Publications
-
81H-index
-
23658Citations
-
302Publications
-
(2025) Atmospheric Environment. 344, 121049. Abstract
Nitrogen-containing heterocyclic aromatic compounds (NHACs) significantly contribute to urban air pollution but remain understudied. This study investigates the formation and transformation of secondary organic aerosol (SOA) from prototypical NHACs, indole, under various day- and night-time atmospheric processes. We examined the relationship between the evolving redox potential and cytotoxicity of indole-derived SOA (Indole-SOA) and its chemical alternations. Results show that Indole-SOA exhibits high oxidative potential (OPDTT of 88268 pmol min−1 μg−1) and antioxidant capacity (AOC of 0.410.83 nmol trolox μg−1), exceeding most biogenic and anthropogenic organic aerosols. Indole-SOA induces significant cytotoxicity in lung epithelial cells, characterized by oxidative stress, mitochondrial dysfunction, and CYP1A1-driven detoxification pathways. The strongly correlated OPDTT and cytotoxicity of Indole-SOA are influenced by atmospheric agings and are closely related to particulate-phase products of aromatic carbonyl and reduced-nitrogen compounds. Nighttime chemistry involving O3 and NO3 produces Indole-SOA with lower yields but higher redox potential and cytotoxicity. Furthermore, Indole-SOA mixing with ambient PM2.5 shows a positive redox interaction, with the synergistic effect on OPDTT determined by Indole-SOA type and proportion. Molecular markers of Indole-SOA can be identified in Shanghai urban PM2.5, indicating potential health risks from indole and its derivatives in Chinese megacities.
-
(2025) Ecotoxicology and Environmental Safety. 289, 117491. Abstract
The increasing exposure to biomass-burning emissions underscores the need to understand their toxicological impacts on human health. In this study, we developed a laboratory model to evaluate the effects of single and repeated sub-acute exposures to water-soluble wood tar (WT) extracts, a product of biomass burning, on human lung, liver, and immune cells. Using representative cell lines for different tissues, we examined the cytotoxic effects under conditions mimicking sub-acute environmental exposure levels relevant to humans. Our findings indicate that repeated sub-acute exposures to water-soluble WT extracts significantly enhance the inflammatory response, evidenced by increased IL6, IL8, and TNFa cytokine levels, compared to a single exposure. Additionally, oxidative stress responses were more pronounced with increased lipid peroxidation and HMOX1, GCLC and CYP1A1 gene expression following repeated exposures. Metabolomics analyses of polar and lipid metabolites revealed changes related to energy production and consumption that emerge even after a single exposure at sub-acute levels and vary across different cell types representing the different tissues. Impaired cellular respiration, measured by oxygen consumption rate, corroborates the observed changes. These results provide important insights into the cellular mechanisms driving the response to biomass-burning exposure and highlight the potential health risks associated with sub-acute exposure to environmental pollutants.
-
(2025) Science of the Total Environment. 958, 178021. Abstract
The atmosphere hosts a microbiome that connects distant ecosystems yet remains relatively unexplored. In this study, we tested the hypothesis that dust storms enhance the spread of pathogenic microorganisms and whether these microorganisms carry antibiotic resistance and virulence-related genes in the Eastern Mediterranean. We collected air samples during a seasonal transition period, capturing data from 13 dusty days originating from Middle Eastern sources, including the Saharan Desert, Iraq, Iran, and Saudi Arabia, and 32 clear days, with temperatures ranging from 16.5 to 27.1 °C. Using metagenomic analysis, we identified several facultative pathogens like Klebsiella pneumoniae, Stenotrophomonas maltophilia, and Aspergillus fumigatus, which are linked to human respiratory diseases, and others like Zymoseptoria tritici, Fusarium poae, and Puccinia striiformis, which are harmful to wheat. The abundance of these pathogens increased during dust storms and with rising temperatures. Although we did not find strong evidence that these species harbored antibiotic resistance or virulence-related genes, which could be linked to their pathogenic potential, dust storms transported up to 125 times more total antibiotic resistance genes, as measured by RPKM abundance, compared to clear conditions. These levels during dust storms far exceeded those found in other ecosystems. While further research is needed to determine whether dust storms and temperature variations pose an immediate threat to public health and the environment, our findings underscore the importance of continuous monitoring of atmospheric microbiomes. This surveillance is crucial for assessing potential risks to human health and ecosystem stability, particularly in the face of accelerating global climate change.
-
(2025) The Lancet Planetary Health. 9, 1, p. e34-e40 Abstract
Sand and dust storms increasingly threaten global environmental and public health. To date, 150 countries are directly affected, with more than 100 classified as non-dust source regions. With climate change, these storms are expected to become more frequent and severe. Despite international awareness and initiatives, such as those led by the UN, crucial knowledge gaps continue to hinder effective, evidence-based public responses to sand and dust storms. In this Viewpoint, we review existing gaps in health research and highlight four key research priorities: the comprehensive health effects of sand and dust storms, including short-term and long-term exposures, diseases, regions, and health outcomes; the key particle sizes and toxic components of particles during sand and dust storms; the design of multicentre studies accounting for region-specific exposure patterns; and research on health outcomes attributable to particulate matter mixtures dominated by windblown dust versus other sources. We urgently call for international, collaborative, and multidisciplinary health studies considering sand and dust storm exposure characteristics and for the adoption of scientifically robust epidemiological methods in these studies.
-
(2025) Remote Sensing. 17, 2, 222. Abstract
High dust loading significantly impacts air quality, climate, and public health. Early warning is crucial for mitigating short-term effects, and accurate dust field estimates are needed for forecasting. The Copernicus Atmosphere Monitoring Service (CAMS) offers global reanalysis datasets and forecasts of particulate matter with a diameter of under 10 μm (PM10), which approximate dust, but recent studies highlight discrepancies between CAMS data and ground in-situ measurements. Since CAMS is often used for forecasting, errors in PM10 fields can hinder accurate dust event forecasts, which is particularly challenging for models that use artificial intelligence (AI) due to the scarcity of dust events and limited training data. This study proposes a machine-learning approach to correct CAMS PM10 fields using in-situ data to enhance AI-based dust event forecasting. A correction model that links pixel-wise errors with atmospheric and meteorological variables was taught using gradient-boosting algorithms. This model is then utilized to predict CAMS error in previously unobserved pixels across the Eastern Mediterranean, generating CAMS error fields. Our bias-corrected PM10 fields are, on average, 12 μg m−3 more accurate, often reducing CAMS errors by significant percentages. To evaluate the contribution, we train a deep neural network to predict city-scale dust events (072 h) over the Balkans using PM10 fields. Comparing the networks performance when trained on both original and bias-corrected CAMS PM10 fields, we show that the correction improves AI-based forecasting performance across all metrics.
-
(2024) Journal of Geophysical Research: Atmospheres. 129, 23, e2024JD041. Abstract
This study investigates the new particle formation (NPF) events at an urban location in the Eastern Mediterranean. Particle size distribution, particulate chemical composition, and gaseous pollutants were monitored in Rehovot, Israel (31°53N 34°48E) during two campaigns: from April 29 to 3 May 2021 (Campaign 1) and from May 3 to 11 May 2023 (Campaign 2), coinciding with an intensive bonfire burning festival. The organic aerosols (OA) source apportionment identified two major factorsHydrocarbon-like OA and Biomass-burning OAas well as two secondary factorsMO-OOA (more oxidized-oxygenated OA) and LO-OOA (low oxidized oxygenated OA). NPF events were frequently observed during the day (mostly well-defined nucleation events) and at night (burst of ultrafine mode particles without any discernible growth). A condensation sink value of (9.4 ± 4.0) × 10−3 s−1 during Campaign 1 and (14.2 ± 6.0) × 10−3 s−1 during Campaign 2 was obtained. The daytime events were associated with enhanced sulfuric acid proxy concentrations of (212) × 106 molecules cm−3, suggesting the role of gas-phase photochemistry in promoting NPF. A novel approach of hybrid positive matrix factorization analysis was used to deconvolve the chemical species responsible for the observed events. The results suggest the involvement of multiple components, including ammonium sulfate and MO-OOA, in the nucleation; Nitrate, HOA and LO-OOA participate in the subsequent particle growth for the daytime events. Nighttime events involve only semi-volatile species (LO-OOA, HOA and nitrate) along with ammonium sulfate.
-
(2024) Science of the Total Environment. 952, 175840. Abstract
Residential wood combustion (RWC) remains a significant global source of particulate matter (PM) emissions with adverse impacts on regional air quality, climate, and human health. The lung-deposited surface area (LDSA) and equivalent black carbon (eBC) concentrations have emerged as important metrics to assess particulate pollution. In this study we estimated combustion phase-dependent emission factors of LDSA for alveolar, tracheobronchial, and head-airway regions of human lungs and explored the relationships between eBC and LDSA in fresh and photochemically aged RWC emissions. Photochemical aging was simulated in an oxidative flow reactor at OH exposures equivalent to 1.4 or 3.4 days in the atmosphere. Further, the efficiency of a small-scale electrostatic precipitator (ESP) for reducing LDSA and eBC from the wood stove was determined. For fresh emission eBC correlated extremely well with LDSA, but the correlation decreased after aging. Soot-dominated flaming phase showed the highest eBC dependency of LDSA whereas for ignition and char burning phases non-BC particles contributed strongly the LDSA. Deposition to the alveolar region contributed around 60 % of the total lung-deposition. The ESP was found as an effective method to mitigate particulate mass, LDSA, as well as eBC emissions from wood stoves, as they were reduced on average by 72%, 71%, and 69%, respectively. The reduction efficiencies, however, consistently dropped over the span of an experiment, especially for eBC. Further, the ESP was found to increase the sub-30 nm ultrafine particle number emissions, with implications for LDSA. The results of this study can be used for assessing the contribution of RWC to LDSA concentrations in ambient air.
-
(2024) Environmental Science and Technology. 58, 41, p. 18284-18294 Abstract
Biomass burning organic aerosol (BBOA), containing brown carbon chromophores, plays a critical role in atmospheric chemistry and climate forcing. However, the effects of evaporation on BBOA volatility and viscosity under different environmental conditions remain poorly understood. This study focuses on the molecular characterization of laboratory-generated BBOA proxies from wood pyrolysis emissions. The initial mixture, \u201cpyrolysis oil (PO1)\u201d, was progressively evaporated to produce more concentrated mixtures (PO1.33, PO2, and PO3) with volume reduction factors of 1.33, 2, and 3, respectively. Chemical speciation and volatility were investigated using temperature-programmed desorption combined with direct analysis in real-time ionization and high-resolution mass spectrometry (TPD-DART-HRMS). This novel approach quantified saturation vapor pressures and enthalpies of individual species, enabling the construction of volatility basis set distributions and the quantification of gas−particle partitioning. Viscosity estimates, validated by poke-flow experiments, showed a significant increase with evaporation, slowing particle-phase diffusion and extending equilibration times. These findings suggest that highly viscous tar ball particles in aged biomass burning emissions form as semivolatile components evaporate. The study highlights the importance of evaporation processes in shaping BBOA properties, underscoring the need to incorporate these factors into atmospheric models for better predictions of BBOA aging and its environmental impact.
-
(2024) Aerosol Science and Technology. 58, 10, p. 1093-1113 Abstract
Exposure to biomass-burning particulate matter (PM) is associated with various adverse health effects, including respiratory and cardiovascular conditions, cancer, and systemic effects. Multiple mechanisms underlying PM toxicity components derived from biomass burning elicit harmful effects, such as reactive oxygen species (ROS) generation, inflammation, genotoxicity, and tissue-specific damage. Specific compounds or families of compounds present in biomass-burning PM, such as polyaromatic hydrocarbons (PAHs) and their derivatives, have been identified as key contributors to the observed health effects. Their roles in oxidative stress, DNA damage, and cell death have been elucidated in various organs, such as the lungs, liver, kidneys, and brain, providing valuable insights into the systemic biological influence of biomass-burning-related diseases. Current knowledge of the impact of biomass burning highlights the imperative need for further research to understand the health implications of this environmental challenge and the importance of mitigating the adverse effects of increased exposure to biomass-burning pollution to protect the well-being of exposed populations worldwide. This review focuses on the crucial roles of oxidative stress and inflammation in mediating health effects, triggered by exposure to biomass-burning aerosols. It examines various aspects of the health-related impacts of biomass-burning emissions, particularly those from PM components. The review highlights the health consequences on exposed populations, emphasizing specific biochemical responses, contributions to toxicity mechanisms, tissue-specific effects, and the families of compounds responsible for these effects.
-
(2024) Particle and Fibre Toxicology. 21, 38. Abstract
Background: The formation of secondary organic aerosols (SOA) by atmospheric oxidation reactions substantially contributes to the burden of fine particulate matter (PM2.5), which has been associated with adverse health effects (e.g., cardiovascular diseases). However, the molecular and cellular effects of atmospheric aging on aerosol toxicity have not been fully elucidated, especially in model systems that enable cell-to-cell signaling. Methods: In this study, we aimed to elucidate the complexity of atmospheric aerosol toxicology by exposing a coculture model system consisting of an alveolar (A549) and an endothelial (EA.hy926) cell line seeded in a 3D orientation at the airliquid interface for 4 h to model aerosols. Simulation of atmospheric aging was performed on volatile biogenic (β-pinene) or anthropogenic (naphthalene) precursors of SOA condensing on soot particles. The similar physical properties for both SOA, but distinct differences in chemical composition (e.g., aromatic compounds, oxidation state, unsaturated carbonyls) enabled to determine specifically induced toxic effects of SOA. Results: In A549 cells, exposure to naphthalene-derived SOA induced stress-related airway remodeling and an early type I immune response to a greater extent. Transcriptomic analysis of EA.hy926 cells not directly exposed to aerosol and integration with metabolome data indicated generalized systemic effects resulting from the activation of early response genes and the involvement of cardiovascular disease (CVD) -related pathways, such as the intracellular signal transduction pathway (PI3K/AKT) and pathways associated with endothelial dysfunction (iNOS; PDGF). Greater induction following anthropogenic SOA exposure might be causative for the observed secondary genotoxicity. Conclusion: Our findings revealed that the specific effects of SOA on directly exposed epithelial cells are highly dependent on the chemical identity, whereas non directly exposed endothelial cells exhibit more generalized systemic effects with the activation of early stress response genes and the involvement of CVD-related pathways. However, a greater correlation was made between the exposure to the anthropogenic SOA compared to the biogenic SOA. In summary, our study highlights the importance of chemical aerosol composition and the use of cell systems with cell-to-cell interplay on toxicological outcomes. Graphical Abstract: (Figure presented.)
-
(2024) Environmental Science & Technology. 58, 35, p. 15511-15521 Abstract
Poor air quality is increasingly linked to gastrointestinal diseases, suggesting a potential correlation with human intestine health. However, this relationship remains largely unexplored due to limited research. This study used a controlled mouse model exposed to cooking oil fumes (COFs) and metagenomics, transcriptomics, and metabolomics to elucidate interactions between intestine microbiota and host metabolism under environmental stress. Our findings reveal that short-term COF inhalation induces pulmonary inflammation within 3 days and leads to gastrointestinal disturbances, elucidating a pathway connecting respiratory exposure to intestinal dysfunction. The exposure intensity significantly correlates with changes in intestinal tissue integrity, microbial composition, and metabolic function. Extended exposure of 7 days disrupts intestine microbiota and alters tryptophan metabolism, with further changes observed after 14 days, highlighting an adaptive response. These results highlight the vulnerability of intestinal health to airborne pollutants and suggest a pathway through which inhaled pollutants may affect distant organ systems.
-
Variant-proof high affinity ACE2 antagonist limits SARS-CoV-2 replication in upper and lower airways(2024) Nature Communications. 15, 6894. Abstract
SARS-CoV-2 has the capacity to evolve mutations that escape vaccine- and infection-acquired immunity and antiviral drugs. A variant-agnostic therapeutic agent that protects against severe disease without putting selective pressure on the virus would thus be a valuable biomedical tool that would maintain its efficacy despite the ongoing emergence of new variants. Here, we challenge male rhesus macaques with SARS-CoV-2 Deltathe most pathogenic variant in a highly susceptible animal model. At the time of challenge, we also treat the macaques with aerosolized RBD-62, a protein developed through multiple rounds of in vitro evolution of SARS-CoV-2 RBD to acquire 1000-fold enhanced ACE2 binding affinity. RBD-62 treatment equivalently suppresses virus replication in both upper and lower airways, a phenomenon not previously observed with clinically approved vaccines. Importantly, RBD-62 does not block the development of virus-specific T- and B-cell responses and does not elicit anti-drug immunity. These data provide proof-of-concept that RBD-62 can prevent severe disease from a highly virulent variant.
-
(2024) Environmental Sciences: Processes and Impacts. 26, 8, p. 1295-1309 Abstract
Emissions from road traffic and residential heating contribute to urban air pollution. Advances in emission reduction technologies may alter the composition of emissions and affect their fate during atmospheric processing. Here, emissions of a gasoline car and a wood stove, both equipped with modern emission mitigation technology, were photochemically aged in an oxidation flow reactor to the equivalent of one to five days of photochemical aging. Fresh and aged exhausts were analyzed by ultrahigh resolution mass spectrometry. The gasoline car equipped with a three-way catalyst and a gasoline particle filter emitted minor primary fine particulate matter (PM2.5), but aging led to formation of particulate low-volatile, oxygenated and highly nitrogen-containing compounds, formed from volatile organic compounds (VOCs) and gases incl. NOx, SO2, and NH3. Reduction of the particle concentration was also observed for the application of an electrostatic precipitator with residential wood combustion but with no significant effect on the chemical composition of PM2.5. Comparing the effect of short and medium photochemical exposures on PM2.5 of both emission sources indicates a similar trend for formation of new organic compounds with increased carbon oxidation state and nitrogen content. The overall bulk compositions of the studied emission exhausts became more similar by aging, with many newly formed elemental compositions being shared. However, the presence of particulate matter in wood combustion results in differences in the molecular properties of secondary particles, as some compounds were preserved during aging.
-
(2024) Journal of Geophysical Research: Atmospheres. 129, 16, e2024JD040. Abstract
The light absorption enhancement (Eabs) of black carbon (BC) coated with non-BC materials is crucial in the assessment of radiative forcing, yet its evolution during photochemical aging of plumes from biomass burning, the globe's largest source of BC, remains poorly understood. In this study, plumes from open burning of corn straw were introduced into a smog chamber to explore the evolution of Eabs during photochemical aging. The light absorption of BC was measured with and without coating materials by using a thermodenuder, while the size distributions of aerosols and composition of BC coating materials were also monitored. Eabs was found to increase initially, and then decrease with an overall downward trend. The lensing effect dominated in Eabs at 520 nm, with an estimated contribution percentages of 47.5%94.5%, which is far greater than light absorption of coated brown carbon (BrC). The effects of thickening and chemical composition changes of the coating materials on Eabs were evaluated through comparing measured Eabs with that calculated by the Mie theory. After OH exposure of 1 × 1010 molecules cm−3 s, the thickening of coating materials led to an Eabs increase by 3.2% ± 1.6%, while the chemical composition changes or photobleaching induced an Eabs decrease by 4.7% ± 0.6%. Simple forcing estimates indicate that coated BC aerosols exhibit warming effects that were reduced after aging. The oxidation of light-absorbing CxHy compounds, such as polycyclic aromatic hydrocarbons (PAHs), to CxHyO and CxHyO>1 compounds in coating materials may be responsible for the photobleaching of coated BrC.
-
(2024) Environmental Science: Atmospheres. 4, 7, p. 802-812 Abstract
The most recent European regulation, the Euro 6d emission standard, require all gasoline direct injection (GDI) vehicles to use both a three-way catalyst (TWC) and a gasoline particle filter (GPF) as exhaust aftertreatment. These aftertreatment methods are aimed at reducing NOx and primary particle emissions. However, the formation of secondary organic aerosols (SOA) from the volatile organic compound (VOC) emissions of a Euro 6d compliant GDI vehicles, equipped with a GPF is yet not investigated. Therefore, to explore the SOA formation and effects of the GPF, the exhaust of a Euro 6d compliant GDI vehicle was characterized at 4 different steady state speeds, idling(0 km/h), 50, 80 and 100 km/h. The exhaust was oxidised in the Photochemical emissions aging flow tube reactor (PEAR) by reactions with OH radicals equivalent of 2.1 days of atmospheric day time oxidation. It was found that the GPF completely removes primary particles larger than 10 nm, at all investigated vehicle speeds. However, significant SOA was formed after oxidation, with the highest SOA formation potential pr kg fuel consumed at 50km/h. The main SOA precursors were determined to be Toulene, Xylene and Trimethyl-Benzene which were found to account for at least 50% of SOA formed at all driving speeds. Furthermore, high emissions of NH3 could be observed in the exhaust throughout all driving conditions which resulted in the subsequent formation of NH4NO3 after aging. The formation of NH4NO3 additionally facilitated the co-condensation of organic gas phase products after OH oxidation enhancing SOA mass even further.
