluctuation-dissipation theorem, there is an additional friction force associated with such fluctuations. However, the impact of these fluctuations on the diffusion and dynamics of proteins in the cytoplasm is unclear. Here, we provide an order-of-magnitude estimate of this effect by treating electric field fluctuations within a generalized Langevin equation model with a time-dependent friction memory kernel. We find that electric friction is generally negligible compared to solvent friction. However, a significant slowdown of protein diffusion and dynamics is expected for biomolecules with high net charges such as intrinsically disordered proteins and RNA. The results show that direct contacts between biomolecules in a cell are not necessarily required to alter their dynamics.
-
33.(2021) Nature Communications. 12, 2967. Abstract
Allostery is a pervasive principle to regulate protein function. Growing evidence suggests that also DNA is capable of transmitting allosteric signals. Yet, whether and how DNA-mediated allostery plays a regulatory role in gene expression remained unclear. Here, we show that DNA indeed transmits allosteric signals over long distances to boost the binding cooperativity of transcription factors. Phenotype switching in Bacillus subtilis requires an all-or-none promoter binding of multiple ComK proteins. We use single-molecule FRET to demonstrate that ComK-binding at one promoter site increases affinity at a distant site. Cryo-EM structures of the complex between ComK and its promoter demonstrate that this coupling is due to mechanical forces that alter DNA curvature. Modifications of the spacer between sites tune cooperativity and show how to control allostery, which allows a fine-tuning of the dynamic properties of genetic circuits.
-
32.(2021) eLife. 10, Abstract
The microtubule-associated protein, tau, is the major subunit of neurofibrillary tangles associated with neurodegenerative conditions, such as Alzheimer's disease. In the cell, however, tau aggregation can be prevented by a class of proteins known as molecular chaperones. While numerous chaperones are known to interact with tau, though, little is known regarding the mechanisms by which these prevent tau aggregation. Here, we describe the effects of ATP-independent Hsp40 chaperones, DNAJA2 and DNAJB1, on tau amyloid-fiber formation, and compare these to the small heat-shock protein HSPB1. We find that the chaperones play complementary roles, with each preventing tau aggregation differently and interacting with distinct sets of tau species. Whereas HSPB1 only binds tau monomers, DNAJB1 and DNAJA2 recognize aggregation-prone conformers and even mature fibers. In addition, we find that both Hsp40s bind tau seeds and fibers via their C-terminal domain II (CTDII), with DNAJA2 being further capable of recognizing tau monomers by a second, distinct site in CTDI. These results lay out the mechanisms by which the diverse members of the Hsp40 family counteract the formation and propagation of toxic tau aggregates, and highlight the fact that chaperones from different families/classes play distinct, yet complementary roles in preventing pathological protein aggregation.
-
31.(2020) Angewandte Chemie - International Edition. 59, 43, p. 19121-19128 Abstract
Membrane proteins require lipid bilayers for function. While lipid compositions reach enormous complexities, high-resolution structures are usually obtained in artificial detergents. To understand whether and how lipids guide membrane protein function, we use single-molecule FRET to probe the dynamics of DtpA, a member of the proton-coupled oligopeptide transporter (POT) family, in various lipid environments. We show that detergents trap DtpA in a dynamic ensemble with cytoplasmic opening. Only reconstitutions in more native environments restore cooperativity, allowing an opening to the extracellular side and a sampling of all relevant states. Bilayer compositions tune the abundance of these states. A novel state with an extreme cytoplasmic opening is accessible in bilayers with anionic head groups. Hence, chemical diversity of membranes translates into structural diversity, with the current POT structures only sampling a portion of the full structural space.
-
30.(2019) Proceedings of the National Academy of Sciences of the United States of America. 116, 39, p. 19506-19512 Abstract
Structural disorder is widespread in regulatory protein networks. Weak and transient interactions render disordered proteins particularly sensitive to fluctuations in solution conditions such as ion and crowder concentrations. How this sensitivity alters folding coupled binding reactions, however, has not been fully understood. Here, we demonstrate that salt jointly modulates polymer properties and binding affinities of 5 disordered proteins from a transcription factor network. A combination of single-molecule Forster resonance energy transfer experiments, polymer theory, and molecular simulations shows that all 5 proteins expand with increasing ionic strengths due to Debye-Htickel charge screening. Simultaneously, pairwise affinities between the proteins increase by an order of magnitude within physiological salt limits. A quantitative analysis shows that 50% of the affinity increase can be explained by changes in the disordered state. Disordered state properties therefore have a functional relevance even if these states are not directly involved in biological functions. Numerical solutions of coupled binding equilibria with our results show that networks of homologous disordered proteins can function surprisingly robustly in fluctuating cellular environments, despite the sensitivity of its individual proteins.