-
(2024) Aerosol Research. 2, 1, p. 161-182 Abstract
While the atmosphere in the eastern Mediterranean is part of the dust belt, it encounters air masses from Europe, the Mediterranean Sea, and the Sahara and Arabian Desert that bring with them a whole host of potential dust and bioaerosol compositions and concentrations via long-range transport. The consequential changes in the populations of ice-nucleating particles (INPs), aerosols that influence weather and climate by the triggering of freezing in supercooled cloud water droplets, including in the convective cloud systems in the region, are not so well understood beyond the influence of desert dust storms in increasing INP concentrations. Here, we undertook an intensive INP measurement campaign in Israel to monitor changes in concentrations and activity from four major air masses, including the potential for activity from biological INPs. Our findings show that the INP activity in the region is likely dominated by the K-feldspar mineral content, with southwesterly air masses from the Sahara and easterly air masses from the Arabian Desert markedly increasing both aerosol and INP concentrations. Most intriguingly, a handful of air masses that passed over the Nile Delta and the northern Fertile Crescent, regions containing fertile agricultural soils and wetlands, brought high INP concentrations with strong indicators of biological activity. These results suggest that the Fertile Crescent could be a sporadic source of high-temperature biological ice-nucleating activity across the region that could periodically dominate the otherwise K-feldspar-controlled INP environment. We propose that these findings warrant further exploration in future studies in the region, which may be particularly pertinent given the ongoing desertification of the Fertile Crescent that could reveal further sources of dust and fertile soil-based INPs in the eastern Mediterranean region.
-
(2024) BioRxiv. Abstract
The atmosphere hosts a microbiome that connects remote ecosystems but remains underexplored. In this study, we employed metagenomics to examine the ecological roles of the atmospheric microbiome, including the dispersal of potential pathogens and antibiotic resistance genes, and its response to temperature fluctuations and dust storms intensified by climate change. We analyzed air samples from non-dusty conditions and Middle Eastern dust storms, identifying several facultative pathogens like Klebsiella pneumoniae, Stenotrophomonas maltophilia, and Aspergillus fumigatus, linked to human respiratory diseases, and others like Zymoseptoria tritici, Fusarium poae, and Puccinia striiformis, harmful to wheat, associated with dust storms and rising temperatures. We observed increased functions related to antibiotic resistance, including beta-lactams, aminoglycosides, and fluoroquinolones, and virulence factors during dust storms. Our findings suggest that dust storms may spread these traits. Continuous monitoring is crucial to understand the broader implications of dust storms and temperature increases on the atmospheric microbiome amid climate change, emphasizing the need for a One Health approach to global climate challenges.Teaser Atmospheric microbiome analysis reveals climate change-fueled dust storms spread human, animal, and plant pathogens.Competing Interest StatementThe authors have declared no competing interest.
-
(2024) Environmental Science and Technology. 58, 16, p. 7099-7112 Abstract
Reduced nitrogen-containing organic compounds (NOCs) in aerosols play a crucial role in altering their light-absorption properties, thereby impacting regional haze and climate. Due to the low concentration levels of individual NOCs in the air, the utilization of accurate detection and quantification technologies becomes essential. For the first time, this study investigated the diurnal variation, chemical characteristics, and potential formation pathways of NOCs in urban ambient aerosols in Shanghai using a versatile aerosol concentration enrichment system (VACES) coupled with HPLC-Q-TOF-MS. The results showed that NOCs accounted over 60% of identified components of urban organic aerosols, with O/N 70%). The predominance of the positive ionization mode suggested the prevalence of reduced NOCs. Higher relative intensities and number fractions of NOCs were observed during nighttime, while CHO compounds showed an opposite trend. Notably, a positive correlation between the intensity of NOCs and ammonium during the nighttime was observed, suggesting that the reaction of ammonium to form imines may be a potential pathway for the formation of reduced NOCs during the nighttime. Seven prevalent types of reduced NOCs in autumn and winter were identified and characterized by an enrichment of CH2 long-chain homologues. These NOCs included alkyl, cyclic, and aromatic amides in CHON compounds, as well as heterocyclic or cyclic amines and aniline homologue series in CHN compounds, which were associated with anthropogenic activities and may be capable of forming light-absorbing chromophores or posing harm to human health. The findings highlight the significant contributions of both primary emissions and ammonium chemistry, particularly amination processes, to the pollution of reduced NOCs in Shanghais atmosphere.
-
(2024) Environmental Science and Technology. 58, 17, p. 7493-7504 Abstract
Samples of brown carbon (BrC) material were collected from smoke emissions originating from wood pyrolysis experiments, serving as a proxy for BrC representative of biomass burning emissions. The acquired samples, referred to as \u201cpyrolysis oil (PO1),\u201d underwent subsequent processing by thermal evaporation of their volatile compounds, resulting in a set of three additional samples with volume reduction factors of 1.33, 2, and 3, denoted as PO1.33, PO2, and PO3. The chemical compositions of these POx samples and their BrC chromophore features were analyzed using a high-performance liquid chromatography instrument coupled with a photodiode array detector and a high-resolution mass spectrometer. The investigation revealed a noteworthy twofold enhancement of BrC light absorption observed for the progression of PO1 to PO3 samples, assessed across the spectral range of 300-500 nm. Concurrently, a decrease in the absorption Ångstrom exponent (AAE) from 11 to 7 was observed, indicating a weaker spectral dependence. The relative enhancement of BrC absorption at longer wavelengths was more significant, as exemplified by the increased mass absorption coefficient (MAC) measured at 405 nm from 0.1 to 0.5 m2/g. Molecular characterization further supports this darkening trend, manifesting as a depletion of small oxygenated, less absorbing monoaromatic compounds and the retention of relatively large, less polar, more absorbing constituents. Noteworthy alterations of the PO1 to PO3 mixtures included a reduction in the saturation vapor pressure of their components and an increase in viscosity. These changes were quantified by the mean values shifting from approximately 1.8 × 103 μg/m3 to 2.3 μg/m3 and from ∼103 Pa·s to ∼106 Pa·s, respectively. These results provide quantitative insights into the extent of BrC aerosol darkening during atmospheric aging through nonreactive evaporation. This new understanding will inform the refinement of atmospheric and chemical transport models.
-
(2024) Environmental Science and Technology. 58, 19, p. 8194-8206 Abstract
Phenolic compounds are largely emitted from biomass burning (BB) and have a significant potential to form SOA (Phc-SOA). However, the toxicological properties of Phc-SOA remain unclear. In this study, phenol and guaiacol were chosen as two representative phenolic gases in BB plumes, and the toxicological properties of water-soluble components of their SOA generated under different photochemical ages and NOx levels were investigated. Phenolic compounds contribute greatly to the oxidative potential (OP) of biomass-burning SOA. OH-adducts of guaiacol (e.g., 2-methoxyhydroquinone) were identified as components of guaiacol SOA (GSOA) with high OP. The addition of nitro groups to 2,5-dimethyl-1,4-benzoquinone, a surrogate quinone compound in Phc-SOA, increased its OP. The toxicity of both phenol SOA (PSOA) and GSOA in vitro in human alveolar epithelial cells decreased with aging in terms of both cell death and cellular reactive oxygen species (ROS), possibly due to more ring-opening products with relatively low toxicity. The influence of NOx was consistent between cell death and cellular ROS for GSOA but not for PSOA, indicating that cellular ROS production does not necessarily represent all processes contributing to cell death caused by PSOA. Combining different acellular and cellular assays can provide a comprehensive understanding of aerosol toxicological properties.
-
(2024) ACS EST Air. 1, 4, p. 283-293 Abstract
Global ground-level measurements of elements in ambient particulate matter (PM) can provide valuable information to understand the distribution of dust and trace elements, assess health impacts, and investigate emission sources. We use X-ray fluorescence spectroscopy to characterize the elemental composition of PM samples collected from 27 globally distributed sites in the Surface PARTiculate mAtter Network (SPARTAN) over 20192023. Consistent protocols are applied to collect all samples and analyze them at one central laboratory, which facilitates comparison across different sites. Multiple quality assurance measures are performed, including applying reference materials that resemble typical PM samples, acceptance testing, and routine quality control. Method detection limits and uncertainties are estimated. Concentrations of dust and trace element oxides (TEO) are determined from the elemental dataset. In addition to sites in arid regions, a moderately high mean dust concentration (6 μg/m3) in PM2.5 is also found in Dhaka (Bangladesh) along with a high average TEO level (6 μg/m3). High carcinogenic risk (>1 cancer case per 100000 adults) from airborne arsenic is observed in Dhaka (Bangladesh), Kanpur (India), and Hanoi (Vietnam). Industries of informal lead-acid battery and e-waste recycling as well as coal-fired brick kilns likely contribute to the elevated trace element concentrations found in Dhaka.
-
(2024) ACS EST Air. 1, 4, p. 316-329 Abstract
This study investigates daily variations in redox potential of water- and organic-soluble PM2.5 during Delhis monsoon season, offering insights into its chemical composition, cytotoxicity, and oxidative threat to various lung conditions. PM2.5 samples, categorized by pollution levels, showed an average intrinsic oxidative potential (OPmDTT) of 27.5 pmol min1 μg1, OH generation of 51.1 pmol μg1, and antioxidant capacity (AOC) in both gallic acid and trolox equivalency of 62.5 and 35.3 pmol μg1, respectively. Water-soluble redox-active compounds (RACs) contributed to approximately 67% of the PM2.5 redox potential. The polar-phase distribution of RACs in PM2.5 can be modified by atmospheric photochemistry and precipitation. Biomass burning emerged as a pivotal pollution source, with polluted PM2.5 samples exhibiting higher cytotoxicity and oxidative stress in A549 cells. All PM2.5 compounds impaired cellular respiration, reducing the oxygen consumption rates in A549 cells. Intrinsic OPmDTT and OH generation of PM2.5 were influenced by lung fluid variants, such as exogenous nicotine and endogenous inflammatory protein. This study provides a comprehensive perspective on PM2.5 pollution and its toxicity in Delhi, India during distinct pollution periods and also points out the importance of considering population disparities and individual health status in assessing PM2.5 health impacts.
-
(2024) Environmental Science and Technology. 58, 10, p. 4691-4703 Abstract
The negative effects of air pollution, especially fine particulate matter (PM2.5, particles with an aerodynamic diameter of ≤2.5 μm), on human health, climate, and ecosystems are causing significant concern. Nevertheless, little is known about the contributions of emerging pollutants such as plastic particles to PM2.5 due to the lack of continuous measurements and characterization methods for atmospheric plastic particles. Here, we investigated the levels of fine plastic particles (FPPs) in PM2.5 collected in urban Shanghai at a 2 h resolution by using a novel versatile aerosol concentration enrichment system that concentrates ambient aerosols up to 10-fold. The FPPs were analyzed offline using the combination of spectroscopic and microscopic techniques that distinguished FPPs from other carbon-containing particles. The average FPP concentrations of 5.6 μg/m3 were observed, and the ratio of FPPs to PM2.5 was 13.2% in this study. The FPP sources were closely related to anthropogenic activities, which pose a potential threat to ecosystems and human health. Given the dramatic increase in plastic production over the past 70 years, this study calls for better quantification and control of FPP pollution in the atmosphere.
-
(2023) Science of the Total Environment. 905, 166988. Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that contributes to the global rise in liver-related morbidity and mortality. Wood tar (WT) aerosols are a significant fraction of carbonaceous aerosol originating from biomass smoldering, contributing to air pollution particles smaller than 2.5 mm (PM2.5). Mechanistic biological associations exist between exposure to PM2.5 and increased NAFLD phenotypes in both cell and animal models. Therefore, this study examines whether an existing NAFLD-like condition can enhance the biological susceptibility of liver cells exposed to air pollution in the form of WT material. Liver cells were incubated with lauric or oleic acid (LA, OA, respectively) for 24 h to accumulate lipids and served as an in vitro hepatic steatosis model. When exposed to 0.02 or 0.2 g/L water-soluble WT aerosols, both steatosis model cells showed increased cell death compared to the control cells (blank-treated cells with or without pre-incubation with LA or OA) or compared to WT-treated cells without pre-incubation with LA or OA. Furthermore, alterations in oxidative status included variations in reactive oxygen species (ROS) levels, elevated levels of lipid peroxidation adducts, and decreased expression of antioxidant genes associated with the NRF2 transcription factor. In addition, steatosis model cells exposed to WT had a higher degree of DNA damage than the control cells (blank-treated cells with or without pre-incubation with LA or OA). These results support a possible systemic effect through the direct inflammatory and oxidative stress response following exposure to water-soluble WT on liver cells, especially those predisposed to fatty liver. Furthermore, the liver steatosis model can be influenced by the type of fatty acid used; increased adverse effects of WT on metabolic dysregulation were observed in the LA model to a higher extent compared to the OA model.
-
(2023) Environmental Science and Technology. 57, 51, p. 21593-21604 Abstract
Decades of research have established the toxicity of soot particles resulting from incomplete combustion. However, the unique chemical compounds responsible for adverse health effects have remained uncertain. This study utilized mass spectrometry to analyze the chemical composition of extracted soot organics at three oxidation states, aiming to establish quantitative relationships between potentially toxic chemicals and their impact on human alveolar basal epithelial cells (A549) through metabolomics-based evaluations. Targeted analysis using MS/MS indicated that particles with a medium oxidation state contained the highest total abundance of compounds, particularly oxygen-containing polycyclic aromatic hydrocarbons (OPAHs) composed of fused benzene rings and unsaturated carbonyls, which may cause oxidative stress, characterized by the upregulation of three specific metabolites. Further investigation focused on three specific OPAH standards: 1,4-naphthoquinone, 9-fluorenone, and anthranone. Pathway analysis indicated that exposure to these compounds affected transcriptional functions, the tricarboxylic acid cycle, cell proliferation, and the oxidative stress response. Biodiesel combustion emissions had higher concentrations of PAHs, OPAHs, and nitrogen-containing PAHs (NPAHs) compared with other fuels. Quinones and 9,10-anthraquinone were identified as the dominant compounds within the OPAH category. This knowledge enhances our understanding of the compounds contributing to adverse health effects observed in epidemiological studies and highlights the role of aerosol composition in toxicity.
-
(2023) Communications Earth and Environment. 4, 1, 24. Abstract
Processes influencing the transport of airborne bacterial communities in the atmosphere are poorly understood. Here, we report comprehensive and quantitative evidence of the key factors influencing the transport of airborne bacterial communities by dust plumes in the Eastern Mediterranean. We extracted DNA and RNA from size-resolved aerosols sampled from air masses of different origins, followed by qPCR and high-throughput amplicon sequencing of 16S ribosomal RNA gene and transcripts. We find that airborne bacterial community composition varied with air mass origin and particle size. Bacterial abundance, alpha diversity and species richness were higher in terrestrially influenced air masses than in marine-influenced air masses and higher in the coarse particle fraction (3.0 to 10.0µm) than in the fine fraction (0.49 to 1.5µm). This suggests that airborne bacteria mainly were associated with dust particles or transported as cell aggregates. High abundances of rRNA from human, animal and plant pathogen taxa indicate potential ecological impacts of atmospheric bacterial transport.
-
(2023) eLife. 12, RP91976. Abstract
In nature, frost can form at a few degrees below 0 °C. However, this process requires the assembly of tens of thousands of ice-like water molecules that align together to initiate freezing at these relatively high temperatures. Water ordering on this scale is mediated by the ice nucleation proteins (INPs) of common environmental bacteria like Pseudomonas syringae and Pseudomonas borealis. However, individually, these 100 kDa proteins are too small to organize enough water molecules for frost formation, and it is not known how giant, megadalton-sized multimers, which are crucial for ice nucleation at high sub-zero temperatures, form. The ability of multimers to self-assemble was suggested when the transfer of an INP gene into Escherichia coli led to efficient ice nucleation. Here, we demonstrate that a positively charged subdomain at the C-terminal end of the central β-solenoid of the INP is crucial for multimerization. Truncation, relocation, or change of the charge of this subdomain caused a catastrophic loss of ice nucleation ability. Cryo-electron tomography of the recombinant E. coli showed that the INP multimers form fibres that are nm across and up to 200 nm long. A model of these fibres as an overlapping series of antiparallel dimers can account for all their known properties and suggests a route to making cell-free ice nucleators for biotechnological applications.
-
(2023) Environmental Science: Atmospheres. 3, 12, p. 1791-1804 Abstract
This study investigated the redox potential and toxicological changes of wood smoldering emitted HULIS due to reactions in the atmosphere and in neutral lung fluids. Fresh HULIS aerosols exhibited substantial oxidative potential (OP) and antioxidant capacity (AOC). Nighttime oxidation via heterogeneous O3 or NO3˙ reactions impacted HULIS OP and AOC differently, with high humidity enhancing O3 uptake and HULIS oxidation, causing a significant reduction in their redox potentials. The effective rate constants for HULIS redox-active components (RACs) by O3 reaction increased with RH (
-
(2023) Science of the Total Environment. 896, 165281. Abstract
Night-time oxidation significantly affects the atmospheric concentration of primary and secondary air pollutants but is poorly constrained over South Asia. Here, using a comprehensively measured and unprecedented set of precursors and sinks of Stabilized Criegee Intermediates (SCI), in the summertime air of the Indo-Gangetic Plain (IGP), we investigate the chemistry, and abundance in detail. This study reports the first summertime levels from the IGP of ethene, propene, 1-butene, cis-2-butene, trans-2-butene, 1-pentene, cis-2-pentene, trans-2-pentene, and 1-hexene and their possible roles in SCI chemistry. Ethene, propene, and 1-butene were the highest ambient alkenes in both the summer and winter seasons. Applying chemical steady-state to the measured precursors, the average calculated SCI concentrations were 4.4 (±3.6) × 103 molecules cm−3, with Z-CH3CHOO (55 %) as the major SCI. Z-RCHOO (35 %) and α-pinene derived PINOO (34 %) were identified as the largest contributors to SCI with a 7.8 × 105 molecules cm−3 s−1 production rate. The peak SCI occurred during the evenings. For all SCI species, the loss was dominated (>50 %) by unimolecular decomposition or reactions with water vapor or water vapor dimer. Pollution events influenced by crop burning resulted in significantly elevated SCI production (2.1 times higher relative to non-polluted periods) reaching as high as (7.4 ± 2.5) × 105 molecules cm−3 s−1. Among individual SCI species, Z-CH3CHOO was highest in all the plume events measured accounting for at least ~41 %. Among alkenes, trans-2-butene was the highest contributor to P(SCI) in plume events ranging from 22 to 32 %. SCIs dominated the night-time oxidation of sulfur dioxide with rates as high as 1.4 (±1.1) × 104 molecules cm−3 s−1 at midnight, suggesting that this oxidation pathway could be a significant source of fine mode sulfate aerosols over the Indo-Gangetic Plain, especially during summertime biomass burning pollution episodes.
-
(2023) Atmospheric Environment. 309, 119902. Abstract
Dust events can be hazardous to society and human health and can cost hundreds of millions of dollars each. Inhalable suspended particulate matter with a diameter of under 10 μm (PM10) is of particular concern since it can cause an array of adverse health effects following short- and long-term exposure. Understanding recurring episodes of dust events will enable accurate and timely forecasts, helping mitigate their impacts and allow for better societal protection. Previous expert-based studies highlighted several dust sources and transport pathways into the Eastern Mediterranean region and further identified several weather systems that sustain these transport routes. But since supervised methods, i.e., manual classifications, may have disadvantages, it is often preferred to use unsupervised methods, or systematic classifications. Here, a novel climatological understanding of the link between weather systems and dust transport is achieved by systematically classifying dust events. Using ground PM10 measurements in Israel to objectively identify a climatological set of extreme dust events between 2003 and 2020, we combine atmospheric data from ERA5 and CAMS reanalysis data sets and apply a new, unsupervised, and unbiased method to classify dust events in the Eastern Mediterranean. Six coherent types emerge, corresponding to events governed by shallow and deep Mediterranean cyclones, Mediterranean dipoles, Sharav thermal lows, Arabian anticyclones, and local factors, respectively. Having different seasonality, these classes are insightful in mapping the meteorological conditions and weather systems governing dust emission and transport towards the Eastern Mediterranean. In this context, slantwise-descending dry intrusions are shown to be a key precursor dynamical feature common to the buildup of elevated dust concentrations in three of the clusters of the highest PM10 concentrations.
-
(2023) Aerosol Science and Technology. 57, 6, p. 532-545 Abstract
Secondary organic aerosol (SOA) from indole was produced in a smog chamber under different relative humidity (RH =
-
(2023) Aerosol Science and Technology. 57, 5, p. 367-383 Abstract
Soot particles (SP) are ubiquitous components of atmospheric particulate matter and have been shown to cause various adverse health effects. In the atmosphere, freshly emitted SP can be coated by condensed low-volatility secondary organic and inorganic species. In addition, gas-phase oxidants may react with the surface of SP. Due to the chemical and physical resemblance of SP carbon backbone with polyaromatic hydrocarbon species and their potent oxidation products, we investigated the biological responses of BEAS-2B lung epithelial cells following exposure to fresh- and photochemically aged-SP at the air-liquid interface. A comprehensive physical and chemical aerosol characterization was performed to depict the atmospheric transformations of SP, showing that photochemical aging increased the organic carbon fraction and the oxidation state of the SP. RNA-sequencing and qPCR analysis showed varying gene expression profiles for fresh- and aged-SP. Exposure to aged-SP increased DNA damage, oxidative damage, and upregulation of NRF2-mediated oxidative stress response genes compared to fresh-SP. Furthermore, aged-SP augmented inflammatory cytokine secretion and activated AhR-response, as evidenced by increased expression of AhR-responsive genes. These results indicate that oxidative stress, inflammation, and DNA damage play a key role in the cytotoxicity of SP in BEAS-2B cells, where aging leads to higher toxic responses. Collectively, our results suggest that photochemical aging may increase SP toxicity through surface modifications that lead to an increased toxic response by activating different molecular pathways.
-
(2023) Proceedings of the National Academy of Sciences of the United States of America. 120, 15, e222022812. Abstract
Hydroxyl radical (OH) is a key oxidant that triggers atmospheric oxidation chemistry in both gas and aqueous phases. The current understanding of its aqueous sources is mainly based on known bulk (photo)chemical processes, uptake from gaseous OH, or related to interfacial O 3 and NO 3 radical-driven chemistry. Here, we present experimental evidence that OH radicals are spontaneously produced at the airwater interface of aqueous droplets in the dark and the absence of known precursors, possibly due to the strong electric field that forms at such interfaces. The measured OH production rates in atmospherically relevant droplets are comparable to or significantly higher than those from known aqueous bulk sources, especially in the dark. As aqueous droplets are ubiquitous in the troposphere, this interfacial source of OH radicals should significantly impact atmospheric multiphase oxidation chemistry, with substantial implications on air quality, climate, and health.
-
(2023) Environmental Science and Technology. 57, 13, p. 5160-5168 Abstract
Polar nitrated aromatic compounds (pNACs) are key ambient brown carbon chromophores; however, their formation mechanisms, especially in the aqueous phase, remain unclear. We developed an advanced technique for pNACs and measured 1764 compounds in atmospheric fine particulate matter sampled in urban Beijing, China. Molecular formulas were derived for 433 compounds, of which 17 were confirmed using reference standards. Potential novel species with up to four aromatic rings and a maximum of five functional groups were found. Higher concentrations were detected in the heating season, with a median of 82.6 ng m3 for Σ17pNACs. Non-negative matrix factorization analysis indicated that primary emissions particularly coal combustion were dominant in the heating season. While in the non-heating season, aqueous-phase nitration could generate abundant pNACs with the carboxyl group, which was confirmed by their significant association with the aerosol liquid water content. Aqueous-phase formation of 3- and 5-nitrosalicylic acids instead of their isomer of 4-hydroxy-3-nitrobenzoic acid suggests the existence of an intermediate where the intramolecular hydrogen bond favors kinetics-controlled NO2 nitration. This study provides not only a promising technique for the pNAC measurement but also evidence for their atmospheric aqueous-phase formation, facilitating further evaluation of pNACs climatic effects.
-
(2023) npj Climate and Atmospheric Science. 6, 23. Abstract
Events of high dust loading are extreme meteorological phenomena with important climate and health implications. Therefore, early forecasting is critical for mitigating their adverse effects. Dust modeling is a long-standing challenge due to the multiscale nature of the governing meteorological dynamics and the complex coupling between atmospheric particles and the underlying atmospheric flow patterns. While physics-based numerical modeling is commonly being used, we propose a meteorological-based deep multi-task learning approach for forecasting dust events. Our approach consists of forecasting the local PM10 (primary task) measured in situ, and simultaneously to predict the satellite-based regional PM10 (auxiliary task); thus, leveraging valuable information from a correlated task. We use 18 years of regional meteorological data to train a neural forecast model for dust events in Israel. Twenty-four hours before the dust event, the model can detect 76% of the events with even higher predictability of winter and spring events. Further analysis shows that local dynamics drive most misclassified events, meaning that the coherent driving meteorology in the region holds a predictive skill. Further, we use machine-learning interpretability methods to reveal the meteorological patterns the model has learned, thus highlighting the important features that govern dust events in the Middle East, being primarily lower-tropospheric winds, and Aerosol Optical Depth.
-
(2023) Journal of Crystal Growth. 601, 126961. Abstract
Ice-binding proteins (IBPs) allow organisms to survive below the freezing point by modulating ice crystal growth. These proteins act by binding to ice surfaces, thus inhibiting ice growth. Until now, high-resolution imaging of ice growing in the presence of IBPs has not been possible. We developed a unique in-situ technique that enables atomic force microscopy (AFM) imaging of ice formation and growth in the ice-IBP system. The new technique enables controlling the growth of ice crystals under a strong and focused thermal gradient. We present images of ice crystals with sub-ten nanometer resolution. Ice was grown in the presence of two different IBPs that exhibit specific and unique structures. This development opens the path for fine elucidation of the interaction of IBPs with growing ice surfaces as well as with other frozen systems at unprecedented high resolution. Furthermore, with the exception of crystals growing in thin films, this is the first demonstration for imaging a growing crystal immersed in its own melt with AFM.
-
(2023) Environmental Research. 216, 114537. Abstract
Human health is linked to climatic factors in complex ways, and climate change can have profound direct and indirect impacts on the health status of any given region. Susceptibility to climate change is modulated by biological, ecological and socio-political factors such as age, gender, geographic location, socio-economic status, occupation, health status and housing conditions, among other. In the Eastern Mediterranean and Middle East (EMME), climatic factors known to affect human health include extreme heat, water shortages and air pollution. Furthermore, the epidemiology of vector-borne diseases (VBDs) and the health consequences of population displacement are also influenced by climate change in this region. To inform future policies for adaptation and mitigation measures, and based on an extensive review of the available knowledge, we recommend several research priorities for the region. These include the generation of more empirical evidence on exposure-response functions involving climate change and specific health outcomes, the development of appropriate methodologies to evaluate the physical and psychological effects of climate change on vulnerable populations, determining how climate change alters the ecological determinants of human health, improving our understanding of the effects of long-term exposure to heat stress and air pollution, and evaluating the interactions between adaptation and mitigation strategies. Because national boundaries do not limit most climate-related factors expected to impact human health, we propose that adaptation/mitigation policies must have a regional scope, and therefore require collaborative efforts among EMME nations. Policy suggestions include a decisive region-wide decarbonisation, the integration of environmentally driven morbidity and mortality data throughout the region, advancing the development and widespread use of affordable technologies for the production and management of drinking water by non-traditional means, the development of comprehensive strategies to improve the health status of displaced populations, and fostering regional networks for monitoring and controlling the spread of infectious diseases and disease vectors.
-
(2023) Biogeosciences. 20, 1, p. 1-14 Abstract
In this study, we investigated the ice nucleation activity of the Antarctic sea ice diatom Fragilariopsis cylindrus. Diatoms are the main primary producers of organic carbon in the Southern Ocean, and the Antarctic sea ice diatom F. cylindrus is one of the predominant species. This psychrophilic diatom is abundant in open waters and within sea ice. It has developed several mechanisms to cope with the extreme conditions of its environment, for example, the production of ice-binding proteins (IBPs) and extracellular polymeric substances known to alter the structure of ice. Here, we investigated the ice nucleation activity of F. cylindrus using a microfluidic device containing individual sub-nanolitre (∼1/490μm) droplet samples. The experimental method and a newly implemented Poisson-statistics-based data evaluation procedure applicable to samples with low ice nucleating particle concentrations were validated by comparative ice nucleation experiments with well-investigated bacterial samples from Pseudomonas syringae (Snomax®). The experiments reveal an increase of up to 7.2°C in the ice nucleation temperatures for seawater containing F. cylindrus diatoms when compared to pure seawater. Moreover, F. cylindrus fragments also show ice nucleation activity, while experiments with the F. cylindrus ice-binding protein (fcIBP) show no significant ice nucleation activity. A comparison with experimental results from other diatoms suggests a universal behaviour of polar sea ice diatoms, and we provide a diatom-mass-based parameterization of their ice nucleation activity for use in models.
-
(2022) Chemosphere. 308, 136421. Abstract
Anisole (methoxybenzene) represents an important marker compound of lignin pyrolysis and a starting material for many chemical products. In this study, secondary organic aerosols (SOA) formed by anisole via various atmospheric processes, including homogeneous photooxidation with varying levels of OH and NOx and subsequent heterogeneous NO3 dark reactions, were investigated. The yields of anisole SOA, particle-bound organoperoxides, particle-induced oxidative potential (OP), and cytotoxicity were characterized in view of the atmospheric fate of the anisole precursor. Anisole SOA yields ranged between 0.12 and 0.35, depending on the reaction pathways and aging degrees. Chemical analysis of the SOA suggests that cleavage of the benzene ring is the main reaction channel in the photooxidation of anisole to produce low-volatility, highly oxygenated small molecules. Fresh anisole SOA from OH photooxidation are more light-absorbing and have higher OP and organoperoxide content. The high correlation between SOA OP and organoperoxide content decreases exponentially with the degree of OH aging. However, the contribution of organoperoxides to OP is minor (
-
(2022) Nature Communications. 13, 1, 5019. Abstract
Bacterial ice nucleation proteins (INPs) can cause frost damage to plants by nucleating ice formation at high sub-zero temperatures. Modeling of Pseudomonas borealis INP by AlphaFold suggests that the central domain of 65 tandem sixteen-residue repeats forms a beta-solenoid with arrays of outward-pointing threonines and tyrosines, which may organize water molecules into an ice-like pattern. Here we report that mutating some of these residues in a central segment of P. borealis INP, expressed in Escherichia coli, decreases ice nucleation activity more than the sections deletion. Insertion of a bulky domain has the same effect, indicating that the continuity of the water-organizing repeats is critical for optimal activity. The ~10 C-terminal coils differ from the other 55 coils in being more basic and lacking water-organizing motifs; deletion of this region eliminates INP activity. We show through sequence modifications how arrays of conserved motifs form the large ice-nucleating surface required for potency.
-
A lightweight broadband cavity-enhanced spectrometer for NO2 measurement on uncrewed aerial vehicles(2022) Atmospheric Measurement Techniques. 15, 22, p. 6643-6652 Abstract
We describe the design and performance of a lightweight broadband cavity-enhanced spectrometer for measurement of NO2 on uncrewed aerial vehicles and light aircraft. The instrument uses a light-emitting diode (LED) centered at 457nm, high-finesse mirrors (reflectivity=0.999963 at 450nm), and a grating spectrometer to determine optical extinction coefficients between 430 and 476nm, which are fit with custom spectral fitting software and published absorption cross sections. The instrument weighs 3.05kg and has a power consumption of less than 35W at 25∘C. A ground calibration unit provides helium and zero air flows to periodically determine the reflectivity of the cavity mirrors using known Rayleigh scattering cross sections. The precision (1σ) for laboratory measurements is 43ppt NO2 in 1s and 7ppt NO2 in 30s. Measurement of air with known NO2 mixing ratios in the range of 070ppb agreed with the known values within 0.3% (slope; r2=0.99983). We demonstrate instrument performance using vertical profiles of the NO2 mixing ratio acquired on board an uncrewed aerial vehicle between 0 and 110m above ground level in Boulder, Colorado.
-
(2022) Journal of geophysical research. Biogeosciences. 127, 10, e2022JG007. Abstract
The microbiome of atmospheric dust events has raised increasing interest in the last decade, resulting in numerous studies that characterized the different parameters affecting the composition of the atmospheric microbiome, that is, the aerobiome. However, less is known about the functional profile of the aerobiome and how it compares with other environments. Here, we describe the results of shotgun metagenome analysis conducted on a representative set of particulate matter (PM) samples taken in Israel under dusty and nondusty conditions. We compared the functional profiles of these samples to local metagenomes collected from soils, sea, and leaf surfaces and to PM collected in Saudi Arabia, in order to link between the sampled aerosols and potential sources that contribute to the aerobiome. We found that PM samples collected in Israel most resembled Saudi Arabian dust and Israeli soils in both community composition and functional genes profile. In addition, we found significant differences in the abundances of genes associated with anthropogenic activity. Specifically, the examined dust exhibited a significantly higher abundance of genes associated with the biodegradation of organic contaminants, mostly benzoate and aminobenzoate, compared with all other examined environments. These preliminary results suggest that an anthropogenic impact on the aerobiome composition and functional profile is widespread, and pave the path to understanding the role of dust storms in disseminating microorganisms in various environments, spreading various traits, and affecting humans, livestock, plants, and ecosystem health.
-
(2022) Reviews of Geophysics. 60, 3, e2021RG000. Abstract
Observation-based and modeling studies have identified the Eastern Mediterranean and Middle East (EMME) region as a prominent climate change hotspot. While several initiatives have addressed the impacts of climate change in parts of the EMME, here we present an updated assessment, covering a wide range of timescales, phenomena and future pathways. Our assessment is based on a revised analysis of recent observations and projections and an extensive overview of the recent scientific literature on the causes and effects of regional climate change. Greenhouse gas emissions in the EMME are growing rapidly, surpassing those of the European Union, hence contributing significantly to climate change. Over the past half-century and especially during recent decades, the EMME has warmed significantly faster than other inhabited regions. At the same time, changes in the hydrological cycle have become evident. The observed recent temperature increase of about 0.45°C per decade is projected to continue, although strong global greenhouse gas emission reductions could moderate this trend. In addition to projected changes in mean climate conditions, we call attention to extreme weather events with potentially disruptive societal impacts. These include the strongly increasing severity and duration of heatwaves, droughts and dust storms, as well as torrential rain events that can trigger flash floods. Our review is complemented by a discussion of atmospheric pollution and land-use change in the region, including urbanization, desertification and forest fires. Finally, we identify sectors that may be critically affected and formulate adaptation and research recommendations toward greater resilience of the EMME region to climate change.
-
(2022) The Science of the total environment. 837, 155817. Abstract
Carbonaceous aerosols (CAs) are major components of fine particulate matter (PM2.5) that dramatically influence the energy budget of Earth. However, accurate assessment of the climatic impacts of CAs is still challenging due to the large uncertainties remaining in the measurement of their optical properties. In this respect, a modified versatile aerosol concentration enrichment system integrated into optical instruments (VACES-OPTS) was set up to increase particle concentration and amplify signal-noise ratio during optical measurement. Based on the novel technique, this study was able to lower the detection limit of CAs by an order of magnitude under high temporal resolution (2\u202fh) and small sampling flow (6\u202fL\u202fmin−1). Besides, stable and reliable optical data were obtained for absorption apportionment and source identification of black carbon (BC) and brown carbon (BrC). In the field application of the new system, high absorption coefficient of CAs in Shanghai, China was witnessed. Further analysis of the contribution of black carbon BC and BrC to light absorption revealed that BrC could account for over 15% of the total absorption at 370\u202fnm. According to the potential source contribution function model (PSCF) classification, CAs with strong light absorption in urban Shanghai originated not only from highly polluted inland China but also from active marine ship emissions.
[Display omitted]
The VACES-OPTS was developed to obtain reliable optical data of BC and BrC.Accurate and high temporal resolution observations of BC and BrC was realized.BrC accounted for over 15% of the total absorption at 370\u202fnm in urban Shanghai.Significant optical impacts of ship emissions on a coastal megacity were found. -
(2022) Science of the Total Environment. 838, 156431. Abstract
Straw burning comprises more than 30% of all types of burned biomass in Asia, while the estimation of the emitted aerosols' direct radiative forcing effect suffers from large uncertainties, especially when atmospheric aging processes are considered. In this study, the light absorption properties of primary and aged straw burning aerosols in open fire were characterized at 7 wavelengths ranging from 370 nm to 950 nm in a chamber. The primary rice, corn and wheat straw burning bulk aerosols together had a mass absorption efficiency (MAE) of 2.43 ± 1.36 m2 g−1 at 520 nm and an absorption Ångström exponent (AAE) of 1.93 ± 0.71, while the primary sorghum straw burning bulk aerosols were characterized by a relatively lower MAE of 0.95 ± 0.54 m2 g−1 and a higher AAE of 4.80 ± 0.68. Both the MAE and AAE of primary aerosols can be well parameterized by the (PM-BC)/BC ratio (in wt.). The MAE of black carbon (BC) increased by 11190% during photoreactions equivalent to 1660 h of atmospheric aging, which was positively correlated with the (PM-BC)/(BC) ratio. The MAE of organic aerosols first slightly increased or leveled off, and then decreased. Specifically, at 370 nm, the first growth/plateau stage lasted until OH exposure reached 0.471.29 × 1011 molecule cm−3 s, and the following period exhibited decay rates of 1.02.8 × 10−12 cm3 molecule−1 s−1 against the OH radical, corresponding to half-lives of 46134 h in a typical ambient condition. During photoreactions, competition among the lensing effect, growth/bleach of organic chromophores, and particle mass and size growth complicated the evolution of the direct radiative forcing effect. It is concluded that rice and corn straw burning aerosols maintained a warming effect after aging, while the cooling effect of fresh sorghum straw burning aerosols increased with aging.
-
(2022) Environment international. 166, 107366. Abstract
The health effects of exposure to secondary organic aerosols (SOAs) are still limited. Here, we investigated and compared the toxicities of soot particles (SP) coated with β-pinene SOA (SOAβPin-SP) and SP coated with naphthalene SOA (SOANap-SP) in a human bronchial epithelial cell line (BEAS-2B) residing at the airliquid interface. SOAβPin-SP mostly contained oxygenated aliphatic compounds from β-pinene photooxidation, whereas SOANap-SP contained a significant fraction of oxygenated aromatic products under similar conditions. Following exposure, genome-wide transcriptome responses showed an Nrf2 oxidative stress response, particularly for SOANap-SP. Other signaling pathways, such as redox signaling, inflammatory signaling, and the involvement of matrix metalloproteinase, were identified to have a stronger impact following exposure to SOANap-SP. SOANap-SP also induced a stronger genotoxicity response than that of SOAβPin-SP. This study elucidated the mechanisms that govern SOA toxicity and showed that, compared to SOAs derived from a typical biogenic precursor, SOAs from a typical anthropogenic precursor have higher toxicological potency, which was accompanied with the activation of varied cellular mechanisms, such as aryl hydrocarbon receptor. This can be attributed to the difference in chemical composition; specifically, the aromatic compounds in the naphthalene-derived SOA had higher cytotoxic potential than that of the β-pinene-derived SOA.
-
(2022) The Science of the total environment. 834, 155365. Abstract
Humic-like substances (HULIS) account for a major redox-active fraction of biomass burning organic aerosols (BBOA). During atmospheric transport, fresh acidic BB-HULIS in droplets and humid aerosols are subject to neutralization and pH-modified aging process. In this study, solutions containing HULIS isolated from wood smoldering emissions were first adjusted with NaOH and NH3 to pH values in the range of 3.69.0 and then aged under oxic dark conditions. Evolution of HULIS oxidative potential (OP) and total peroxide content (equivalent H2O2 concentration, H2O2eq) were measured together with the changes in solution absorbance and chemical composition. Notable immediate responses such as peroxide generation, HULIS autoxidation, and an increase in OP and light absorption were observed under alkaline conditions. Initial H2O2eq, OP, and absorption increased exponentially with pH, regardless of the alkaline species added. Dark aging further oxidized the HULIS and led to pH-dependent toxic and chemical changes, exhibiting an alkaline-facilitated initial increase followed by a decrease of OP and H2O2eq. Although highly correlated with HULIS OP, the contributions of H2O2eq to OP are minor but increased both with solution pH and dark aging time. Alkalinity-assisted autoxidation of phenolic compounds and quinoids with concomitant formation of H2O2 and other alkalinity-favored peroxide oxidation reactions are proposed here for explaining the observed HULIS OP and chemical changes in the dark. Our findings suggest that alkaline neutralization of fresh BB-HULIS represents a previously overlooked peroxide source and pathway for modifying aerosol redox-activity and composition. Additionally, these findings imply that the lung fluid neutral environment can modify the OP and peroxide content of inhaled BB-HULIS. The results also suggest that common separation protocols of HULIS using base extraction methods should be treated with caution when evaluating and comparing their composition, absorption, and relative toxicity.
-
(2022) Environmental Science: Atmospheres. 2, 4, p. 616-633 Abstract
Atmospheric particles were sampled in Rehovot, Israel during a national Lag Ba'Omer bonfire festival as a case study to investigate the physical and chemical transformations of mixed mineral dust and biomass burning (BB) aerosols. Aerosol mass spectrometry was used in situ to characterize aging and chemical evolution of BB aerosols in real time throughout the event. During this dynamic period of BB emissions, particle samples were collected for chemical imaging using spectromicroscopy techniques. Computer-controlled scanning electron microscopy with energy dispersive X-ray analysis identified multiple particle types including highly carbonaceous (5483%) particles, aged mineral dust (16%), and sulfur-containing particles (1741%). Synchrotron-based scanning transmission X-ray microscopy coupled with near edge X-ray absorption fine structure (STXM/NEXAFS) was used to assess the internal chemical heterogeneity of individual BB particles and the morphology of soot inclusions. The observed higher contribution of mixed component particles along with an increase in particle organic volume fraction suggests an atmospheric aging process, consistent with in situ measurements. An estimation method for particle component masses (i.e., organics, elemental carbon, and inorganics) inferred from STXM measurements was used to determine quantitative mixing state metrics of particles based on entropy-derived diversity measures for different periods of the BB event. In general, there was a small difference in the particle-specific diversity among the samples (Dα = 1.31.8). However, the disparity from the bulk population diversity observed during the intense periods was found to have high values of Dγ = 2.52.9, while particles collected outside of the burning event displayed lower bulk diversity of Dγ = 1.52.0. Quantitative methods obtained from chemical imaging measurements presented here will serve to accurately characterize the evolution of mixed BB aerosols within urban environments.