-
29.(2018) Journal of Physical Chemistry B. 122, 49, p. 11478-11487 Abstract
Protein dynamics often exhibit internal friction; i.e., contributions to friction that cannot solely be attributed to the viscosity of the solvent. Remarkably, even unfolded and intrinsically disordered proteins (IDPs) exhibit this behavior, despite typically being solvent exposed. Several competing molecular mechanisms have been suggested to underlie this phenomenon, in particular dihedral relaxation and intrachain interactions. It has also recently been shown that single-molecule data reflecting internal friction in the disordered protein ACTR cannot be explained using polymer models unless this friction is dependent on protein collapse. However, the connection between the collapse of the chain and the underlying mechanism of internal friction has been unclear. To address this issue, we combine molecular simulation and single molecule experimental data to investigate how chain compaction affects protein dynamics in the context of ACTR. Chain reconfiguration times and internal friction estimated from all-atom simulations are in semiquantitative agreement with experimental data. We dissect the underlying molecular mechanism with all-atom and coarse-grained simulations and clearly identify both intrachain interactions and dihedral angle transitions as contributions to internal friction. However, their relative contribution is strongly dependent on the compactness of the IDP; while dihedral relaxation dominates internal friction in expanded configurations, intrachain interactions dominate for more compact chains. Our results thus imply a continuous transition between mechanisms and provide a link between internal friction in IDPs and that in more compact and folded states of proteins.
-
28.(2018) Journal of Physical Chemistry B. 122, 49, p. 11460-11467 Abstract
Quantifying the stability of intermediates along parallel molecular pathways is often hampered by the limited experimental resolution of ensemble methods. In biology, however, such intermediates may represent important regulatory targets, thus calling for strategies to map their abundance directly. Here, we use single-molecule Forster resonance energy transfer (FRET) to quantify the occupancies of intermediates along two parallel DNA-binding pathways of the basic helix-loop-helix leucine-zipper (bHLH-LZ) domains of the transcription factors c-Myc and Max. We find that both proteins are intrinsically disordered with sub-microsecond end-to-end distance dynamics. In mixtures of the proteins with their promoter DNA, our experiments identify the disordered conformers, the folded Myc-Max dimer, and ternary Myc-Max-DNA complexes. However, signatures of the intermediate along the alternative pathway, i.e., one domain bound to DNA, remained undetectable. This implies that disordered Max-DNA and Myc-DNA complexes are by at least 6 k(B)T higher in free energy than folded dimers of Myc and Max. The disordered monomer-DNA complex is therefore unlikely to be of importance for the regulation of transcriptional processes.
-
27.(2018) Science. 361, 6405, eaar7101. Abstract[All authors]
Riback et al. (Reports, 13 October 2017, p. 238) used small-angle x-ray scattering (SAXS) experiments to infer a degree of compaction for unfolded proteins in water versus chemical denaturant that is highly consistent with the results from Förster resonance energy transfer (FRET) experiments. There is thus no \u201ccontradiction\u201d between the two methods, nor evidence to support their claim that commonly used FRET fluorophores cause protein compaction.
-
26.(2018) Proceedings of the National Academy of Sciences of the United States of America. 115, 3, p. 513-518 Abstract
Protein dynamics are typically captured well by rate equations that predict exponential decays for two-state reactions. Here, we describe a remarkable exception. The electron-transfer enzyme quiescin sulfhydryl oxidase (QSOX), a natural fusion of two functionally distinct domains, switches between open- and closed-domain arrangements with apparent power-law kinetics. Using single-molecule FRET experiments on time scales from nanoseconds to milliseconds, we show that the unusual openclose kinetics results from slow sampling of an ensemble of disordered domain orientations. While substrate accelerates the kinetics, thus suggesting a substrate-induced switch to an alternative free energy landscape of the enzyme, the power-law behavior is also preserved upon electron load. Our results show that the slow sampling of open conformers is caused by a variety of interdomain interactions that imply a rugged free energy landscape, thus providing a generic mechanism for dynamic disorder in multidomain enzymes.
-
25.Internal friction in an intrinsically disordered proteinComparing Rouse-like models with experiments
Internal friction is frequently found in protein dynamics. Its molecular origin however is difficult to conceptualize. Even unfolded and intrinsically disordered polypeptide chains exhibit signs of internal friction despite their enormous solvent accessibility. Here, we compare four polymer theories of internal friction with experimental results on the intrinsically disordered protein ACTR (activator of thyroid hormone receptor). Using nanosecond fluorescence correlation spectroscopy combined with single-molecule Förster resonance energy transfer (smFRET), we determine the time scales of the diffusive chain dynamics of ACTR at different solvent viscosities and varying degrees of compaction. Despite pronounced differences between the theories, we find that all models can capture the experimental viscosity-dependence of the chain relaxation time. In contrast, the observed slowdown upon chain collapse of ACTR is not captured by any of the theories and a mechanistic link between chain dimension and internal friction is still missing, implying that the current theories are incomplete. In addition, a discrepancy between early results on homopolymer solutions and recent single-molecule experiments on unfolded and disordered proteins suggests that internal friction is likely to be a composite phenomenon caused by a variety of processes.
-
24.(2017) Nanotechnology. 28, 11, p. 1-14 114002. Abstract
Single-molecule fluorescence spectroscopy is a powerful approach for probing biomolecular structure and dynamics, including protein folding. For the investigation of nonequilibrium kinetics, Förster resonance energy transfer combined with confocal multiparameter detection has proven particularly versatile, owing to the large number of observables and the broad range of accessible timescales, especially in combination with rapid microfluidic mixing. However, a comprehensive kinetic analysis of the resulting time series of transfer efficiency histograms and complementary observables can be challenging owing to the complexity of the data. Here we present and compare three different methods for the analysis of such kinetic data: singular value decomposition, multivariate curve resolution with alternating least square fitting, and model-based peak fitting, where an explicit model of both the transfer efficiency histogram of each species and the kinetic mechanism of the process is employed. While each of these methods has its merits for specific applications, we conclude that model-based peak fitting is most suitable for a quantitative analysis and comparison of kinetic mechanisms.
-
23.(2016) Methods and Applications in Fluorescence. 4, 4, p. 42003 Abstract
Understanding protein folding and the functional properties of intrinsically disordered proteins (IDPs) requires detailed knowledge of the forces that act in polypeptide chains. These forces determine the dimensions and dynamics of unfolded and disordered proteins and have been suggested to impact processes such as the coupled binding and folding of IDPs, or the rate of protein folding reactions. Much of the progress in understanding the physical and chemical properties of unfolded and intrinsically disordered polypeptide chains has been made possible by the recent developments in single-molecule fluorescence techniques. However, the interpretation of the experimental results requires concepts from polymer physics in order to be understood. Here, I review some of the theories used to describe the dimensions of unfolded polypeptide chains under varying solvent conditions together with their more recent application to experimental data.
-
22.(2016) J Am Chem Soc. 138, 36, p. 11714-11726 Abstract
There has been a long-standing controversy regarding the effect of chemical denaturants on the dimensions of unfolded and intrinsically disordered proteins: A wide range of experimental techniques suggest that polypeptide chains expand with increasing denaturant concentration, but several studies using small-angle X-ray scattering (SAXS) have reported no such increase of the radius of gyration (Rg). This inconsistency challenges our current understanding of the mechanism of chemical denaturants, which are widely employed to investigate protein folding and stability. Here, we use a combination of single-molecule Förster resonance energy transfer (FRET), SAXS, dynamic light scattering (DLS), and two-focus fluorescence correlation spectroscopy (2f-FCS) to characterize the denaturant dependence of the unfolded state of the spectrin domain R17 and the intrinsically disordered protein ACTR in two different denaturants. Standard analysis of the primary data clearly indicates an expansion of the unfolded state with increasing denaturant concentration irrespective of the protein, denaturant, or experimental method used. This is the first case in which SAXS and FRET have yielded even qualitatively consistent results regarding expansion in denaturant when applied to the same proteins. To more directly illustrate this self-consistency, we used both SAXS and FRET data in a Bayesian procedure to refine structural ensembles representative of the observed unfolded state. This analysis demonstrates that both of these experimental probes are compatible with a common ensemble of protein configurations for each denaturant concentration. Furthermore, the resulting ensembles reproduce the trend of increasing hydrodynamic radius with denaturant concentration obtained by 2f-FCS and DLS. We were thus able to reconcile the results from all four experimental techniques quantitatively, to obtain a comprehensive structural picture of denaturant-induced unfolded state expansion, and to identify the most likely sources of earlier discrepancies.