-
(2022) ACS Biomaterials Science and Engineering. 8, 6, p. 2553-2563 Abstract
Delivering medication to the lungs via nebulization of pharmaceuticals is a noninvasive and efficient therapy route, particularly for respiratory diseases. The recent worldwide severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic urges the development of such therapies as an effective alternative to vaccines. The main difficulties in using inhalation therapy are the development of effective medicine and methods to stabilize the biological molecules and transfer them to the lungs efficiently following nebulization. We have developed a high-affinity angiotensin-converting enzyme 2 (ACE2) receptor-binding domain (RBD-62) that can be used as a medication to inhibit infection with SARS-CoV-2 and its variants. In this study, we established a nebulization protocol for drug delivery by inhalation using two commercial vibrating mesh (VM) nebulizers (Aerogen Solo and PARI eFlow) that generate similar mist size distribution in a size range that allows efficient deposition in the small respiratory airway. In a series of experiments, we show the high activity of RBD-62, interferon-α2 (IFN-α2), and other proteins following nebulization. The addition of gelatin significantly stabilizes the proteins and enhances the fractions of active proteins after nebulization, minimizing the medication dosage. Furthermore, hamster inhalation experiments verified the feasibility of the protocol in pulmonary drug delivery. In short, the gelatin-modified RBD-62 formulation in coordination with VM nebulizer can be used as a therapy to cure SARS-CoV-2.
-
(2022) Frontiers in Microbiology. 13, 872306. Abstract
Microbially-produced ice nucleating proteins (INpro) are unique molecular structures with the highest known catalytic efficiency for ice formation. Airborne microorganisms utilize these proteins to enhance their survival by reducing their atmospheric residence times. INpro also have critical environmental effects including impacts on the atmospheric water cycle, through their role in cloud and precipitation formation, as well as frost damage on crops. INpro are ubiquitously present in the atmosphere where they are emitted from diverse terrestrial and marine environments. Even though bacterial genes encoding INpro have been discovered and sequenced decades ago, the details of how the INpro molecular structure and oligomerization foster their unique ice-nucleation activity remain elusive. Using machine-learning based software AlphaFold 2 and trRosetta, we obtained and analysed the first ab initio structural models of full length and truncated versions of bacterial INpro. The modeling revealed a novel beta-helix structure of the INpro central repeat domain responsible for ice nucleation activity. This domain consists of repeated stacks of two beta strands connected by two sharp turns. One beta-strand is decorated with a TxT amino acid sequence motif and the other strand has an SxL[T/I] motif. The core formed between the stacked beta helix-pairs is unusually polar and very distinct from previous INpro models. Using synchrotron radiation circular dichroism, we validated the β-strand content of the central repeat domain in the model. Combining the structural model with functional studies of purified recombinant INpro, electron microscopy and modeling, we further demonstrate that the formation of dimers and higher-order oligomers is key to INpro activity. Using computational docking of the new INpro model based on rigid-body algorithms we could reproduce a previously proposed homodimer structure of the INpro CRD with an interface along a highly conserved tyrosine ladder and show that the dimer model agrees with our functional data. The parallel dimer structure creates a surface where the TxT motif of one monomer aligns with the SxL[T/I] motif of the other monomer widening the surface that interacts with water molecules and therefore enhancing the ice nucleation activity. This work presents a major advance in understanding the molecular foundation for bacterial ice-nucleation activity.
-
(2022) ACS Earth and Space Chemistry. 6, 5, p. 1358-1374 Abstract
The atmospheric aging of volatile organic compounds leads to the formation of complex mixtures of highly oxidized secondary organic aerosols (SOAs). State-of-the-art mass spectrometry (MS) has become a pivotal tool for their chemical characterization. In this study, we characterized the chemical complexity of naphthalene-derived SOA by three different time-of-flight (TOF) mass spectrometric techniques applying electron ionization: high-resolutionTOFaerosol MS (AMS), direct inlet probe (DIP)high-resolution TOFMS, and thermal desorptioncomprehensive two-dimensional gas chromatographyTOFMS (GC × GC). We discuss AMS as an online, DIP as an atline, and GC × GC as an offline technique to compare their informative value for studying the oxidation state, volatility, and molecular composition of laboratory-generated SOA. For GC × GC, the accessible organic content was limited to (semi-)volatile compounds and supported a reliable assignment of the molecular composition. DIP and AMS were used to derive secondary parameters such as O/C and H/C ratios, the general functionality of the compound classes and their abundance upon photochemical aging. Thereby, while the induced pyrolysis in the AMS extended the accessibility range to polar, high-molecular-weight compounds, thermal fragmentation also led to limited molecular information. For DIP, low-volatility compounds could be volatilized and the high mass resolution was useful to resolve isobaric mass fragments and assign reliable sum formulas of fragments and molecular ions. Although no single technique can provide information to describe the full chemical complexity of the SOA, AMS, DIP, and GC × GC in their complementarity are well suited to investigate the impact of SOA on health and environment.
-
(2022) Communications Earth and Environment. 3, 1, 121. Abstract
The diversity of microbes and their transmission between ocean and atmosphere are poorly understood despite the implications for microbial global dispersion and biogeochemical processes. Here, we survey the genetic diversity of airborne and surface ocean bacterial communities sampled during springtime transects across the northwest Pacific and subtropical north Atlantic as part of the Tara Pacific Expedition. We find that microbial community composition is more variable in the atmosphere than in the surface ocean. Bacterial communities were more similar between the two surface oceans than between the ocean and the overlying atmosphere. Likewise, Pacific and Atlantic atmospheric microbial communities were more similar to each other than to those in the ocean beneath. Atmospheric community composition over the Atlantic was dominated by terrestrial and specifically, dust-associated bacteria, whereas over the Pacific there was a higher prevalence and differential abundance of marine bacteria. Our findings highlight regional differences in long-range microbial exchange and dispersal between land, ocean, and atmosphere.
-
(2022) Environmental Science and Technology. 56, 8, p. 4816-4827 Abstract
Secondary organic aerosols (SOAs) affect incoming solar radiation by interacting with light at ultraviolet and visible wavelength ranges. However, the relationship between the chemical composition and optical properties of SOA is still not well understood. In this study, the complex refractive index (RI) of SOA produced from OH oxidation of naphthalene in the presence of nitrogen oxides (NOx) was retrieved online in the wavelength range of 315650 nm and the bulk chemical composition of the SOA was characterized by an online high-resolution time-of-flight mass spectrometer. In addition, the molecular-level composition of brown carbon chromophores was determined using high-performance liquid chromatography coupled to a photodiode array detector and a high-resolution mass spectrometer. The real part of the RI of the SOA increases with both the NOx/naphthalene ratio and aging time, likely due to the increased mean polarizability and decreased molecular weight due to fragmentation. Highly absorbing nitroaromatics (e.g., C6H5NO4, C7H7NO4, C7H5NO5, C8H5NO5) produced under higher NOx conditions contribute significantly to the light absorption of the SOA. The imaginary part of the RI linearly increases with the NOx/VOCs ratio due to the formation of nitroaromatic compounds. As a function of aging, the imaginary RI increases with the O/C ratio (slope = 0.024), mainly attributed to the achieved higher NOx/VOCs ratio, which favors the formation of light-absorbing nitroaromatics. The light-absorbing enhancement is not as significant with extensive aging as it is under a lower aging time due to the opening of aromatic rings by reactions.
-
(2022) Geophysical Research Letters. 49, 7, e2021GL097. Abstract
This study investigates selected secondary atmospheric responses to the widely reported emission change attributed to COVID19 lockdowns in the highly polluted IndoGangetic Plain (IGP) using groundbased measurements of trace gases and particulate matter. We used a chemical boxmodel to show that production of nighttime oxidant, NO3, was affected mainly by emission decrease (average nighttime production rates 1.2, 0.8 and 1.5 ppbv hr−1 before, during and relaxation of lockdown restrictions, respectively), while NO3 sinks were sensitive to both emission reduction and seasonal variations. We have also shown that the maximum potential mixing ratio of nitryl chloride, a photolytic chlorine radical source which has not been previously considered in the IGP, is as high as 5.5 ppbv at this inland site, resulting from strong nitrate radical production and a potentially large particulate chloride mass. This analysis suggests that air quality measurement campaigns and modeling explicitly consider heterogeneous nitrogen oxide and halogen chemistry.
Plain Language Summary
The IndoGangetic Plain (IGP) is one of the most polluted regions on earth, with poor air quality affecting the majority of the Indian population. The atmospheric chemistry that transforms major regional emissions into harmful secondary pollutants is complex. Here, we quantify, for the first time, several important oxidative processes and show the potential for substantial oxidation of biogenic volatile organic compounds and the production of chlorine through unconventional chemistry in the IGP. We further show how these chemical cycles varied due to the emission reductions as a result of COVID19 lockdown, findings that will serve to define their sensitivity to future emission changes in the region.
Key Points
Atmospheric response in the IndoGangetic Plain varied according to seasonal changes and emissions reductions due to COVID19 lockdown
NO3 production was mainly affected by emission changes, while NO3 sinks were sensitive to both emissions and seasonal changes
Nitryl chloride, a photolytic chlorine radical source not previously considered in the inland IndoGangetic Plain, may be up to 5.5 ppbv -
(2022) Environmental Science & Technology. 56, 6, p. 3340-3353 Abstract
We investigate the chemical composition of organic light-absorbing components, also known as brown carbon (BrC) chromophores, formed in a proxy of anthropogenic secondary organic aerosol generated from the photooxidation of naphthalene (naph-SOA) in the absence and presence of NOx. High-performance liquid chromatography equipped with a photodiode array detector and electrospray ionization high-resolution mass spectrometer is employed to characterize naph-SOA and its BrC components. We provide molecular-level insights into the chemical composition and optical properties of individual naph-SOA components and investigate their BrC relevance. This work reveals the formation of strongly absorbing nitro-aromatic chromophores under high-NOx conditions and describes their degradation during atmospheric aging. NOx addition enhanced the light absorption of naph-SOA while reducing wavelength-dependence, as seen by the mass absorption coefficient (MAC) and absorption Ångström exponent (AAE). Optical parameters of naph-SOA generated under low- and high-NOx conditions showed a range of values from MACOM 405nm ∼ 0.12 m2 g1 and AAE300450nm ∼ 8.87 (low-NOx) to MACOM 405nm ∼ 0.19 m2 g1 and AAE300450nm ∼ 7.59 (high-NOx), consistent with \u201cvery weak\u201d and \u201cweak\u201d BrC optical classes, respectively. The weak-BrC class is commonly attributed to biomass smoldering emissions, which appear to have optical properties comparable with the naph-SOA. Molecular chromophores contributing to naphthalene BrC absorption were identified with substantial nitro-aromatics, indicating that these species may be used as source-specific markers of BrC related to the anthropogenic emissions.
-
(2022) Environmental Health Perspectives. 130, 2, 027003. Abstract
Background:Secondary organic aerosols (SOAs) formed from anthropogenic or biogenic gaseous precursors in the atmosphere substantially contribute to the ambient fine particulate matter [PM ≤2.5μm in aerodynamic diameter (PM2.5)] burden, which has been associated with adverse human health effects. However, there is only limited evidence on their differential toxicological impact.Objectives:We aimed to discriminate toxicological effects of aerosols generated by atmospheric aging on combustion soot particles (SPs) of gaseous biogenic (β-pinene) or anthropogenic (naphthalene) precursors in two different lung cell models exposed at the airliquid interface (ALI).Methods:Mono- or cocultures of lung epithelial cells (A549) and endothelial cells (EA.hy926) were exposed at the ALI for 4 h to different aerosol concentrations of a photochemically aged mixture of primary combustion SP and β-pinene (SOAβPIN-SP) or naphthalene (SOANAP-SP). The internally mixed soot/SOA particles were comprehensively characterized in terms of their physical and chemical properties. We conducted toxicity tests to determine cytotoxicity, intracellular oxidative stress, primary and secondary genotoxicity, as well as inflammatory and angiogenic effects.Results:We observed considerable toxicity-related outcomes in cells treated with either SOA type. Greater adverse effects were measured for SOANAP-SP compared with SOAβPIN-SP in both cell models, whereas the nano-sized soot cores alone showed only minor effects. At the functional level, we found that SOANAP-SP augmented the secretion of malondialdehyde and interleukin-8 and may have induced the activation of endothelial cells in the coculture system. This activation was confirmed by comet assay, suggesting secondary genotoxicity and greater angiogenic potential. Chemical characterization of PM revealed distinct qualitative differences in the composition of the two secondary aerosol types.Discussion:In this study using A549 and EA.hy926 cells exposed at ALI, SOA compounds had greater toxicity than primary SPs. Photochemical aging of naphthalene was associated with the formation of more oxidized, more aromatic SOAs with a higher oxidative potential and toxicity compared with β-pinene. Thus, we conclude that the influence of atmospheric chemistry on the chemical PM composition plays a crucial role for the adverse health outcome of emissions.
-
(2022) Atmospheric Chemistry and Physics. 22, 3, p. 1793-1809 Abstract
It is being suggested that particle-bound or particle-induced reactive oxygen species (ROS), which significantly contribute to the oxidative potential (OP) of aerosol particles, are a promising metric linking aerosol compositions to toxicity and adverse health effects. However, accurate ROS quantification remains challenging due to the reactive and short-lived nature of many ROS components and the lack of appropriate analytical methods for a reliable quantification. Consequently, it remains difficult to gauge their impact on human health, especially to identify how aerosol particle sources and atmospheric processes drive particle-bound ROS formation in a real-world urban environment. In this study, using a novel online particle-bound ROS instrument (OPROSI), we comprehensively characterized and compared the formation of ROS in secondary organic aerosols (SOAs) generated from organic compounds that represent anthropogenic (naphthalene, SOANAP) and biogenic (β-pinene, SOAβPIN) precursors. The SOA mass was condensed onto soot particles (SP) under varied atmospherically relevant conditions (photochemical aging and humidity) to mimic the SOA formation from a mixing of traffic-related carbonaceous primary aerosols and volatile organic compounds (VOCs). We systematically analyzed the ability of the aqueous extracts of the two aerosol types (SOANAP-SP and SOAβPIN-SP) to induce ROS production and OP. We further investigated cytotoxicity and cellular ROS production after exposing human lung epithelial cell cultures (A549) to extracts of the two aerosols. A significant finding of this study is that more than 90% of all ROS components in both SOA types have a short lifetime, highlighting the need to develop online instruments for a meaningful quantification of ROS. Our results also show that photochemical aging promotes particle-bound ROS production and enhances the OP of the aerosols. Compared to SOAβPIN-SP, SOANAP-SP elicited a higher acellular and cellular ROS production, a higher OP, and a lower cell viability. These consistent results between chemical-based and biological-based analyses indicate that particle-bound ROS quantification could be a feasible metric to predict aerosol particle toxicity and adverse human effects. Moreover, the cellular ROS production caused by SOA exposure not only depends on aerosol type but is also affected by exposure dose, highlighting a need to mimic the process of particle deposition onto lung cells and their interactions as realistically as possible to avoid unknown biases.
-
(2021) Nature Communications. 12, 1, 5476. Abstract
Sea spray aerosol (SSA) formation have a major role in the climate system, but measurements at a global-scale of this micro-scale process are highly challenging. We measured high-resolution temporal patterns of SSA number concentration over the Atlantic Ocean, Caribbean Sea, and the Pacific Ocean covering over 42,000 km. We discovered a ubiquitous 24-hour rhythm to the SSA number concentration, with concentrations increasing after sunrise, remaining higher during the day, and returning to predawn values after sunset. The presence of dominating continental aerosol transport can mask the SSA cycle. We did not find significant links between the diel cycle of SSA number concentration and diel variations of surface winds, atmospheric physical properties, radiation, pollution, nor oceanic physical properties. However, the daily mean sea surface temperature positively correlated with the magnitude of the day-to-nighttime increase in SSA concentration. Parallel diel patterns in particle sizes were also detected in near-surface waters attributed to variations in the size of particles smaller than ~1 µm. These variations may point to microbial day-tonight modulation of bubble-bursting dynamics as a possible cause of the SSA cycle.
-
(2021) Communications Earth and Environment. 2, 1, 179. Abstract
Greenhouse gas emissions and air pollution have changed the composition of the atmosphere, and thereby initiated global warming and reduced air quality. Our editorial board members note the need for a deeper understanding of atmospheric fluxes and processes to tackle climate and human health issues.
-
(2021) Environment international. 157, 106801. Abstract
Biomass burning (BB) is an important source of primary organic aerosols (POA). These POA contain a significant fraction of semivolatile organic compounds, and can release them into the gas phase during the dilution process in transport. Such evaporated compounds were termed \u201csecondarily evaporated BB organic gases (SBB-OGs)\u201d to distinguish them from the more studied primary emissions. SBB-OGs contribute to the formation of secondary organic aerosols (SOA) through reactions with atmospheric oxidants, and thus may influence human health and the Earth's radiation budget. In this study, tar materials collected from wood pyrolysis were taken as proxies for POA from smoldering-phase BB and were used to release SBB-OGs constantly in the lab. OH-initiated oxidation of the SBB-OGs in the absence of NOx was investigated using an oxidation flow reactor, and the chemical, optical, and toxicological properties of SOA were comprehensively characterized. Carbonyl compounds were the most abundant species in identified SOA species. Human lung epithelial cells exposed to an environmentally relevant dose of the most aged SOA did not exhibit detectable cell mortality. The oxidative potential of SOA was characterized with the dithiothreitol (DTT) assay, and its DTT consumption rate was 15.5 ± 0.5 pmol min−1 μg−1. The SOA present comparable light scattering to BB-POA, but have lower light absorption with imaginary refractive index less than 0.01 within the wavelength range of 360600 nm. Calculations based on Mie theory show that pure airborne SOA with atmospherically relevant sizes of 50400 nm have a cooling effect; when acting as the coating materials, these SOA can counteract the warming effect brought by airborne black carbon aerosol.
-
(2021) Frontiers in Microbiology. 12, 744117. Abstract
The atmosphere plays an important role in transporting microorganisms on a global scale, yet the processes affecting the composition of the airborne microbiome, the aerobiome, are not fully outlined. Here we present the community compositions of bacteria and fungi obtained by DNA amplicon-sequencing of aerosol samples collected in a size-resolved manner during nine consecutive days in central Israel. The campaign captured dust events originating from the Sahara and the Arabian deserts, as well as days without dust (\u201cclear days\u201d). We found that the source of the aerosol was the main variable contributing to the composition of both fungal and bacterial communities. Significant differences were also observed between communities representing particles of different sizes. We show evidence for the significant transport of bacteria as cell-aggregates and/or via bacterial attachment to particles during dust events. Our findings further point to the mixing of local and transported bacterial communities, observed mostly in particles smaller than 0.6 μm in diameter, representing bacterial single cells. Fungal communities showed the highest dependence on the source of the aerosols, along with significant daily variability, and without significant mixing between sources, possibly due to their larger aerodynamic size and shorter atmospheric residence times. These results, obtained under highly varied atmospheric conditions, provide significant assurances to previously raised hypotheses and could set the course for future studies on aerobiome composition.
-
(2021) Journal of fungi (Basel). 7, 10, 802. Abstract
Airborne microbial communities directly impact the health of humans, animals, plants, and receiving ecosystems. While airborne bacterial and fungal communities have been studied by both cultivation-based methods and metabarcoding surveys targeting specific molecular markers, fewer studies have used shotgun metagenomics to study the airborne mycobiome. We analyzed the diversity and relative abundance of fungi in nine airborne metagenomes collected on clear days ( "background ") and during dust storms in the Eastern Mediterranean. The negative correlation between the relative abundance of fungal reads and the concentrations of atmospheric particulate matter having an aerodynamic diameter smaller than 10 mu m (PM10) indicate that dust storms lower the proportion of fungi in the airborne microbiome, possibly due to the lower relative abundance of fungi in the dust storm source regions and/or more effective transport of bacteria by the dust. Airborne fungal community composition was altered by the dust storms, particularly those originated from Syria, which was enriched with xerophilic fungi. We reconstructed a high-quality fungal metagenome-assembled genome (MAG) from the order Cladosporiales, which include fungi known to adapt to environmental extremes commonly faced by airborne microbes. The negative correlation between the relative abundance of Cladosporiales MAG and PM10 concentrations indicate that its origin is dominated by local sources and likely includes the indoor environments found in the city.
-
(2021) Atmospheric Chemistry and Physics. 21, 19, p. 14927-14940 Abstract
Accurate Rayleigh scattering and absorption cross sections of atmospheric gases are essential for understanding the propagation of electromagnetic radiation in planetary atmospheres. Accurate extinction cross sections are also essential for calibrating high-finesse optical cavities and differential optical absorption spectroscopy and for accurate remote sensing. In this study, we measured the scattering and absorption cross sections of carbon dioxide, nitrous oxide, sulfur hexafluoride, oxygen, and methane in the continuous wavelength range of 307-725nm using broadband cavity-enhanced spectroscopy (BBCES). The experimentally derived Rayleigh scattering cross sections for CO2, N2O, SF6, O2, and CH4 agree with refractive index-based calculations, with a difference of (0.4±1.2)%, (-0.6±1.1)%, (0.9±1.4)%, (2.8±1.2)%, and (0.9±2.2)%, respectively. The O2-O2 collision-induced absorption and absorption by methane are obtained with high precision at the 0.8nm resolution of our BBCES instrument in the 307-725nm wavelength range. New dispersion relations for N2O, SF6, and CH4 were derived using data in the UV-vis wavelength range. This study provides dispersion relations for refractive indices, n-based Rayleigh scattering cross sections, and absorption cross sections based on more continuous and more extended wavelength ranges than available in the current literature.