[All authors] -
21.(2016) Annual Review of Biophysics. 45, p. 207-231 Abstract
The properties of unfolded proteins have long been of interest because of their importance to the protein folding process. Recently, the surprising prevalence of unstructured regions or entirely disordered proteins under physiological conditions has led to the realization that such intrinsically disordered proteins can be functional even in the absence of a folded structure. However, owing to their broad conformational distributions, many of the properties of unstructured proteins are difficult to describe with the established concepts of structural biology. We have thus seen a reemergence of polymer physics as a versatile framework for understanding their structure and dynamics. An important driving force for these developments has been single-molecule spectroscopy, as it allows structural heterogeneity, intramolecular distance distributions, and dynamics to be quantified over a wide range of timescales and solution conditions. Polymer concepts provide an important basis for relating the physical properties of unstructured proteins to folding and function.
-
20.(2016) Nature Chemical Biology. 12, 8, p. 576-577 Abstract
Hsp90 is an energy-consuming molecular chaperone that activates oncogenic proteins in a complicated multi-step reaction. Photoinduced electron transfer (PET) quenching experiments with a fluorescent reporter have now identified molecular transitions at multiple timescales in the chaperone cycle of Hsp90.
-
19.(2015) Nature Communications. 6, 8624. Abstract
The ability to query enzyme molecules individually is transforming our view of catalytic mechanisms. Quiescin sulfhydryl oxidase (QSOX) is a multidomain catalyst of disulfide-bond formation that relays electrons from substrate cysteines through two redox-active sites to molecular oxygen. The chemical steps in electron transfer have been delineated, but the conformational changes accompanying these steps are poorly characterized. Here we use single-molecule Förster resonance energy transfer (smFRET) to probe QSOX conformation in resting and cycling enzyme populations. We report the discovery of unanticipated roles for conformational changes in QSOX beyond mediating electron transfer between redox-active sites. In particular, a state of the enzyme not previously postulated or experimentally detected is shown to gate, via a conformational transition, the entrance into a sub-cycle within an expanded QSOX kinetic scheme. By tightly constraining mechanistic models, smFRET data can reveal the coupling between conformational and chemical transitions in complex enzymatic cycles.
-
18.Quantitative Interpretation of FRET Experiments via Molecular Simulation: Force Field and Validation
Abstract Molecular simulation is a valuable and complementary tool that may assist with the interpretation of single-molecule Förster resonance energy transfer (FRET) experiments, if the energy function is of sufficiently high quality. Here we present force-field parameters for one of the most common pairs of chromophores used in experiments, AlexaFluor 488 and 594. From microsecond molecular-dynamics simulations, we are able to recover both experimentally determined equilibrium constants and association/dissociation rates of the chromophores with free tryptophan, as well as the decay of fluorescence anisotropy of a labeled protein. We find that it is particularly important to obtain a correct balance of solute-water interactions in the simulations in order to faithfully capture the experimental anisotropy decays, which provide a sensitive benchmark for fluorophore mobility. Lastly, by a combination of experiment and simulation, we address a potential complication in the interpretation of experiments on polyproline, used as a molecular ruler for FRET experiments, namely the potential association of one of the chromophores with the polyproline helix. Under conditions where simulations accurately capture the fluorescence anisotropy decay, we find at most a modest, transient population of conformations in which the chromophores associate with the polyproline. Explicit calculation of FRET transfer efficiencies for short polyprolines yields results in good agreement with experiment. These results illustrate the potential power of a combination of molecular simulation and experiment in quantifying biomolecular dynamics.
-
17.(2014) Proceedings of the National Academy of Sciences of the United States of America. 111, 37, p. 13355-13360 Abstract
Molecular chaperones are an essential part of the machinery that avoids protein aggregation and misfolding in vivo. However, understanding the molecular basis of how chaperones prevent such undesirable interactions requires the conformational changes within substrate proteins to be probed during chaperone action. Here we use single-molecule fluorescence spectroscopy to investigate how the DnaJ-DnaK chaperone system alters the conformational distribution of the denatured substrate protein rhodanese. We find that in a first step the ATP-independent binding of DnaJ to denatured rhodanese results in a compact denatured ensemble of the substrate protein. The following ATP-dependent binding of multiple DnaK molecules, however, leads to a surprisingly large expansion of denatured rhodanese. Molecular simulations indicate that hard-core repulsion between the multiple DnaK molecules provides the underlying mechanism for disrupting even strong interactions within the substrate protein and preparing it for processing by downstream chaperone systems.
-
16.(2014) Biological Chemistry. 395, 7-8, p. 689-698 Abstract
In the past decade, single-molecule fluorescence techniques provided important insights into the structure and dynamics of proteins. In particular, our understanding of the heterogeneous conformational ensembles of unfolded and intrinsically disordered proteins (IDPs) improved substantially by a combination of FRET-based single-molecule techniques with concepts from polymer physics. A complete knowledge of the forces that act in unfolded polypeptide chains will not only be important to understand the initial steps of protein folding reactions, but it will also be crucial to rationalize the coupling between ligand-binding and folding of IDPs, and the interaction of denatured proteins with molecular chaperones in the crowded cellular environment. Here, I give a personalized review of some of the key findings from my own research that contributed to a more quantitative understanding of unfolded proteins and their interactions with molecular chaperones.
-
15.(2014) Proceedings of the National Academy of Sciences of the United States of America. 111, 13, p. 4874-4879 Abstract
Intrinsically disordered proteins (IDPs) are involved in a wide range of regulatory processes in the cell. Owing to their flexibility, their conformations are expected to be particularly sensitive to the crowded cellular environment. Here we use single-molecule Förster resonance energy transfer to quantify the effect of crowding as mimicked by commonly used biocompatible polymers. We observe a compaction of IDPs not only with increasing concentration, but also with increasing size of the crowding agents, at variance with the predictions from scaled-particle theory, the prevalent paradigm in the field. However, the observed behavior can be explained quantitatively if the polymeric nature of both the IDPs and the crowding molecules is taken into account explicitly. Our results suggest that excluded volume interactions between overlapping biopolymers and the resulting criticality of the system can be essential contributions to the physics governing the crowded cellular milieu.
-
14.(2014) Proceedings of the National Academy of Sciences of the United States of America. 111, 14, p. 5213-5218 Abstract
For disordered proteins, the dimensions of the chain are an important property that is sensitive to environmental conditions. We have used single-molecule Förster resonance energy transfer to probe the temperature-induced chain collapse of five unfolded or intrinsically disordered proteins. Because this behavior is sensitive to the details of intrachain and chain-solvent interactions, the collapse allows us to probe the physical interactions governing the dimensions of disordered proteins. We find that each of the proteins undergoes a collapse with increasing temperature, with the most hydrophobic one, λ-repressor, undergoing a reexpansion at the highest temperatures. Although such a collapse might be expected due to the temperature dependence of the classical hydrophobic effect, remarkably we find that the largest collapse occurs for the most hydrophilic, charged sequences. Using a combination of theory and simulation, we show that this result can be rationalized in terms of the temperature-dependent solvation free energies of the constituent amino acids, with the solvation properties of the most hydrophilic residues playing a large part in determining the collapse.
-
13.(2014) Biophysical Journal. 107, 12, p. 2891-2902 Abstract
The bacterial chaperonin GroEL/GroES assists folding of a broad spectrum of denatured and misfolded proteins. Here, we explore the limits of this remarkable promiscuity by mapping two denatured proteins with very different conformational properties, rhodanese and cyclophilin A, during binding and encapsulation by GroEL/GroES with single-molecule spectroscopy, microfluidic mixing, and ensemble kinetics. We find that both proteins bind to GroEL with high affinity in a reaction involving substantial conformational adaptation. However, whereas the compact denatured state of rhodanese is encapsulated efficiently upon addition of GroES and ATP, the more expanded and unstructured denatured cyclophilin A is not encapsulated but is expelled into solution. The origin of this surprising disparity is the weaker interactions of cyclophilin A with a transiently formed GroEL-GroES complex, which may serve as a crucial checkpoint for substrate discrimination.