-
(2021) Nature Microbiology. 6, 9, p. 1188-1198 Abstract
SARS-CoV-2 variants of interest and concern will continue to emerge for the duration of the COVID-19 pandemic. To map mutations in the receptor-binding domain (RBD) of the spike protein that affect binding to angiotensin-converting enzyme 2 (ACE2), the receptor for SARS-CoV-2, we applied in vitro evolution to affinity-mature the RBD. Multiple rounds of random mutagenic libraries of the RBD were sorted against decreasing concentrations of ACE2, resulting in the selection of higher affinity RBD binders. We found that mutations present in more transmissible viruses (S477N, E484K and N501Y) were preferentially selected in our high-throughput screen. Evolved RBD mutants include prominently the amino acid substitutions found in the RBDs of B.1.620, B.1.1.7 (Alpha), B1.351 (Beta) and P.1 (Gamma) variants. Moreover, the incidence of RBD mutations in the population as presented in the GISAID database (April 2021) is positively correlated with increased binding affinity to ACE2. Further in vitro evolution increased binding by 1,000-fold and identified mutations that may be more infectious if they evolve in the circulating viral population, for example, Q498R is epistatic to N501Y. We show that our high-affinity variant RBD-62 can be used as a drug to inhibit infection with SARS-CoV-2 and variants Alpha, Beta and Gamma in vitro. In a model of SARS-CoV-2 challenge in hamster, RBD-62 significantly reduced clinical disease when administered before or after infection. A 2.9 Å cryo-electron microscopy structure of the high-affinity complex of RBD-62 and ACE2, including all rapidly spreading mutations, provides a structural basis for future drug and vaccine development and for in silico evaluation of known antibodies.
-
The Toxic Effect of Water-Soluble Particulate Pollutants from Biomass Burning on Alveolar Lung Cells(2021) ATMOSPHERE. 12, 8, 1023. Abstract
In 2018, 3.8 million premature deaths were attributed to exposure to biomass burning nanoparticles from wood combustion. The objective of this study was to investigate and compare the toxic effect of wood-combustion-related biomass burning nanoparticles from three different combustion stages (i.e., flaming, smoldering, and pyrolysis) on alveolar lung cells, by studying cell proliferation, and structural and behavioral parameters. A549 lung epithelial cells were treated with 31, 62, 125, 250, and 500 µg/mL of water-soluble particulate pollutants from wood burning, and measured by means of real-time cell analysis, cell imaging, and phase imaging microscopy. At low concentrations (31 and 62 µg/mL), all three types of wood burning samples exhibited no toxicity. At 125 µg/mL, they caused decreased cell proliferation compared to the control. Exposure to higher concentrations (250 and 500 µg/mL) killed the cells. Cell physical parameters (area, optical volume, eccentricity, perimeter, and optical thickness) and behavioral parameters (migration, motility, and motility speed) did not change in response to exposure to wood burning materials up to a concentration of 125 µg/mL. Exposure to higher concentrations (250 and 500 µg/mL) changed cell perimeter, optical thickness for smoldering and flaming particles, and led to decreased migration, motility, and motility speed of cells. In conclusion, all three of the combustion water-soluble organic pollutants were identified as equally toxic by real-time cell analysis (RTCA) results. The parameters describing cell structure suggest that pyrolysis particles were slightly less toxic than others.
-
(2021) Science of the Total Environment. 777, 146143. Abstract
Portable aethalometers are commonly used for online measurements of light-absorbing carbonaceous particles (LAC). However, they require strict calibration. In this study, the performance of a micro-aethalometer (MA200 with polytetrafluoroethylene filter) in charactering brown carbon aerosol (BrC) absorption was evaluated in comparison with reference materials and techniques that included bulk solution absorbance and Mie-theory based particle extinction retrieval via broadband cavity enhanced spectrometer (BBCES). Continuous-wavelength resolved (300650 nm) imaginary refractive index (kBrC) was derived with these methods for various BrC proxies and standard materials representing a wide range of sources and absorbing abilities, including the strongly absorbing nigrosin, pahokee peat fluvic acid (PPFA), tar aerosol from wood pyrolysis, humic-like substance (HULIS) separated from wood smoldering burning emissions, and secondary organic aerosols (SOA) from photochemical oxidation of indole and naphthalene in the presence of NOx. The BrC and nigrosin optical results by bulk solution absorption are comparable with the properties retrieved from BBCES. The MA200 raw measurements provide reliable absorption Ångström exponent (AAE) but overestimate kBrC largely. The parameterized overestimates against reference methods depend on light absorption strength, so that the MA200 overestimates more for the less absorbing BrC. The correction factor for MA200 can be expressed well as an exponential function of kBrC or particle single scattering albedo (SSA), and also as a power-law function of the MA200 raw results derived BrC mass absorption efficiency (MAE). The ensemble correction factor regressed for all these BrC and nigrosin is 2.8 based on bulk absorption and 2.7 using BBCES result as reference. Simple radiative forcing (SRF) calculations for different scenarios using the correction for MA200, show consistent SRF when using the aethalometer results after the kBrC-dependent correction.
-
(2021) Chemical Research in Toxicology. 34, 6, p. 1588-1603 Abstract
Widespread smoke from wildfires and biomass burning contributes to air pollution and the deterioration of air quality and human health. A common and major emission of biomass burning, often found in collected smoke particles, is spherical wood tar particles, also known as \u201ctar balls\u201d. However, the toxicity of wood tar particles and the mechanisms that govern their health impacts and the impact of their complicated chemical matrix are not fully elucidated. To address these questions, we generated wood tar material from wood pyrolysis and isolated two main subfractions: water-soluble and organic-soluble fractions. The chemical characteristics as well as the cytotoxicity, oxidative damage, and DNA damage mechanisms were investigated after exposure of A549 and BEAS-2B lung epithelial cells to wood tar. Our results suggest that both wood tar subfractions reduce cell viability in exposed lung cells; however, these fractions have different modes of action that are related to their physicochemical properties. Exposure to the water-soluble wood tar fraction increased total reactive oxygen species production in the cells, decreased mitochondrial membrane potential (MMP), and induced oxidative damage and cell death, probably through apoptosis. Exposure to the organic-soluble fraction increased superoxide anion production, with a sharp decrease in MMP. DNA damage is a significant process that may explain the course of toxicity of the organic-soluble fraction. For both subfractions, exposure caused cell cycle alterations in the G2/M phase that were induced by upregulation of p21 and p16. Collectively, both subfractions of wood tar are toxic. The water-soluble fraction contains chemicals (such as phenolic compounds) that induce a strong oxidative stress response and penetrate living cells more easily. The organic-soluble fraction contained more polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs and induced genotoxic processes, such as DNA damage.
-
(2021) Environmental Science and Technology. 55, 12, p. 7786-7793 Abstract
The composition of organic aerosol has a pivotal influence on aerosol properties such as toxicity and cloud droplet formation capability, which could affect both climate and air quality. However, a comprehensive and fundamental understanding of the chemical and physical processes that occur in nanometer-sized atmospheric particles remains a challenge that severely limits the quantification and predictive capabilities of aerosol formation pathways. Here, we investigated the effects of a fundamental and hitherto unconsidered physical property of nanoparticles-the Laplace pressure. By studying the reaction of glyoxal with ammonium sulfate, both ubiquitous and important atmospheric constituents, we show that high pressure can significantly affect the chemical processes that occur in atmospheric ultrafine particles (i.e., particles
-
(2021) Journal of Hazardous Materials. 407, 124794. Abstract
Nitrated aromatic compounds (NACs) are toxic and allergenic airborne pollutants from both primary emissions and atmospheric reactions of aromatics with NO2. A comprehensive investigation of NACs is challenging given their low ambient levels. By applying gas chromatography and tandem mass spectrometry coupled with an electron capture negative ionization source, this study achieved a comprehensive high-throughput and standard-independent detection of nonpolar NACs in fine particulate matter (PM2.5) sampled over 2 years in Beijing, China. Overall, 1047 NACs were detected, among which, the elemental composition of 128 species were derived using time-of-flight mass spectrometry, and 25 species were confirmed using reference standards. In addition to mono-nitrated polycyclic aromatic hydrocarbons (NPAHs), di-nitrated PAHs and alkylated and oxygenated NPAHs were found. Cluster analysis suggested these compounds were derived from various sources particularly atmospheric reactions. We found that the annual levels of primary NPAHs decreased by 46.354.8% from 20122013 to 20162018, though the secondary species did not change significantly after normalization by PM2.5. These results were validated by diagnostic ratios, which indicated an increasing contribution from the secondary formation including nighttime reactions. This novel method for NACs detection may provide valuable insights into the formation mechanisms of NACs in the atmosphere.
-
(2021) Environmental Science & Technology. 55, 5, p. 2878-2889 Abstract
Nighttime oxidation of biogenic volatile organic compounds (BVOCs) by nitrate radicals (NO3·) represents one of the most important interactions between anthropogenic and natural emissions, leading to substantial secondary organic aerosol (SOA) formation. The direct climatic effect of such SOA cannot be quantified because its optical properties and atmospheric fate are poorly understood. In this study, we generated SOA from the NO3· oxidation of a series BVOCs including isoprene, monoterpenes, and sesquiterpenes. The SOA were subjected to comprehensive online and offline chemical composition analysis using high-resolution mass spectrometry and optical properties measurements using a novel broadband (315650 nm) cavity-enhanced spectrometer, which covers the wavelength range needed to understand the potential contribution of the SOA to direct radiative forcing. The SOA contained a significant fraction of oxygenated organic nitrates (ONs), consisting of monomers and oligomers that are responsible for the detected light absorption in the 315400 nm range. The SOA created from β-pinene and α-humulene was further photochemically aged in an oxidation flow reactor. The SOA has an atmospheric photochemical bleaching lifetime of >6.2 h, indicating that some of the ONs in the SOA may serve as atmosphere-stable nitrogen oxide sinks or reservoirs and will absorb and scatter incoming solar radiation during the daytime.
-
(2021) Atmospheric Chemistry and Physics. 21, 5, p. 3491-3506 Abstract
Asian dust is an important source of atmospheric ice-nucleating particles (INPs). However, the freezing activity of airborne Asian dust, especially its sensitivity to particle size, is poorly understood. In this study we report the first INP measurement of size-resolved airborne mineral dust collected during East Asian dust events. The measured total INP concentrations in the immersion mode ranged from 10(-2) to 10(2) L-1 in dust events at temperatures between 25 and 5 degrees C. The average contributions of heat-sensitive INPs at three temperatures, -10, 15, and 20 degrees C, were 81 +/- 12 %, 70 +/- 15 %, and 38 +/- 21 %, respectively, suggesting that proteinaceous biological materials have a substantial effect on the ice nucleation properties of Asian airborne mineral dust at high temperatures. The dust particles which originated from China's northwest deserts are more efficient INPs compared to those from northern regions. In general, there was no significant difference in the ice nucleation properties between East Asian dust particles and other regions in the world. An explicit size dependence of both INP concentration and surface ice-active-site density was observed. The nucleation efficiency of dust particles increased with increasing particle size, while the INP concentration first increased rapidly and then leveled, due to the significant decrease in the number concentration of larger particles. A new set of parameterizations for INP activity based on size-resolved nucleation properties of Asian mineral dust particles were developed over an extended temperature range (35 to 6 degrees C). These size-dependent parameterizations require only particle size distribution as input and can be easily applied in models.
-
(2021) Environmental Science and Technology. 55, 4, p. 2511-2521 Abstract
This study provides molecular insights into the light absorption properties of biomass burning (BB) brown carbon (BrC) through the chemical characterization of tar condensates generated from heated wood pellets at oxidative and pyrolysis conditions. Both liquid tar condensates separated into "darker oily"and "lighter aqueous"immiscible phases. The molecular composition of these samples was investigated using reversed-phase liquid chromatography coupled with a photodiode array detector and a high-resolution mass spectrometer. The results revealed two sets of BrC chromophores: (1) common to all four samples and (2) specific to the "oily"fractions. The common BrC chromophores consist of polar, monoaromatic species. The oil-specific BrC chromophores include less-polar and nonpolar polyaromatic compounds. The most-light-absorbing pyrolysis oily phase (PO) was aerosolized and size-separated using a cascade impactor to compare the composition and optical properties of the bulk versus the aerosolized BrC. The mass absorption coefficient (MAC300-500 nm) of aerosolized PO increased compared to that of the bulk, due to gas-phase partitioning of more volatile and less absorbing chromophores. The optical properties of the aerosolized PO were consistent with previously reported ambient BB BrC measurements. These results suggest the darkening of atmospheric BrC following non-reactive evaporation that transforms the optical properties and composition of aged BrC aerosols.
-
(2021) Environmental Science & Technology. 55, 3, p. 1508-1514 Abstract
Atmospheric iodine chemistry can significantly affect the atmospheric oxidation capacity in certain regions. In such processes, particle-phase organic iodine compounds (OICs) are key reservoir species in their loss processes. However, their presence and formation mechanism remain unclear, especially in continental regions. Using gas chromatography and time-of-flight mass spectrometry coupled with both electron capture negative ionization and electron impact sources, this study systematically identified unknown OICs in 2-year samples of ambient fine particulate matter (PM2.5) collected in Beijing, an inland city. We determined the molecular structure of 37 unknown OICs, among which six species were confirmed by reference standards. The higher concentrations for ∑37OICs (median: 280 pg m-3; range: 49.0-770 pg m-3) measured in the heating season indicate intensive coal combustion sources of atmospheric iodine. 1-Iodo-2-naphthol and 4-iodoresorcinol are the most abundant species mainly from primary combustion emission and secondary formation, respectively. The detection of 2- and 4-iodoresorcinols, but not of iodine-substituted catechol/hydroquinone or 5-iodoresorcinol, suggests that they are formed via the electrophilic substitution of resorcinol by hypoiodous acid, a product of the reaction of iodine with ozone. This study reports isomeric information on OICs in continental urban PM2.5 and provides valuable evidence on the formation mechanism of OICs in ambient particles.
-
(2021) Environmental Science: Atmospheres. 1, 6, p. 359-371 Abstract
Personal exposure PM samples aid in determining the sources and chemical composition of real-world exposures, particularly in settings with household air pollution. However, their use in toxicological research is limited, despite uncertainty regarding health effects in these settings and evidence of differential toxicity among PM2.5 sources and components. This study used women's PM2.5 exposure samples collected using personal exposure monitoring in rural villages in three Chinese provinces (Beijing, Shanxi, and Sichuan) during summer and winter. Water-soluble organic carbon, ions, elements, and organic tracers (e.g. levoglucosan and polycyclic aromatic hydrocarbons [PAHs]) were quantified in water and organic PM2.5 extracts. Human lung epithelial cells (A549) were exposed to the extracts. Cell death, reactive oxygen species (ROS), and gene expression were measured. Biomass burning contributions were higher in Sichuan samples than in Beijing or Shanxi. Some PM characteristics (total PAHs and coal combustion source contributions) and biological effects of organic extract exposures (cell death, ROS, and cytokine gene expression) shared a common trend of higher levels and effects in winter than in summer for Shanxi and Beijing but no seasonal differences in Sichuan. Modulation of phase I/AhR-related genes (cyp1a1 and cyp1b1) and phase II/oxidative stress-related genes (HO-1, SOD1/2, NQO-1, and catalase) was either low or insignificant, without clear trends between samples. No significant cell death or ROS production was observed for water extract treatments among all sites and seasons, even at possible higher concentrations tested. These results support organic components, particularly PAHs, as essential drivers of biological effects, which is consistent with some other evidence from ambient PM2.5.
-
(2020) Scientific Reports. 10, 1, 21817. Abstract
Globally consistent measurements of airborne metal concentrations in fine particulate matter (PM2.5) are important for understanding potential health impacts, prioritizing air pollution mitigation strategies, and enabling global chemical transport model development. PM2.5 filter samples (N ~ 800 from 19 locations) collected from a globally distributed surface particulate matter sampling network (SPARTAN) between January 2013 and April 2019 were analyzed for particulate mass and trace metals content. Metal concentrations exhibited pronounced spatial variation, primarily driven by anthropogenic activities. PM2.5 levels of lead, arsenic, chromium, and zinc were significantly enriched at some locations by factors of 1003000 compared to crustal concentrations. Levels of metals in PM2.5 and PM10 exceeded health guidelines at multiple sites. For example, Dhaka and Kanpur sites exceeded the US National Ambient Air 3-month Quality Standard for lead (150 ng m−3). Kanpur, Hanoi, Beijing and Dhaka sites had annual mean arsenic concentrations that approached or exceeded the World Health Organizations risk level for arsenic (6.6 ng m−3). The high concentrations of several potentially harmful metals in densely populated cites worldwide motivates expanded measurements and analyses.
-
(2020) Communications Earth & Environment. 1, 1, 64. Abstract
Anthropogenic pollution from marine microplastic particles is a growing concern, both as a source of toxic compounds, and because they can transport pathogens and other pollutants. Airborne microplastic particles were previously observed over terrestrial and coastal locations, but not in the remote ocean. Here, we collected ambient aerosol samples in the North Atlantic Ocean, including the remote marine atmosphere, during the Tara Pacific expedition in May-June 2016, and chemically characterized them using micro-Raman spectroscopy. We detected a range of airborne microplastics, including polystyrene, polyethylene, polypropylene, and poly-silicone compounds. Polyethylene and polypropylene were also found in seawater, suggesting local production of airborne microplastic particles. Terminal velocity estimations and back trajectory analysis support this conclusion. For technical reasons, only particles larger than 5µm, at the upper end of a typical marine atmospheric size distribution, were analyzed, suggesting that our analyses underestimate the presence of airborne microplastic particles in the remote marine atmosphere.
-
(2020) Environmental Science & Technology. 54, 19, p. 1182711837 Abstract
The transformations of biomass burning brown carbon aerosols (BB-BrC) over their diurnal lifecycle are currently not well studied. In this study, the aging of BB tar proxy aerosols processed by NO3 under dark conditions followed by photochemical OH reaction and photolysis were investigated in tandem flow reactors. The results show that O3 oxidation in the dark diminishes light absorption of wood tar aerosols, resulting in higher particle single-scattering albedo (SSA). NO3 reactions augment the mass absorption coefficient (MAC) of the aerosols by a factor of 2-3 by forming secondary chromophores, such as nitroaromatic compounds (NACs) and organonitrates. Subsequent OH oxidation and direct photolysis both decompose the organic nitrates (ONs, representing bulk functionalities of NACs and organonitrates) in the NO3-aged wood tar aerosols, thus decreasing the particle absorption. Moreover, the NACs degrade faster than the organonitrates by photochemical aging. The NO3-aged wood tar aerosols are more susceptible to photolysis than to OH reactions. The photolysis lifetimes for the ONs and for the absorbance of the NO3-aged aerosols are on the order of hours under typical solar irradiation, while the absorption and ONs lifetimes towards OH oxidation are substantially longer. Overall, nighttime aging via NO3 reactions increases the light absorption of wood tar aerosols and shortens their absorption lifetime under daytime conditions.
-
(2020) Atmosphere. 11, 10, 1020. Abstract
The Negev Desert in Israel is susceptible to frequent atmospheric events of high dust loading which have been linked with negative human health outcomes, including cardiovascular and respiratory distress. Previous research suggests that the highest levels of dust over the region occur during an atmospheric pattern with a cyclone situated over the eastern Mediterranean. This Cyprus Low can bring unsettled weather and strong westerly winds over the Negev. However, while the overall pattern associated with dust events in the Negev Desert is generally well-understood, it remains unclear why days with seemingly similar weather patterns result in different levels of atmospheric dust. Thus, the goal of this study is to better differentiate the atmospheric patterns during dust events over the Negev. Using PM10 data collected in Beer Sheva, Israel, from 2000 to 2015 in concert with 72-h HYSPLIT back trajectories at three different height levels (surface, 200 m, 500 m), we examine the source region, trajectory groups using a K-Means clustering procedure, and overall synoptic pattern during dust events. Further, we use sea-level pressure data across the region to determine how cyclone strength and location impact dust events in Beer Sheva. We find that the highest levels of atmospheric dust in the Negev are associated with the Cyprus Low pattern, and air traversing Libya seems to play an especially important role, likely due to the countrys arid surface cover. Cyclone strength is also a critical factor, as lower sea-level pressure results in more severe dust events. A better understanding of the atmospheric features associated with dust events over the Negev Desert will hopefully aid in forecasting these occurrences across the region.