-
12.(2013) Journal of Chemical Physics. 139, 12, 121930. Abstract
The dimensions of intrinsically disordered and unfolded proteins critically depend on the solution conditions, such as temperature, pH, ionic strength, and osmolyte or denarurant concentration. However, a quantitative understanding of how the complex combination of chain-chain and chain-solvent interactions is affected by the solvent is still missing. Here, we take a step towards this goal by investigating the combined effect of pH and denaturants on the dimensions of an unfolded protein. We use single-molecule fluorescence spectroscopy to extract the dimensions of unfolded cold shock protein (CspTm) in mixtures of the denaturants urea and guanidinium chloride (GdmCl) at neutral and acidic pH. Surprisingly, even though a change in pH from 7 to 2.9 increases the net charge of CspTm from -3.8 to +10.2, the radius of gyration of the chain is very similar under both conditions, indicating that protonation of acidic side chains at low pH results in additional hydrophobic interactions. We use a simple shared binding site model that describes the joint effect of urea and GdmCl, together with polyampholyte theory and an ion cloud model that includes the chemical free energy of counterion interactions and side chain protonation, to quantify this effect.
-
11.(2013) Journal of the American Chemical Society. 135, 38, p. 14040-14043 Abstract
Recent Forster resonance energy transfer (FRET) experiments show that heat-unfolded states of proteins become more compact with increasing temperature. At the same time, NMR results indicate that cold-denatured proteins are more expanded than heat-denatured proteins. To clarify the connection between these observations, we investigated the unfolded state of yeast frataxin, whose cold denaturation occurs at temperatures above 273 K, with single-molecule FRET. This method allows the unfolded state dimensions to be probed not only in the cold- and heat-denatured range but also in between, i.e., in the presence of folded protein, and can thus be used to link the two regimes directly. The results show a continuous compaction of unfolded frataxin from 274 to 320 K, with a slight re-expansion at higher temperatures. Cold- and heat-denatured states are thus essentially two sides of the same coin, and their behavior can be understood within the framework of the overall temperature dependence of the unfolded state dimensions.
-
10.(2013) Nature protocols. 8, 8, p. 1459-1474 Abstract
Microfluidic mixing in combination with single-molecule spectroscopy allows the investigation of complex biomolecular processes under non-equilibrium conditions. Here we present a protocol for building, installing and operating microfluidic mixing devices optimized for this purpose. The mixer is fabricated by replica molding with polydimethylsiloxane (PDMS), which allows the production of large numbers of devices at a low cost using a single microfabricated silicon mold. The design is based on hydrodynamic focusing combined with diffusive mixing and allows single-molecule kinetics to be recorded over five orders of magnitude in time, from 1 ms to ∼100 s. Owing to microfabricated particle filters incorporated in the inlet channels, the devices provide stable flow for many hours to days without channel blockage, which allows reliable collection of high-quality data. Modular design enables rapid exchange of samples and mixing devices, which are mounted in a specifically designed holder for use with a confocal microscopy detection system. Integrated Peltier elements provide temperature control from 4 to 37C. The protocol includes the fabrication of a silicon master, production of the microfluidic devices, instrumentation setup and data acquisition. Once a silicon master is available, devices can be produced and experiments started within ∼1 d of preparation. We demonstrate the performance of the system with single-molecule Förster resonance energy transfer (FRET) measurements of kinetics of protein folding and conformational changes. The dead time of 1 ms, as predicted from finite element calculations, was confirmed by the measurements.
-
9.(2013) Current Opinion in Structural Biology. 23, 1, p. 36-47 Abstract
Single-molecule spectroscopy has developed into an important method for probing protein structure and dynamics, especially in structurally heterogeneous systems. A broad range of questions in the diversifying field of protein folding have been addressed with single-molecule Förster resonance energy transfer (FRET) and photo-induced electron transfer (PET). Building on more than a decade of rapid method development, these techniques can now be used to investigate a wide span of timescales, an aspect that we focus on in this review. Important current topics range from the structure and dynamics of unfolded and intrinsically disordered proteins, including the coupling of folding and binding, to transition path times, the folding and misfolding of larger proteins, and their interactions with molecular chaperones.
-
8.(2012) Proceedings of the National Academy of Sciences of the United States of America. 109, 40, p. 16155-16160 Abstract
The dimensions of unfolded and intrinsically disordered proteins are highly dependent on their amino acid composition and solution conditions, especially salt and denaturant concentration. However, the quantitative implications of this behavior have remained unclear, largely because the effective theta-state, the central reference point for the underlying polymer collapse transition, has eluded experimental determination. Here, we used single-molecule fluorescence spectroscopy and two-focus correlation spectroscopy to determine the theta points for six different proteins. While the scaling exponents of all proteins converge to 0.62 ± 0.03 at high denaturant concentrations, as expected for a polymer in good solvent, the scaling regime in water strongly depends on sequence composition. The resulting average scaling exponent of 0.46 ± 0.05 for the four foldable protein sequences in our study suggests that the aqueous cellular milieu is close to effective theta conditions for unfolded proteins. In contrast, two intrinsically disordered proteins do not reach the Θ-point under any of our solvent conditions, which may reflect the optimization of their expanded state for the interactions with cellular partners. Sequence analyses based on our results imply that foldable sequences with more compact unfolded states are a more recent result of protein evolution.
-
7.(2010) Proceedings of the National Academy of Sciences of the United States of America. 107, 33, p. 14609-14614 Abstract
Many eukaryotic proteins are disordered under physiological conditions, and fold into ordered structures only on binding to their cellular targets. Such intrinsically disordered proteins (IDPs) often contain a large fraction of charged amino acids. Here, we use single-molecule Förster resonance energy transfer to investigate the influence of charged residues on the dimensions of unfolded and intrinsically disordered proteins. We find that, in contrast to the compact unfolded conformations that have been observed for many proteins at low denaturant concentration, IDPs can exhibit a prominent expansion at low ionic strength that correlates with their net charge. Charge-balanced polypeptides, however, can exhibit an additional collapse at low ionic strength, as predicted by polyampholyte theory from the attraction between opposite charges in the chain. The pronounced effect of charges on the dimensions of unfolded proteins has important implications for the cellular functions of IDPs.
-
6.(2010) Proceedings of the National Academy of Sciences of the United States of America. 107, 26, p. 11793-11798 Abstract
Molecular chaperones are known to be essential for avoiding protein aggregation in vivo, but it is still unclear how they affect protein folding mechanisms. We use single-molecule Förster resonance energy transfer to follow the folding of a protein inside the GroEL/GroES chaperonin cavity over a time range from milliseconds to hours. Our results show that confinement in the chaperonin decelerates the folding of the C-terminal domain in the substrate protein rhodanese, but leaves the folding rate of the N-terminal domain unaffected. Microfluidic mixing experiments indicate that strong interactions of the substrate with the cavity walls impede the folding process, but the folding hierarchy is preserved. Our results imply that no universal chaperonin mechanism exists. Rather, a competition between intra- and intermolecular interactions determines the folding rates and mechanisms of a substrate inside the GroEL/GroES cage.
-
5.(2009) Proceedings of the National Academy of Sciences of the United States of America. 106, 49, p. 20740-20745 Abstract[All authors]
We used single-molecule FRET in combination with other biophysical methods and molecular simulations to investigate the effect of temperature on the dimensions of unfolded proteins. With singlemolecule FRET, this question can be addressed even under nearnative conditions, where most molecules are folded, allowing us to probe a wide range of denaturant concentrations and temperatures. We find a compaction of the unfolded state of a small cold shock protein with increasing temperature in both the presence and the absence of denaturant, with good agreement between the results from single-molecule FRET and dynamic light scattering. Although dissociation of denaturant from the polypeptide chain with increasing temperature accounts for part of the compaction, the results indicate an important role for additional temperaturedependent interactions within the unfolded chain. The observation of a collapse of a similar extent in the extremely hydrophilic, intrinsically disordered protein prothymosin α suggests that the hydrophobic effect is not the sole source of the underlying interactions. Circular dichroism spectroscopy and replica exchange molecular dynamics simulations in explicit water show changes in secondary structure content with increasing temperature and suggest a contribution of intramolecular hydrogen bonding to unfolded state collapse.