-
(2020) Lab on a Chip. 20, 16, p. 2889-2910 Abstract
Ice-nucleating particles (INPs) are of atmospheric importance because they catalyse the freezing of supercooled cloud droplets, strongly affecting the lifetime and radiative properties of clouds. There is a need to improve our knowledge of the global distribution of INPs, their seasonal cycles and long-term trends, but our capability to make these measurements is limited. Atmospheric INP concentrations are often determined using assays involving arrays of droplets on a cold stage, but such assays are frequently limited by the number of droplets that can be analysed per experiment, often involve manual processing (e.g. pipetting of droplets), and can be susceptible to contamination. Here, we present a microfluidic platform, the LOC-NIPI (Lab-on-a-Chip Nucleation by Immersed Particle Instrument), for the generation of water-in-oil droplets and their freezing in continuous flow as they pass over a cold plate for atmospheric INP analysis. LOC-NIPI allows the user to define the number of droplets analysed by simply running the platform for as long as required. The use of small (∼100 μm diameter) droplets minimises the probability of contamination in any one droplet and therefore allows supercooling all the way down to homogeneous freezing (around -36 °C), while a temperature probe in a proxy channel provides an accurate measure of temperature without the need for temperature modelling. The platform was validated using samples of pollen extract and Snomax®, with hundreds of droplets analysed per temperature step and thousands of droplets being measured per experiment. Homogeneous freezing of purified water was studied using >10000 droplets with temperature increments of 0.1 °C. The results were reproducible, independent of flow rate in the ranges tested, and the data compared well to conventional instrumentation and literature data. The LOC-NIPI was further benchmarked in a field campaign in the Eastern Mediterranean against other well-characterised instrumentation. The continuous flow nature of the system provides a route, with future development, to the automated monitoring of atmospheric INP at field sites around the globe.
-
(2020) Science of the Total Environment. 725, 138227. Abstract
The composition of atmospheric aerosols is dynamic and influenced by their emission sources, organic and inorganic composition, transport pathways, chemical and physical processes, microorganisms' content and more. Characterization of such factors can improve the ability to evaluate air quality and health risks under different atmospheric scenarios. Here we investigate the microbial composition of the atmospheric particulate matter (
-
-
(2020) Fire Safety Journal. 114, 103009. Abstract
The possible use of organic particle emissions as indicators of smoldering fires at low temperatures (early stages,
-
(2020) Bulletin of the American Meteorological Society. 101, 5, p. E536-E554 Abstract
Marine aerosols play a significant role in the global radiative budget, in clouds' processes, and in the chemistry of the marine atmosphere. There is a critical need to better understand their production mechanisms, composition, chemical properties, and the contribution of ocean-derived biogenic matter to their mass and number concentration. Here we present an overview of a new dataset of in situ measurements of marine aerosols conducted over the 2.5-yr Tara Pacific Expedition over 110,000 km across the Atlantic and Pacific Oceans. Preliminary results are presented here to describe the new dataset that will be built using this novel set of measurements. It will characterize marine aerosols properties in detail and will open a new window to study the marine aerosol link to the water properties and environmental conditions.
-
(2020) Chemical Research in Toxicology. 33, 5, p. 1110-1120 Abstract
Particulate matter (PM), an important component of air pollution, induces significant adverse health effects. Many of the observed health effects caused by inhaled PM are associated with oxidative stress and inflammation. This association has been linked in particular to the particles chemical components, especially the inorganic/metal and the organic/polycyclic aromatic hydrocarbon (PAH) fractions, and their ability to generate reactive oxygen species (ROS) in biological systems. The transcription factor NF-E2 nuclear factor erythroid-related factor 2 (Nrf2) is activated by redox imbalance and regulates the expression of phase II detoxifying enzymes. Nrf2 plays a key role in preventing PM-induced toxicity by protecting against oxidative damage and inflammation. This review focuses on specific PM fractions, particularly the dissolved metals and PAH fractions, and their roles in inducing oxidative stress and inflammation in cell and animal models with respect to Nrf2 and mitochondria.
-
Formation of Secondary Brown Carbon in Biomass Burning Aerosol Proxies through NO3 Radical Reactions(2020) Environmental Science and Technology. 54, 3, p. 1395-1405 Abstract
Atmospheric brown carbon (BrC) is an important contributor to the radiative forcing of climate by organic aerosols. Because of the molecular diversity of BrC compounds and their dynamic transformations, it is challenging to predictively understand BrC optical properties. OH radical and O3 reactions, together with photolysis, lead to diminished light absorption and lower warming effects of biomass burning BrC. The effects of night-time aging on the optical properties of BrC aerosols are less known. To address this knowledge gap, night-time NO3 radical chemistry with tar aerosols from wood pyrolysis was investigated in a flow reactor. This study shows that the optical properties of BrC change because of transformations driven by reactions with the NO3 radical that form new absorbing species and lead to significant absorption enhancement over the ultraviolet-visible (UV-vis) range. The overnight aging increases the mass absorption coefficients of the BrC by a factor of 1.3-3.2 between 380 nm and 650 nm. Nitrated organic compounds, particularly nitroaromatics, were identified as the main products that contribute to the enhanced light absorption in the secondary BrC. Night-time aging of BrC aerosols represents an important source of secondary BrC and can have a pronounced effect on atmospheric chemistry and air pollution.
-
(2020) npj Climate and Atmospheric Science. 3, 1, 2. Abstract
Atmospheric immersion freezing (IF), a heterogeneous ice nucleation process where an ice nucleating particle (INP) is immersed in supercooled water, is a dominant ice formation pathway impacting the hydrological cycle and climate. Implementation of IF derived from field and laboratory data in cloud and climate models is difficult due to the high variability in spatio-temporal scales, INP composition, and morphological complexity. We demonstrate that IF can be consistently described by a stochastic nucleation process accounting for uncertainties in the INP surface area. This approach accounts for time-dependent freezing, a wide range of surface areas and challenges phenomenological descriptions typically used to interpret IF. The results have an immediate impact on the current description, interpretation, and experiments of IF and its implementation in models. The findings are in accord with nucleation theory, and thus should hold for any supercooled liquid material that nucleates in contact with a substrate.
-
(2020) Particle and Fibre Toxicology. 17, 1, 4. Abstract
Background: Carbonaceous aerosols emitted from indoor and outdoor biomass burning are major risk factors contributing to the global burden of disease. Wood tar aerosols, namely, tar ball particles, compose a substantial fraction of carbonaceous emissions, especially from biomass smoldering. However, their health-related impacts and toxicity are still not well known. This study investigated the toxicity of the water-soluble fraction of pyrolyzed wood tar aerosols in exposed mice and lung epithelial cells. Results: Mice exposed to water-soluble wood tar aerosols showed increased inflammatory and oxidative stress responses. Bronchial epithelial cells exposed to the same water-soluble wood tar aerosols showed increased cell death with apoptotic characteristics. Alterations in oxidative status, including changes in reactive oxygen species (ROS) levels and reductions in the expression of antioxidant genes related to the transcription factor Nrf2, were observed and were confirmed by increased levels of MDA, a lipid peroxidation adduct. Damage to mitochondria was observed as an early event responsible for the aforementioned changes. Conclusions: The toxicity and health effect-related mechanisms of water-soluble wood tar were investigated for the first time in the context of biomass burning. Wood tar particles may account for major responses such as cell death, oxidative stress, supression of protection mechnaisms and mitochondrial damaged cause by expsoure to biomass burning aerosols.
-
(2020) Environmental Science & Technology. 54, 2, p. 707-713 Abstract
Organic nitrates (ONs) are an important component of secondary organic aerosols that play significant roles in atmospheric chemical processes such as ozone formation and as a reservoir of nitrogen oxides (NOx). However, hindered by the availability of analytical techniques, characteristics of ON molecules remain unclear in regions influenced by anthropogenic volatile organic compounds (VOCs) and pollution. In this study, we achieved isomeric identification of particle-phase ONs in such regions. Using gas chromatography and time-of-flight mass spectrometry with an electron capture negative ionization source, we established a systematic procedure for screening unknown ONs in fine particulate matter (PM) collected in Beijing based primarily on the characteristic fragment ions of NO2 and [MNO2]−/[MNO2H2]−. We found 78 ON candidates, 12 of which were confirmed using synthesized standards. Seventy-three of these detected ONs might originate from anthropogenic VOC precursors especially alkenes. Significantly, we observed two isomers generated from straight-chain 1-alkenes, namely, 2-hydroxy-1-nitrate and 1-hydroxy-2-nitrate. The signal ratios of the two isomers suggested that these hydroxy nitrates are mainly produced photochemically rather than through nighttime reactions. This study provides a promising method for identifying ONs in atmospheric PM and elucidating their formation pathways.
-
(2019) Environmental Science and Technology. 53, 23, p. 13949-13958 Abstract
It has been hypothesized that the cytotoxicity of secondary organic aerosols (SOA) is mediated through the formation of reactive oxygen species (ROS) in the exposed cells. Here, lung epithelial cells (A549) residing at the air-liquid interface were exposed to proxies of anthropogenic and biogenic SOA that were photochemically aged under varying nitrogen oxide (NOx) concentrations in an oxidation flow reactor. The total organic peroxides and ROS radical content in the SOA were quantified by the iodometric spectrophotometric method and by continuous-wave electron paramagnetic resonance. The effect of the exposure was evaluated by measuring cell viability and cellular ROS production following the exposure. The results demonstrate that SOA that aged in the absence of NOx contained more ROS than fresh SOA and were more toxic toward the cells, while varying NOx conditions had no significant influence on levels of the ROS content in fresh SOA and their toxicity. Analysis of ROS in the exposed cells using flow cytometry showed a similar trend with the total ROS content in the SOA. This study provides a first and direct observation of such association.
-
(2019) Environmental Science & Technology. 53, 20, p. 12054-12061 Abstract
Consumer-level 3D printers emit ultrafine and fine particles, though little is known about their chemical composition or potential toxicity. We report chemical characteristics of the particles in comparison to raw filaments and assessments of particle toxicity. Particles emitted from polylactic acid (PLA) appeared to be largely composed of the bulk filament material with mass spectra similar to the PLA monomer spectra. Acrylonitrile butadiene styrene (ABS), extruded at a higher temperature than PLA, emitted vastly more particles and their composition differed from that of the bulk filament, suggesting that trace additives may control particle formation. In vitro cellular assays and in vivo mice exposure all showed toxic responses when exposed to PLA and ABS-emitted particles, where PLA-emitted particles elicited higher response levels than ABS-emitted particles at comparable mass doses. A chemical assay widely used in ambient air-quality studies showed that particles from various filament materials had comparable particle oxidative potentials, slightly lower than those of ambient particulate matter (PM2.5). However, particle emissions from ABS filaments are likely more detrimental when considering overall exposure due to much higher emissions. Our results suggest that 3D printer particle emissions are not benign and exposures should be minimized.
-
(2019) Biomolecules. 9, 10, 532. Abstract
Ice-binding proteins (IBPs) are found in many organisms, such as fish and hexapods, plants, and bacteria that need to cope with low temperatures. Ice nucleation and thermal hysteresis are two attributes of IBPs. While ice nucleation is promoted by large proteins, known as ice nucleating proteins, the smaller IBPs, referred to as antifreeze proteins (AFPs), inhibit the growth of ice crystals by up to several degrees below the melting point, resulting in a thermal hysteresis (TH) gap between melting and ice growth. Recently, we showed that the nucleation capacity of two types of IBPs corresponds to their size, in agreement with classical nucleation theory. Here, we expand this finding to additional IBPs that we isolated from snow fleas (the arthropod Collembola), collected in northern Israel. Chemical analyses using circular dichroism and Fourier-transform infrared spectroscopy data suggest that these IBPs have a similar structure to a previously reported snow flea antifreeze protein. Further experiments reveal that the ice-shell purified proteins have hyperactive antifreeze properties, as determined by nanoliter osmometry, and also exhibit low ice-nucleation activity in accordance with their size.
-
(2019) Environmental Science & Technology. 53, 17, p. 10479-10486 Abstract
Nowadays, knowledge regarding component-specific inflammatory effect of fine particulate matter (PM2.5) is limited. In this study, an omics approach based on time-of-flight mass spectrometry was established to identify the key hydrophobic components of PM2.5 associated with pro-inflammatory cytokines released by macrophages after in vitro exposure. Of 764 compounds, 62 components were robustly screened with firmly identified 37 specific chemicals. In addition to polycyclic aromatic hydrocarbons (PAHs) and their methylated congeners, novel oxygen- and nitrogen-containing PAHs and, especially, oxygenated PAHs (Oxy-PAHs) were identified. Interleukin (IL)-6 was associated with Oxy-PAHs of 1,8-naphthalic anhydride, xanthone, and benzo[ h]quinolone, especially, whereas IL-1β and tumor necrosis factor (TNF)-α were associated with most species. Most species were related to IL-1β, which was significantly higher in the heating season, with a monotonic dose-response pattern mainly for Oxy-PAHs and a U-shaped dose-response pattern for primary species. On the basis of the identified components, four sources of pollution (coal combustion, traffic emissions, biomass burning, and secondary formation, traced by Oxy-PAHs such as 1,8-naphthalic anhydride and quinones) were resolved by the positive matrix factorization model. TNF-α was associated with primary sources, whereas IL-1β and IL-6 were associated with both primary and secondary sources, suggesting different inflammatory effects between primary and secondary sources when assessing the toxicity-driven disparities of known and unknown PM2.5 components.
-
(2019) Atmospheric Chemistry and Physics. 19, 17, p. 11143-11158 Abstract
The prediction of cloud ice formation in climate models remains a challenge, partly due to the complexity of ice-related processes. Mineral dust is a prominent aerosol in the troposphere and is an important contributor to ice nucleation in mixed-phase clouds, as dust can initiate ice heterogeneously at relatively low supercooling conditions. We characterized the ice nucleation properties of size-segregated mineral dust sampled during dust events in the eastern Mediterranean. The sampling site allowed us to compare the properties of airborne dust from several sources with diverse mineralogy that passed over different atmospheric paths. We focused on particles with six size classes determined by the Micro-Orifice Uniform Deposit Impactor (MOUDI) cutoff sizes: 5.6, 3.2, 1.8, 1.0, 0.6 and 0.3 μm. Ice nucleation experiments were conducted in the Weizmann Supercooled Droplets Observation on a Microarray (WISDOM) setup, whereby the particles are immersed in nanoliter droplets using a microfluidics technique. We observed that the activity of airborne particles depended on their size class; supermicron and submicron particles had different activities, possibly due to different composition. The concentrations of ice-nucleating particles and the density of active sites (ns) increased with the particle size and particle concentration. The supermicron particles in different dust events showed similar activity, which may indicate that freezing was dominated by common mineralogical components. Combining recent data of airborne mineral dust, we show that current predictions, which are based on surface-sampled natural dust or standard mineral dust, overestimate the activity of airborne dust, especially for the submicron class. Therefore, we suggest including information on particle size in order to increase the accuracy of ice formation modeling and thus weather and climate predictions.
-
(2019) Analytical Chemistry. 91, 15, p. 10282-10288 Abstract
Polycyclic aromatic hydrocarbons (PAHs) are toxic organic trace components in atmospheric aerosols that have impacts on climate and human health. They are bound to airborne particles and transported over long distances. Observations of their distribution, transport pathways, and degradation are crucial for risk assessment and mitigation. Such estimates would benefit from online detection of PAHs along with analysis of the carrying particles to identify the source. Typically, laser desorption/ionization (LDI) in a bipolar mass spectrometer reveals the inorganic constituents and provides limited molecular information. In contrast, two-step ionization approaches produce detailed PAH mass spectra from individual particles but without the source-specific inorganic composition. Here we report a new technique that yields the single-particle PAH composition along with both positive and negative inorganic ions via LDI. Thus, the complete particle characterization and source apportionment from conventional bipolar LDI-analysis becomes possible, combined with a detailed PAH spectrum for the same particle. The key idea of the method is spatiotemporal matching of the ionization laser pulse to the transient component distribution in the particle plume after laser desorption. The technique is robust and field-deployable with only slightly higher costs and complexity compared to two-step approaches. We demonstrate its capability to reveal the PAH-distribution on different particle types in combustion aerosols and ambient air.
-
(2019) Science of the Total Environment. 669, p. 303-313 Abstract
Nrf2 is an important transcription factor implicated in the oxidative stress response, which has been reported to play an important role in the way by which air pollution particulate matter (PM2.5) induces adverse health effects. This study investigates the mechanism by which Nrf2 exerts its protective effect in PM2.5 induced toxicity in lung cells. Lung cells silenced for Nrf2 (shNrf2) demonstrated diverse susceptibility to various PM extracts; water extracts containing high levels of dissolved metals exhibited higher capacity to generate mitochondrial reactive oxygen species (ROS) and hence increased oxidative stress levels. Organic extracts containing high levels of polycyclic aromatic hydrocarbons (PAHs) increased mortality and reduced ROS production in the silenced cells. shNrf2 cells exhibited a higher basal mitochondrial respiration rate compared to the control cells. Following exposure to water extracts, the mitochondrial respiration increased, which was not observed with the organic extracts. shNrf2 cells exposed to the organic extracts showed lower mitochondrial membrane potential and lower mtDNA copy number. Nrf2 may act as a signaling mediator for the mitochondria function following PM2.5 exposure.
-
(2019) ACS Earth and Space Chemistry. 3, 5, p. 748-759 Abstract
Criegee intermediates (CI) from ozonolysis of biogenic volatile organic compounds (BVOC) have been suggested to be important atmospheric oxidants. However, due to their low atmospheric concentrations, possible high reactivity with water vapor, and unconstrained thermal unimolecular decay rates, their impact on atmospheric oxidation of trace species such as SO2 and NO2 remains uncertain. In this study, we investigate the formation of secondary sulfate aerosols (SSA) in nocturnal power plant plumes in the Southeastern US. These plumes have large mixing ratios of SO2 and NO that make reaction with CI competitive with other pathways, such as thermal unimolecular decay and water vapor reaction. The background into which these plumes are emitted has high levels of BVOC and O-3, whose reaction produces a large source of CI. Observed nighttime power plant plume intercepts had measurable sulfate aerosol, ranging from 0.7-1.2% of the total plume sulfur (SO2 + sulfate) on a molar basis. In the absence of photochemical OH oxidation, these observed sulfate levels can be compared to calculated CI + SO2 production. We present a plume dispersion model that simulates the chemical evolution of these nighttime plumes and compare the results to observed sulfate aerosol. Thermal unimolecular decay of CI is the largest uncertainty. In the absence of thermal unimolecular CI decay, CI reactions with SO2 in the dark account for up to 41% of the total observed sulfate aerosol, with the remainder attributable to reaction of SO2 with secondary OH and direct emission. Conversely, with a thermal unimolecular decay rate for all CI of 200 s(-1), equivalent to the highest measured rate, CI reactions with SO2 accounted for only S.7% of the total SSA. A second uncertainty is the rate coefficients for larger, and as yet unmeasured, CI species. The most important CI in the modeled scenario is the C, compound, CH2OO, which accounts for up to 50% of the CIs produced from isoprene. C-4 CIs may contribute up to 40% of the CIs produced and are expected to have substantially slower thermal unimolecular decay rates and water vapor reaction rate coefficients. Therefore, the model results may be a lower limit to the CI contribution to SSA. Calculated nighttime (10 h) total SO2 oxidation was 1.8%, of which 1.1% was due to CI + SO2, and the remainder to secondary OH + SO2. This compares to daytime (14 h) SO2 oxidation rates of 4% due to photochemical OH + SO2 reaction.
-
(2019) Atmospheric Chemistry and Physics. 19, 7, p. 4823-4849 Abstract
We present the laboratory results of immersion freezing efficiencies of cellulose particles at supercooled temperature (T) conditions. Three types of chemically homogeneous cellulose samples are used as surrogates that represent supermicron and submicron ice-nucleating plant structural polymers. These samples include microcrystalline cellulose (MCC), fibrous cellulose (FC) and nanocrystalline cellulose (NCC). Our immersion freezing dataset includes data from various ice nucleation measurement techniques available at 17 different institutions, including nine dry dispersion and 11 aqueous suspension techniques. With a total of 20 methods, we performed systematic accuracy and precision analysis of measurements from all 20 measurement techniques by evaluating T-binned (1∘C) data over a wide T range (−36∘C
-
(2019) Journal of Physical Chemistry Letters. 10, 5, p. 966-972 Abstract
Several types of natural molecules interact specifically with ice crystals. Small antifreeze proteins (AFPs) adsorb to particular facets of ice crystals, thus inhibiting their growth, whereas larger ice-nucleating proteins (INPs) can trigger the formation of new ice crystals at temperatures much higher than the homogeneous ice nucleation temperature of pure water. It has been proposed that both types of proteins interact similarly with ice and that, in principle, they may be able to exhibit both functions. Here we investigated two naturally occurring antifreeze proteins, one from fish, type-III AFP, and one from beetles, TmAFP. We show that in addition to ice growth inhibition, both can also trigger ice nucleation above the homogeneous freezing temperature, providing unambiguous experimental proof for their contrasting behavior. Our analysis suggests that the predominant difference between AFPs and INPs is their molecular size, which is a very good predictor of their ice nucleation temperature.