-
4.(2009) Biochemistry. 48, 35, p. 8449-8457 Abstract
A promising approach to unravel the relationship between sequence information, tertiary structure, and folding mechanism of proteins is the analysis of the folding behavior of proteins with low sequence identity but comparable tertiary structures. Ribonuclease A (RNase A) and its homologues, forming the RNase A superfamily, provide an excellent model system for respective studies. RNase A has been used extensively as a model protein for folding studies. However, little is known about the folding of homologous RNases. Here, we analyze the folding pathway of onconase, a homologous protein from the Northern leopard frog with great potential as a tumor therapeutic, by high-resolution techniques. Although onconase and RNase A significantly differ in the primary structure (28% sequence identity) and in thermodynamic stability (ΔΔG = 20 kJ mol-1), both enzymes possess very similar tertiary structures. The present folding studies on onconase by rapid mixing techniques in combination with fluorescence and NMR spectroscopy allow the structural assignment of the three kinetic phases observed in stopped-flow fluorescence spectroscopy. After a slow peptidyl-prolyl cis-to-trans isomerization reaction in the unfolded state, ONC folds via an on-pathway intermediate to the native state. By quenched-flow hydrogen/deuterium exchange experiments coupled with 2D NMR spectroscopy, 31 amino acid residues were identified to be involved in the structure formation of the intermediate. Twelve of these residues are identical in the RNase A sequence, which is a significantly higher percentage (39%) than the overall 28% sequence identity. Moreover, the structure of this intermediate closely resembles two of the intermediates that occur early during the refolding of RNase A. Obviously, in spite of considerable differences in their amino acid sequence the initial folding events of both proteins are comparable, guided by a limited number of conserved residues.
-
3.(2009) Journal of the American Chemical Society. 131, 1, p. 140-146 Abstract
It has long been recognized that many proteins fold and unfold via partially structured intermediates, but it is still unclear why some proteins unfold in a two-state fashion while others do not. Here we compare the unfolding pathway of the small one-domain protein barstar with its dynamics under native conditions. Using very fast proton-exchange experiments, extensive dynamic heterogeneity within the native-state ensemble could be identified. Especially the dynamics of helix 3, covering the hydrophobic core of the molecule, is found to be clearly cooperative but decoupled from the global dynamics. Moreover, an initial unfolding of this helix followed by the breakdown of the remaining tertiary structure can be concluded from the comparison of the proton exchange experiments with unfolding kinetics detected by stopped-flow fluorescence. We infer that the unfolding pathway of barstar is closely coupled to its native-state dynamics.
-
2.(2008) Biophysical Chemistry. 137, 2-3, p. 95-99 Abstract
alpha-Amylase from mung beans (Vigna radiata) being one of the few plant alpha-amylases purified so far was studied with respect to its conformational stability by CD and fluorescence spectroscopy. The enzyme was shown to bind 3-4 Ca2+ ions, which all are important for its activity. In contrast to other alpha-amylases no inhibition was observed at high Ca2+ concentrations (100 mM). Depletion of calcium decreased the transition temperature from 87 to 48 degrees C. Kinetic stopped-flow fluorescence measurements allowed detecting two unfolding phases at > 6 M GdmCl, whereas only one phase was observed at
-
1.(2008) Journal of Molecular Biology. 376, 2, p. 597-605 Abstract
Although it has been recently shown that unfolded polypeptide chains undergo a collapse on transfer from denaturing to native conditions, the forces determining the dynamics and the size of the collapsed form have not yet been understood. Here, we use single-molecule fluorescence resonance energy transfer experiments on the small protein barstar to characterize the unfolded chain in guanidinium chloride (GdmCl) and urea. The unfolded protein collapses on decreasing the concentration of denaturants. Below the critical concentration of 3.5 M denaturant, the collapse in GdmCl leads to a more dense state than in urea. Since it is known that GdmCl suppresses electrostatic interactions, we infer that Coulomb forces are the dominant forces acting in the unfolded barstar under native conditions. This hypothesis is clearly buttressed by the finding of a compaction of the unfolded barstar by addition of KCl at low urea concentrations.