-
(2019) Atmospheric Chemistry and Physics. 19, 1, p. 139-163 Abstract
Following wood pyrolysis, tar ball aerosols were laboratory generated from wood tar separated into polar and nonpolar phases. Chemical information of fresh tar balls was obtained from a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and single-particle laser desorption/resonance enhanced multiphoton ionization mass spectrometry (SP-LD-REMPI-MS). Their continuous refractive index (RI) between 365 and 425 nm was retrieved using a broadband cavity enhanced spectroscopy (BBCES). Dynamic changes in the optical and chemical properties for the nonpolar tar ball aerosols in NOx-dependent photo-chemical process were investigated in an oxidation flow reactor (OFR). Distinct differences in the chemical composition of the fresh polar and nonpolar tar aerosols were identified. Nonpolar tar aerosols contain predominantly high-molecular weight unsubstituted and alkyl-substituted polycylic aromatic hydrocarbons (PAHs), while polar tar aerosols consist of a high number of oxidized aromatic substances (e.g., methoxy-phenols, benzenediol) with higher O : C ratios and carbon oxidation states. Fresh tar balls have light absorption characteristics similar to atmospheric brown carbon (BrC) aerosol with higher absorption efficiency towards the UV wavelengths. The average retrieved RI is 1.661 + 0.020i and 1.635 + 0.003i for the nonpolar and polar tar aerosols, respectively, with an absorption Angstrom exponent (AAE) between 5.7 and 7.8 in the detected wavelength range. The RI fits a volume mixing rule for internally mixed nonpolar/polar tar balls. The RI of the tar ball aerosols decreased with increasing wavelength under photochemical oxidation. Photolysis by UV light (254 nm), without strong oxidants in the system, slightly decreased the RI and increased the oxidation state of the tar balls. Oxidation under varying OH exposure levels and in the absence of NOx diminished the absorption (bleaching) and increased the O : C ratio of the tar balls. The photobleaching via OH radical initiated oxidation is mainly attributed to decomposition of chromophoric aromatics, nitrogen-containing organics, and high-molecular weight components in the aged particles. Photolysis of nitrous oxide (N2O) was used to simulate NOx-dependent photochemical aging of tar balls in the OFR. Under high-NOx conditions with similar OH exposure, photochemical aging led to the formation of organic nitrates, and increased both oxidation degree and light absorption for the aged tar ball aerosols. These observations suggest that secondary organic nitrate formation counteracts the bleaching by OH radical photooxidation to eventually regain some absorption of the aged tar ball aerosols. The atmospheric implication and climate effects from tar balls upon various oxidation processes are briefly discussed.
-
Continuous flow analysis of atmospheric ice-nucleating particles in the eastern mediterranean(2019) 23rd International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2019. p. 1494-1495 Abstract
We have developed a microfluidic platform for the study of atmospheric ice-nucleating particles (INPs) via on-chip freezing analysis of droplets in continuous flow, and have deployed the system during a field campaign in Israel to determine the ambient INP concentrations.
-
(2018) Journal of Geophysical Research: Atmospheres. 123, 22, p. 12,762-12,777 Abstract
Clouds contribute very large uncertainties to our understanding of Earth's climate system. This is partly attributed to the insufficient predictive abilities of ice formation processes in clouds and the ramifications for the hydrological cycle and climate. To improve predictions of ice particle concentrations in clouds, a better understanding of the relative contributions of ice nucleating particles and secondary ice processes (SIPs) is needed. To address this challenging question, we combine ice nucleation measurements via immersion freezing of particles filtered from rainwater, with satellite-retrieved cloud top glaciation temperatures (T-g) of the same clouds, while considering the chemical composition of the rainwater, the particles, and the particles' mass loads. In addition, laboratory-derived ice nucleation parameterization of K-feldspar was implemented in an ice nucleation model in order to reconstruct T-g considering primary ice nucleation only. We show that the observed T-g does not correlate with the median freezing temperature of the drops from the laboratory measurements froze (T-50), and are significantly warmer than the model prediction. This suggests that SIP play a major role in glaciating the investigated clouds system. Furthermore, we show that the difference between T-g and T-50 best correlates with the size of the cloud droplets at -5 degrees C, indicating that SIP is controlled by cloud droplet sizes. Hence, our results suggest that the effect of SIP on T-g, and therefore on Earth's radiation budget, may be significant.
-
(2018) Atmospheric Measurement Techniques. 11, 11, p. 6231-6257 Abstract
The second phase of the Fifth International Ice Nucleation Workshop (FIN-02) involved the gathering of a large number of researchers at the Karlsruhe Institute of Technology's Aerosol Interactions and Dynamics of the Atmosphere (AIDA) facility to promote characterization and understanding of ice nucleation measurements made by a variety of methods used worldwide. Compared to the previous workshop in 2007, participation was doubled, reflecting a vibrant research area. Experimental methods involved sampling of aerosol particles by direct processing ice nucleation measuring systems from the same volume of air in separate experiments using different ice nucleating particle (INP) types, and collections of aerosol particle samples onto filters or into liquid for sharing amongst measurement techniques that post-process these samples. In this manner, any errors introduced by differences in generation methods when samples are shared across laboratories were mitigated. Furthermore, as much as possible, aerosol particle size distribution was controlled so that the size limitations of different methods were minimized. The results presented here use data from the workshop to assess the comparability of immersion freezing measurement methods activating INPs in bulk suspensions, methods that activate INPs in condensation and/or immersion freezing modes as single particles on a substrate, continuous flow diffusion chambers (CFDCs) directly sampling and processing particles well above water saturation to maximize immersion and subsequent freezing of aerosol particles, and expansion cloud chamber simulations in which liquid cloud droplets were first activated on aerosol particles prior to freezing. The AIDA expansion chamber measurements are expected to be the closest representation to INP activation in atmospheric cloud parcels in these comparisons, due to exposing particles freely to adiabatic cooling.The different particle types used as INPs included the minerals illite NX and potassium feldspar (K-feldspar), two natural soil dusts representative of arable sandy loam (Argentina) and highly erodible sandy dryland (Tunisia) soils, respectively, and a bacterial INP (Snomax (R)). Considered together, the agreement among post-processed immersion freezing measurements of the numbers and fractions of particles active at different temperatures following bulk collection of particles into liquid was excellent, with possible temperature uncertainties inferred to be a key factor in determining INP uncertainties. Collection onto filters for rinsing versus directly into liquid in impingers made little difference. For methods that activated collected single particles on a substrate at a controlled humidity at or above water saturation, agreement with immersion freezing methods was good in most cases, but was biased low in a few others for reasons that have not been resolved, but could relate to water vapor competition effects. Amongst CFDC-style instruments, various factors requiring (variable) higher supersaturations to achieve equivalent immersion freezing activation dominate the uncertainty between these measurements, and for comparison with bulk immersion freezing methods. When operated above water saturation to include assessment of immersion freezing, CFDC measurements often measured at or above the upper bound of immersion freezing device measurements, but often underestimated INP concentration in comparison to an immersion freezing method that first activates all particles into liquid droplets prior to cooling (the PIMCA-PINC device, or Portable Immersion Mode Cooling chAmber-Portable Ice Nucleation Chamber), and typically slightly underestimated INP number concentrations in comparison to cloud parcel expansions in the AIDA chamber; this can be largely mitigated when it is possible to raise the relative humidity to sufficiently high values in the CFDCs, although this is not always possible operationally.Correspondence of measurements of INPs among direct sampling and post-processing systems varied depending on the INP type. Agreement was best for Snomax (R) particles in the temperature regime colder than 10 degrees C, where their ice nucleation activity is nearly maximized and changes very little with temperature. At temperatures warmer than -10 degrees C, Snomax (R) INP measurements (all via freezing of suspensions) demonstrated discrepancies consistent with previous reports of the instability of its protein aggregates that appear to make it less suitable as a calibration INP at these temperatures. For Argentinian soil dust particles, there was excellent agreement across all measurement methods; measures ranged within 1 order of magnitude for INP number concentrations, active fractions and calculated active site densities over a 25 to 30 degrees C range and 5 to 8 orders of corresponding magnitude change in number concentrations. This was also the case for all temperatures warmer than -25 degrees C in Tunisian dust experiments. In contrast, discrepancies in measurements of INP concentrations or active site densities that exceeded 2 orders of magnitude across a broad range of temperature measurements found at temperatures warmer than- 25 degrees C in a previous study were replicated for illite NX. Discrepancies also exceeded 2 orders of magnitude at temperatures of -20 to -25 degrees C for potassium feldspar (K-feldspar), but these coincided with the range of temperatures at which INP concentrations increase rapidly at approximately an order of magnitude per 2 degrees C cooling for K-feldspar.These few discrepancies did not outweigh the overall positive outcomes of the workshop activity, nor the future utility of this data set or future similar efforts for resolving remaining measurement issues. Measurements of the same materials were repeatable over the time of the workshop and demonstrated strong consistency with prior studies, as reflected by agreement of data broadly with parameterizations of different specific or general (e.g., soil dust) aerosol types. The divergent measurements of the INP activity of illite NX by direct versus post-processing methods were not repeated for other particle types, and the Snomax (R) data demonstrated that, at least for a biological INP type, there is no expected measurement bias between bulk collection and direct immediately processed freezing methods to as warm as -10 degrees C. Since particle size ranges were limited for this workshop, it can be expected that for atmospheric populations of INPs, measurement discrepancies will appear due to the different capabilities of methods for sampling the full aerosol size distribution, or due to limitations on achieving sufficient water supersaturations to fully capture immersion freezing in direct processing instruments. Overall, this workshop presents an improved picture of present capabilities for measuring INPs than in past workshops, and provides direction toward addressing remaining measurement issues.
-
(2018) Atmospheric Chemistry and Physics. 18, 19, p. 13903-13923 Abstract
To date, only a few studies have investigated the potential of coal fly ash particles to trigger heterogeneous ice nucleation in cloud droplets. The presented measurements aim at expanding the sparse dataset and improving process understanding of how physicochemical particle properties can influence the freezing behavior of coal fly ash particles immersed in water.Firstly, immersion freezing measurements were performed with two single particle techniques, i.e., the Leipzig Aerosol Cloud Interaction Simulator (LACIS) and the SPectrometer for Ice Nuclei (SPIN). The effect of suspension time on the efficiency of the coal fly ash particles when immersed in a cloud droplet is analyzed based on the different residence times of the two instruments and employing both dry and wet particle generation. Secondly, two cold-stage setups, one using microliter sized droplets (Leipzig Ice Nucleation Array) and one using nanoliter sized droplets (Welzmann Supercooled Droplets Observation on Microarray setup) were applied.We found that coal fly ash particles are comparable to mineral dust in their immersion freezing behavior when being dry generated. However, a significant decrease in immersion freezing efficiency was observed during experiments with wet-generated particles in LACIS and SPIN. The efficiency of wet-generated particles is in agreement with the cold-stage measurements. In order to understand the reason behind the deactivation, a series of chemical composition, morphology, and crystallography analyses (single particle mass spectrometry, scanning electron microscopy coupled with energy dispersive X-ray microanalysis, X-ray diffraction analysis) were performed with dry- and wet-generated particles. From these investigations, we conclude that anhydrous CaSO4 and CaO - which, if investigated in pure form, show the same qualitative immersion freezing behavior as observed for dry-generated coal fly ash particles - contribute to triggering heterogeneous ice nucleation at the particle-water interface. The observed deactivation in contact with water is related to changes in the particle surface properties which are potentially caused by hydration of CaSO4 and CaO. The contribution of coal fly ash to the ambient population of ice-nucleating particles therefore depends on whether and for how long particles are immersed in cloud droplets.
-
(2018) Environmental Science & Technology. 52, 20, p. 11670-11681 Abstract
Exposure to ambient fine particulate matter (PM
2.5) is a leading risk factor for the global burden of disease. However, uncertainty remains about PM
2.5 sources. We use a global chemical transport model (GEOS-Chem) simulation for 2014, constrained by satellite-based estimates of PM
2.5 to interpret globally dispersed PM
2.5 mass and composition measurements from the ground-based surface particulate matter network (SPARTAN). Measured site mean PM
2.5 composition varies substantially for secondary inorganic aerosols (2.4-19.7 μg/m
3), mineral dust (1.9-14.7 μg/m
3), residual/organic matter (2.1-40.2 μg/m
3), and black carbon (1.0-7.3 μg/m
3). Interpretation of these measurements with the GEOS-Chem model yields insight into sources affecting each site. Globally, combustion sectors such as residential energy use (7.9 μg/m
3), industry (6.5 μg/m
3), and power generation (5.6 μg/m
3) are leading sources of outdoor global population-weighted PM
2.5 concentrations. Global population-weighted organic mass is driven by the residential energy sector (64%) whereas population-weighted secondary inorganic concentrations arise primarily from industry (33%) and power generation (32%). Simulation-measurement biases for ammonium nitrate and dust identify uncertainty in agricultural and crustal sources. Interpretation of initial PM
2.5 mass and composition measurements from SPARTAN with the GEOS-Chem model constrained by satellite-based PM
2.5 provides insight into sources and processes that influence the global spatial variation in PM
2.5 composition. -
(2018) Environmental Pollution. 239, p. 532-543 Abstract
Obesity and exposure to particular matter (PM) have become two leading global threats to public health. However, the exact mechanisms and tissue-specificity of their health effects are largely unknown. Here we investigate whether a metabolic challenge (early nutritional obesity) synergistically interacts with an environmental challenge (PM exposure) to alter genes representing key response pathways, in a tissue-specific manner. Mice subjected to 7 weeks obesogenic nutrition were exposed every other day during the final week and a half to aqueous extracts of PM collected in the city of London (UK). The expression of 61 selected genes representing key response pathways were investigated in lung, liver, white and brown adipose tissues. Principal component analysis (PCA) revealed distinct patterns of expression changes between the 4 tissues, particularly in the lungs and the liver. Surprisingly, the lung responded to the nutrition challenge. The response of these organs to the PM challenge displayed opposite patterns for some key genes, in particular, those related to the Nrf2 pathway. While the contribution to the variance in gene expression changes in mice exposed to the combined challenge were largely similar among the tissues in PCA1, PCA2 exhibited predominant contribution of inflammatory and oxidative stress responses to the variance in the lungs, and a greater contribution of autophagy genes and MAP kinases in adipose tissues. Possible involvement of alterations in DNA methylation was demonstrated by cell-type-specific responses to a methylation inhibitor. Correspondingly, the DNA methyltransferase Dnmt3a2 increased in the lungs but decreased in the liver, demonstrating potential tissue-differential synergism between nutritional and PM exposure. The results suggest that urban PM, containing dissolved metals, interacts with obesogenic nutrition to regulate diverse response pathways including inflammation and oxidative stress, in a tissue-specific manner. Tissue-differential effects on DNA methylation may underlie tissue-specific responses to key stress-response genes such as catalase and Nrf2. Obesogenic nutrition and air pollution activate inflammation and other stress response pathway in a tissue specific manner, potentially reflecting tissue-specific regulation of DNA methyltransferases.
-
(2018) iScience. 6, p. 327-335 Abstract
Sea spray aerosols (SSA), have a profound effect on the climate; however, the contribution of oceanic microbial activity to SSA is not fully established. We assessed aerosolization of the calcite units (coccoliths) that compose the exoskeleton of the cosmopolitan bloom-forming coccolithophore, Emiliania huxleyi. Airborne coccolith emission occurs in steady-state conditions and increases by an order of magnitude during E. huxleyi infection by E. huxleyi virus (EhV). Airborne to seawater coccolith ratio is 1:108, providing estimation of airborne concentrations from seawater concentrations. The coccoliths' unique aerodynamic structure yields a characteristic settling velocity of ∼0.01 cm s-1, ∼25 times slower than average sea salt particles, resulting in coccolith fraction enrichment in the air. The calculated enrichment was established experimentally, indicating that coccoliths may be key contributors to coarse mode SSA surface area, comparable with sea salt aerosols. This study suggests a coupling between key oceanic microbial interactions and fundamental atmospheric processes like SSA formation.
-
(2018) Environmental Science and Technology Letters. 5, 7, p. 424-430 Abstract
Adverse health effects due to exposure to particulate matter (PM) are among the most important global environmental health risks. However, the effects of exposure to secondary organic aerosols (SOA), a major component of the global aerosol, are largely unknown. Here we exposed lung epithelial cells (A549) to fresh and aged SOA particles and investigated the effect of SOA atmospheric aging on cell viability and gene expression. Naphthalene- and alpha-pinene-derived SOA were formed in an oxidation flow reactor that simulates atmospheric SOA formation and aging dominated by OH radical oxidation under NOx-free conditions. The SOA mass and chemical composition were characterized on-line using a scanning mobility particle sizer and aerosol mass spectrometer. Fresh and aged SOA were directed to an air-liquid interface cell exposure system. Aged naphthalene- and alpha-pinene-derived SOA were somewhat more toxic than fresh SOA. Aged naphthalene SOA contained peroxide levels that were higher than those of fresh SOA. The level of induction of Nrf2 signaling increased following exposure to aged naphthalene SOA. Given the global prevalence of SOA and its observed toxicity, this study calls for more studies aimed at understanding the underlying mechanics.
-
(2018) Journal of Geophysical Research-Atmospheres. 123, 13, p. 6999-7012 Abstract
Atmospheric photooxidation of isoprene forms isoprene epoxydiols (IEPOX) and hydroxymethel-methyl-α-lactone (HMML) via hydroperoxyl radical (HO
2) channel and NO/NO
2 channel, respectively. Reactive uptake of these epoxides onto particles produces isoprene secondary organic aerosols (iSOA). Currently, there is little information regarding these two epoxides during iSOA formation in polluted regions. In this study, iSOA tracers from IEPOX and HMML were measured from summer to fall in the heavily polluted Pearl River Delta (PRD) region. The total concentration of the iSOA tracers ranged from 5.77 to 466 ng m
−3. Isoprene SOA tracers correlated well with sulfate (p 22 °C) suppresses the production of HMML, likely as a result of fast decomposition of HMML's precursor under high temperatures. Thus, the HMML-derived tracers had lower levels than the IEPOX-derived SOA tracers during the whole campaign. The ratios of the IEPOX-derived tracers to the HMML-derived SOA tracers in summer were ~3 times higher than those in fall. This seasonal trend may be explained by the relative high isoprene/NO
x ratio, temperature, and fast heterogeneous reaction of IEPOX in summer. Our study shows that in highly polluted regions like PRD, reduction in SO
2 emission can significantly reduce iSOA formation. -
(2018) Environmental Pollution. 237, p. 592-600 Abstract
Fine particulate matter (PM2.5) air pollution poses a major risk to human health worldwide, and absorbed chemicals play a key role in determining the toxicity of PM2.5. After inhalation and entry into the lungs, PM2.5 components induce pro-inflammatory cytokines (e.g., interleukin (1)-1 beta) in pulmonary cells. To test whether PM2.5 components induce IL-1 beta through signing pathways that include the toll-like receptor 4 (TLR4)/nuclear factor-kappa-gene binding (NF-kappa B), nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3), we exposed the mouse macrophage cell-line RAW264.7 to both water and organic extracts of PM2.5 sampled over a 1-year period in Beijing, China. Varying degrees of oxidative stress and inflammatory responses were induced following exposure, while organic extracts of PM2.5 collected during the heating season induced more significant responses. This response is attributed to high concentrations of polycyclic aromatic hydrocarbons (PAHs) originating from coal combustion and biomass burning for domestic heating. The inhibition of signaling molecules suggested that increased IL-1 beta was associated with the TLR4/NF-kappa B pathway and NLRP3 inflammasome activation, with a slightly difference between water and organic extracts exposure groups, which was likely the result of different chemical components. Our study elucidated a potentially important mechanism by which PM2.5 components could trigger pulmonary inflammation, thus improving our understanding of the deleterious effects of this important and prevalent form of air pollution. (C) 2018 Elsevier Ltd. All rights reserved.
-
(2018) Science of the Total Environment. 626, p. 147-155 Abstract
Exposure to air pollution can induce oxidative stress, inflammation and adverse health effects. To understand how seasonal and chemical variations drive health impacts, we investigated indications for oxidative stress and inflammation in mice exposed to water and organic extracts from urban fine particles/PM2.5 (particles with aerodynamic diameter ≤ 2.5 μm) collected in Beijing, China. Higher levels of pollution components were detected in heating season (HS, winter and part of spring) PM2.5 than in the non-heating season (NHS, summer and part of spring and autumn) PM2.5. HS samples were high in metals for the water extraction and high in polycyclic aromatic hydrocarbons (PAHs) for the organic extraction compared to their controls. An increased inflammatory response was detected in the lung and liver following exposure to the organic extracts compared to the water extracts, and mostly in the HS PM2.5. While reduced antioxidant response was observed in the lung, it was activated in the liver, again, more in the HS extracts. Nrf2 transcription factor, a master regulator of stress response that controls the basal oxidative capacity and induces the expression of antioxidant response, and its related genes were induced. In the liver, elevated levels of lipid peroxidation adducts were measured, correlated with histologic analysis that revealed morphologic features of cell damage and proliferation, indicating oxidative and toxic damage. In addition, expression of genes related to detoxification of PAHs was observed. Altogether, the study suggests that the acute effects of PM2.5 can vary seasonally with stronger health effects in the HS than in the NHS in Beijing, China and that some secondary organs may be susceptible for the exposure damage. Specifically, the liver is a potential organ influenced by exposure to organic components such as PAHs from coal or biomass burning and heating.
-
(2018) Atmospheric Chemistry and Physics. 18, 10, p. 7379-7391 Abstract
Oxidative processing of aircraft turbine-engine exhausts was studied using a potential aerosol mass (PAM) chamber at different engine loads corresponding to typical flight operations. Measurements were conducted at an engine test cell. Organic gases (OGs) and particle emissions pre- and post-PAM were measured. A suite of instruments, including a proton-transfer-reaction mass spectrometer (PTRMS) for OGs, a multigas analyzer for CO, CO2, NO x, and an aerosol mass spectrometer (AMS) for nonrefractory particulate matter (NR-PM1) were used. Total aerosol mass was dominated by secondary aerosol formation, which was approximately 2 orders of magnitude higher than the primary aerosol. The chemical composition of both gaseous and particle emissions were also monitored at different engine loads and were thrust-dependent. At idling load (thrust 2.57 %), more than 90% of the secondary particle mass was organic and could mostly be explained by the oxidation of gaseous aromatic species, e.g., benzene; toluene; xylenes; tri-, tetra-, and pentamethyl-benzene; and naphthalene. The oxygenated-aromatics, e.g., phenol, furans, were also included in this aromatic fraction and their oxidation could alone explain up to 25% of the secondary organic particle mass at idling loads. The organic fraction decreased with thrust level, while the inorganic fraction increased. At an approximated cruise load sulfates comprised 85% of the total secondary particle mass.
-
(2018) Environmental Science and Technology. 52, 6, p. 3456-3465 Abstract
The wavelength-dependence of the complex refractive indices (RI) in the visible spectral range of secondary organic aerosols (SOA) are rarely studied, and the evolution of the RI with atmospheric aging is largely unknown. In this study, we applied a novel white light-broadband cavity enhanced spectroscopy to measure the changes in the RI (400-650 nm) of β-pinene and p-xylene SOA produced and aged in an oxidation flow reactor, simulating daytime aging under NOx-free conditions. It was found that these SOA are not absorbing in the visible range, and that the real part of the RI, n, shows a slight spectral dependence in the visible range. With increased OH exposure, n first increased and then decreased, possibly due to an increase in aerosol density and chemical mean polarizability for SOA produced at low OH exposures, and a decrease in chemical mean polarizability for SOA produced at high OH exposures, respectively. A simple radiative forcing calculation suggests that atmospheric aging can introduce more than 40% uncertainty due to the changes in the RI for aged SOA.
-
(2018) Atmospheric Measurement Techniques. 11, 1, p. 233-248 Abstract
The WeIzmann Supercooled Droplets Observation on Microarray (WISDOM) is a new setup for studying ice nucleation in an array of monodisperse droplets for atmospheric implications. WISDOM combines microfluidics techniques for droplets production and a cryo-optic stage for observation and characterization of freezing events of individual droplets. This setup is designed to explore heterogeneous ice nucleation in the immersion freezing mode, down to the homogeneous freezing of water (235 K) in various cooling rates (typically 0.1-10 K min(-1)). It can also be used for studying homogeneous freezing of aqueous solutions in colder temperatures. Frozen fraction, ice nucleation active surface site densities and freezing kinetics can be obtained from WISDOM measurements for hundreds of individual droplets in a single freezing experiment. Calibration experiments using eutectic solutions and previously studied materials are described. WISDOM also allows repeatable cycles of cooling and heating for the same array of droplets. This paper describes the WISDOM setup, its temperature calibration, validation experiments and measurement uncertainties. Finally, application of WISDOM to study the ice nucleating particle (INP) properties of size-selected ambient Saharan dust particles is presented.
-
(2018) Atmospheric Environment. 173, p. 306-315 Abstract
The goal of this study was to examine the impact of simulated atmospheric aging on the oxidative potential of inorganic aerosols comprised primarily of crustal materials. Four soil samples and one coal fly ash sample were artificially aged in the laboratory through exposure to the vapor from 15.8 M nitric acid solution for 24 h at room temperature. Native and acid-aged samples were analyzed with a cellular macrophage and acellular dithionthreitol assays to determine oxidative potential. Additionally, the samples were analyzed to determine the concentration of 50 elements, both total and the water-soluble fraction of these elements by Sector Field Inductively Coupled Plasma Mass Spectrometry (SF-ICMS) and crystalline mineral composition using X-ray Diffraction (XRD). The results show that reactions with gaseous nitric acid increase the water-soluble fraction of many elements, including calcium, iron, magnesium, zinc, and lead. The mineral composition analysis documented that calcium-rich minerals present in the soils (e.g., calcite) are converted into different chemical forms, such as calcium nitrate (Ca(NO3)(2)). The nitric acid aging process, which can occur in the atmosphere, leads to a 200-600% increase in oxidative potential, as measured by cellular and acellular assays. This laboratory study demonstrates that the toxic effects of aged versus freshly emitted atmospheric dust may be quite different. In addition, the results suggest that mineralogical analysis of atmospheric dust may be useful in understanding its degree of aging.
-
(2017) ACS Earth and Space Chemistry. 1, 10, p. 637-646 Abstract
Phenolic compounds are common constituents of atmospheric aerosols. They form by pyrolysis of lignin and by biodegradation of plant material and are commonly found in biomass burning plumes, resuspended soil dust, and in anthropogenic secondary organic aerosols (SOA). In this study, we show that reactions of Fe(III), a major constituent of mineral dust, with several phenolic compounds (guaiacol, catechol, syringol, o- and p-cresol) that are common in atmospheric aerosols, result in the formation of water insoluble light-absorbing compounds and reduced Fe(II). The study was conducted under acidic conditions (pH = 1-2), relevant for areas impacted by biomass burning, anthropogenic emissions, and mineral dust. The reaction products have been characterized using a high-performance liquid chromatography coupled to photodiode array and high resolution mass spectrometry detectors, UV-visible spectroscopy, X-ray photoelectron spectroscopy, and thermal gravimetric analysis. The major identified chromophores are oligomers of the reaction precursors that efficiently absorb light between 300 and 500 nm. The amounts of oligomers vary significantly between the systems studied. The highest amount was observed for guaiacol and catechol, and the least were detected in the syringol experiments, suggesting that the oligomerization proceeds through carbon-carbon coupling preferred at para- and ortho- positions, coupled to the reduction of Fe(III) to Fe(II). The results suggest that aqueous-phase radical reactions of phenolic compounds may be an efficient source of light-absorbing atmospheric organic compounds (brown carbon) that play important roles in Earth's radiative forcing on global and regional scales and of quinones that can affect health.
-
(2017) Environmental Science and Technology. 51, 20, p. 11561-11570 Abstract
Lag Ba'Omer, a nationwide bonfire festival in Israel, was chosen as a case study to investigate the influence of a major biomass burning event on the light absorption properties of atmospheric brown carbon (BrC). The chemical composition and optical properties of BrC chromophores were investigated using a high performance liquid chromatography (HPLC) platform coupled to photo diode array (PDA) and high resolution mass spectrometry (HRMS) detectors. Substantial increase of BrC light absorption coefficient was observed during the night-long biomass burning event. Most chromophores observed during the event were attributed to nitroaromatic compounds (NAC), comprising 28 elemental formulas of at least 63 structural isomers. The NAC, in combination, accounted for 50-80% of the total visible light absorption (>400 nm) by solvent extractable BrC. The results highlight that NAC, in particular nitrophenols, are important light absorption contributors of biomass burning organic aerosol (BBOA), suggesting that night time chemistry of NO3 and N2O5 with particles may play a significant role in atmospheric transformations of BrC. Nitrophenols and related compounds were especially important chromophores of BBOA. The absorption spectra of the BrC chromophores are influenced by the extraction solvent and solution pH, implying that the aerosol acidity is an important factor controlling the light absorption properties of BrC.
-
(2017) Atmospheric Chemistry and Physics. 17, 18, p. 11331-11353 Abstract
Chemical composition, microphysical, and optical properties of atmospheric aerosol deep inland in the Negev Desert of Israel are found to be influenced by daily occurrences of sea breeze flow from the Mediterranean Sea. Abrupt increases in aerosol volume concentration and shifts of size distributions towards larger sizes, which are associated with increase in wind speed and atmospheric water content, were systematically recorded during the summertime at a distance of at least 80 km from the coast. Chemical imaging of aerosol samples showed an increased contribution of highly hygroscopic particles during the intrusion of the sea breeze. Besides a significant fraction of marine aerosols, the amount of internally mixed marine and mineral dust particles was also increased during the sea breeze period. The number fraction of marine and internally mixed particles during the sea breeze reached up to 88 % in the PM12.5 and up to 62 % in the PM2.510 size range. Additionally, numerous particles with residuals of liquid coating were observed by SEM/EDX analysis. Ca-rich dust particles that had reacted with anthropogenic nitrates were evidenced by Raman microspectroscopy. The resulting hygroscopic particles can deliquesce at very low relative humidity. Our observations suggest that aerosol hygroscopic growth in the Negev Desert is induced by the daily sea breeze arrival. The varying aerosol microphysical and optical characteristics perturb the solar and thermal infrared radiations. The changes in aerosol properties induced by the sea breeze, relative to the background situation, doubled the shortwave radiative cooling at the surface (from −10 to −20.5 W m−2) and increased by almost 3 times the warming of the atmosphere (from 5 to 14 W m−2), as evaluated for a case study. Given the important value of observed liquid coating of particles, we also examined the possible influence of the particle homogeneity assumption on the retrieval of aerosol microphysical characteristics. The tests suggest that sensitivity to the coating appears if backward scattering and polarimetric measurements are available for the inversion algorithm. This may have an important implication for retrievals of aerosol microphysical properties in remote sensing applications.
-
(2017) Faraday Discussions. 200, p. 353-378 Abstract
Y. Rudich remarked: About comparisons between biogenic and anthropogenic SOA, in terms of potency to have a biological effect, chamber studies suggest that anthropogenic SOA is more toxic and leads to more mortality than BSOA.1,2 Can you bridge the gap between your conclusions and these studies?1 W. Y. Tuet et al., Atmos. Chem. Phys., 2017, 17, 839853.2 V. Verma et al., Environ. Sci. Technol., 2017, 51, 31283137
-
(2017) Faraday Discussions. 200, p. 663-691 Abstract
Yinon Rudich responded: It would be beneficial to reach out to other scientific communities and adopt new methods and technologies to atmospheric chemistry. For example, biologists have developed very sensitive tools and assays, that can help address questions relevant to the Anthropocene.
-
(2017) Faraday Discussions. 200, p. 501-527 Abstract
Yinon Rudich commented: I would be cautious in inferring that exposure to ozone and NO2, that leads to nitration and oligomerization, necessarily increases allergenicity. Over a long time period proteins may lose their ability to induce allergies. I would advise direct allergenicity tests to verify this conclusion.1 1 N. Lang-Yona, T. Shuster-Meiseles, Y. Mazar, O. Yarden and Y. Rudich, Impact of urban air pollution on the allergenicity of Aspergillus fumigatus conidia: Outdoor exposure study supported by laboratory, Sci. Total Environ., 2016, 541, 365371.
-
(2017) ACS Earth and Space Chemistry. 1, 5, p. 288-298 Abstract
We evaluate the role of Criegee intermediates (CI) from ozonolysis of alkenes on nighttime chemistry in areas impacted by ozone and high emissions of biogenic volatile organic compounds, for example, the Southeast United States, using the Master Chemical Mechanism. Criegee reactions with NO2 may be an alternate source of NO3. Reactions of CI with NO3 have not been investigated but could influence NOx recycling. Evaluation of these reactions depends on recently measured rate constants for CI reactions with water vapor, NO2, and other trace gases. We vary the CI rate coefficients with NO2 and H2O and explore a range of initial conditions. We find that the CI production has the largest effects at low NO2 (
-
(2017) Environmental Science and Technology. 51, 12, p. 6709-6718 Abstract
Microorganisms carried by dust storms are transported through the atmosphere and may affect human health and the functionality of microbial communities in various environments. Characterizing the dust-borne microbiome in dust storms of different origins or that followed different trajectories provides valuable data to improve our understanding of global health and environmental impacts. We present a comparative study on the diversity of dust-borne bacterial communities in dust storms from three distinct origins (North Africa, Syria and Saudi Arabia) and compare them with local bacterial communities sampled on clear days, all collected at a single location: Rehovot, Israel. Storms from different dust origins exhibited distinct bacterial communities, with signature bacterial taxa. Dust storms were characterized by a lower abundance of selected antibiotic resistance genes (ARGs) compared with ambient dust, asserting that the origin of these genes is local and possibly anthropogenic. With the progression of the storm, the storm-borne bacterial community showed increasing resemblance to ambient dust, suggesting mixing with local dust. These results show, for the first time, that dust storms from different sources display distinct bacterial communities, suggesting possible diverse effects on the environment and public health.
-
(2017) Journal of Geophysical Research. 122, 10, p. 5441-5456 Abstract
The radiative effects of biomass-burning aerosols on regional and global scales can be substantial. Accurate modeling of the radiative effects of smoke aerosols requires wavelength-dependent measurements and parameterizations of their optical properties in the UV and visible spectral ranges along with improved description of their chemical composition. To address this issue, we used a recently developed approach to retrieve the time- and spectral-dependent optical properties of ambient biomass-burning aerosols from 300 to 650 nm wavelengths during a regional nighttime bonfire festival in Israel. During the biomass burning event, the overall absorption at 400 nm increased by about 2 orders of magnitude, changing the single scattering albedo from a background level of 0.95 to 0.7. Based on the new retrieval method, we provide parameterizations of the wavelength-dependent effective complex refractive index from 350 to 650 nm for freshly emitted and slightly aged biomass-burning aerosols. In addition, PM2.5 filter samples were collected for detailed offline chemical analysis of the water-soluble organics that contribute to light absorption. Nitroaromatics were identified as major organic species responsible for the increased absorption at 400 to 500 nm. Typical chromophores include 4-nitrocatechol, 4-nitrophenol, nitrosyringol, and nitroguaiacol; oxidation-nitration products of methoxyphenols; and known products of lignin pyrolysis. Our findings emphasize the importance of both primary and secondary organic aerosols from biomass burning in absorption of solar radiation and in effective radiative forcing. Plain Language Summary The radiative effects of biomass-burning aerosols on regional and global scales are substantial. Accurate modeling of the radiative effects of smoke aerosols requires wavelength-dependent measurements and parameterizations of their optical properties in the UV and visible spectral ranges along with improved description of their chemical composition. To address this issue we used a recently developed approach to retrieve the time- and spectral-dependent optical properties of the ambient aerosol from 300 to 650 nm wavelengths and a high-resolution mass spectrometry analysis of fine particulate matter. We found a significant increase in aerosol light absorption in the UV-Vis spectral range which is correlated to high levels of nitroaromatic compounds identified in the water-soluble extracts of the filter samples. Additionally, for further applications of our results in radiative transfer models, we provide parameterizations of the wavelength-dependent effective complex refractive index from 350 to 650 nm for freshly emitted and aged biomass-burning aerosols.
-
(2017) GeoHealth. 1, 1, p. 4-16 Abstract
Exposure to ambient particulate matter (PM), including PM from resuspension of soils and dusts, increases the risk for respiratory diseases. However, the exact mechanism of PM-mediated damage to the lungs remains unclear. Due to recent increases in the frequency of dust storms in many areas, we examined the cytotoxic effects of soil-dust samples collected in an arid zone in Israel on rat lung macrophages. The desert soil contains soil crusts and low levels of toxic metal content. Exposure of cells to water extracts from the dust samples caused significant reduction in the concentration of live cells and overall cell viability. The dust samples induced cell death through apoptosis, mitochondrial dysfunction, and increased mitochondrial lipid peroxidation. The dust samples generated more reactive oxygen species (ROS) compared to control-treated samples and National Institute of Standards and Technology San Joaquin Valley standard reference material. To assess whether the oxidative imbalance induced by dust extract also interferes with the antioxidant defense, we evaluated phase II detoxifying and antioxidant enzymes, which are Nrf2 classical targets. The Nrf2 transcription factor is a master regulator of cellular adaptation to stress. The dust extracts produced a significant increase in phase II detoxifying genes. This work suggests that the health-related injury observed in rat lung cells exposed to dust extracts is associated with ROS generation, mitochondrial dysfunction, mitochondrial lipid peroxidation, and cellular antioxidant imbalance. Damage to lung mitochondria may be an important mechanism by which dust-containing bacterial material induces lung injury upon inhalation.
-
(2017) Environmental Science and Technology. 51, 5, p. 2519-2528 Abstract
Laboratory studies of atmospheric chemistry characterize the nature of atmospherically relevant processes down to the molecular level, providing fundamental information used to assess how human activities drive environmental phenomena such as climate change, urban air pollution, ecosystem health, indoor air quality, and stratospheric ozone depletion. Laboratory studies have a central role in addressing the incomplete fundamental knowledge of atmospheric chemistry. This article highlights the evolving science needs for this community and emphasizes how our knowledge is far from complete, hindering our ability to predict the future state of our atmosphere and to respond to emerging global environmental change issues. Laboratory studies provide rich opportunities to expand our understanding of the atmosphere via collaborative research with the modeling and field measurement communities, and with neighboring disciplines.
-
(2017) Atmospheric Measurement Techniques. 10, 3, p. 1203-1213 Abstract
The multi-pass photoacoustic spectrometer (PAS) is an important tool for the direct measurement of light absorption by atmospheric aerosol. Accurate PAS measurements heavily rely on accurate calibration of their signal. Ozone is often used for calibrating PAS instruments by relating the photoacoustic signal to the absorption coefficient measured by an independent method such as cavity ring down spectroscopy (CRD-S), cavity-enhanced spectroscopy (CES) or an ozone monitor. We report here a calibration method that uses measured absorption coefficients of aerosolized, light-absorbing organic materials and offer an alternative approach to calibrate photoacoustic aerosol spectrometers at 404 nm. To implement this method, we first determined the complex refractive index of nigrosin, an organic dye, using spectroscopic ellipsometry and then used this well-characterized material as a standard material for PAS calibration.
-
Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol(2017) Atmospheric Chemistry and Physics. 17, 3, p. 2103-2162 Abstract
Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry-climate models.This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.
-
(2017) Nature Communications. 8, 14067. Abstract
The terrestrial vegetation emits large amounts of volatile organic compounds (VOC) into the atmosphere, which on oxidation produce secondary organic aerosol (SOA). By acting as cloud condensation nuclei (CCN), SOA influences cloud formation and climate. In a warming climate, changes in environmental factors can cause stresses to plants, inducing changes of the emitted VOC. These can modify particle size and composition. Here we report how induced emissions eventually affect CCN activity of SOA, a key parameter in cloud formation. For boreal forest tree species, insect infestation by aphids causes additional VOC emissions which modifies SOA composition thus hygroscopicity and CCN activity. Moderate heat increases the total amount of constitutive VOC, which has a minor effect on hygroscopicity, but affects CCN activity by increasing the particles' size. The coupling of plant stresses, VOC composition and CCN activity points to an important impact of induced plant emissions on cloud formation and climate.
-
(2016) Environmental Science & Technology. 50, 23, p. 13177-13178 Abstract
The determination authors regret of that ambient a calculation cellulose error concentrations occurred in from the filter loadings in our article \u201cSize-resolved Identification, Characterization and Quantification of Primary Biological Organic Aerosol at a European Rural Site\u201d. This resulted in cellulose concentrations that were biased high by a factor 2. The correct summer average cellulose contribution to the coarse organic matter (OMCOARSE) fraction was 24 ± 12%. The summer cellulose contribution to the water insoluble OMCOARSE was 43%avg (pg. 3430). Cellulose together with WSOM represented 62% of OMCOARSE (pg. 3430). The median WSPBOA:Cellulose ratio was 0.61, first quartile 0.51, third quartile 0.81 (SI, pg. S20, line 297). This error decreases the initial contribution of cellulose, but does not alter the conclusions of the original article.
-
(2016) Environmental Science and Policy. 65, p. 48-57 Abstract
Anthropogenic activities are responsible for the emission of gaseous and particulate pollutants that modify atmospheric composition. Such changes are, in turn, responsible for the degradation of air quality at the regional/local scale as well as for changes of climate. Air pollution and climate change are two intimately connected environmental issues. However, these two environmental challenges are still viewed as separate issues, which are dealt with by different science communities and within different policy frameworks. Indeed, many mitigation options offer the possibility to both improve air quality and mitigate climate change but, at the same time, mitigation options that may provide benefits to one aspect, are worsening the situation in the other. Therefore, coordinated actions taking into account the air quality-climate linkages are required. These actions need to be based on strong scientific grounds, as recognised by the European Commission that in the past few years has promoted consultation processes among the science community, the policy makers and the relevant stakeholders. Here, the main fields in which such coordinated actions are needed are examined from a policy perspective.
-
(2016) Atmospheric Measurement Techniques. 9, 8, p. 3477-3490 Abstract
Atmospheric aerosols play an important part in the Earth's energy budget by scattering and absorbing incoming solar and outgoing terrestrial radiation. To quantify the effective radiative forcing due to aerosol-radiation interactions, researchers must obtain a detailed understanding of the spectrally dependent intensive and extensive optical properties of different aerosol types. Our new approach retrieves the optical coefficients and the single-scattering albedo of the total aerosol population over 300 to 650 nm wavelength, using extinction measurements from a broadband cavity-enhanced spectrometer at 315 to 345 nm and 390 to 420 nm, extinction and absorption measurements at 404 nm from a photoacoustic cell coupled to a cavity ring-down spectrometer, and scattering measurements from a three-wavelength integrating nephelometer. By combining these measurements with aerosol size distribution data, we retrieved the time- and wavelength-dependent effective complex refractive index of the aerosols. Retrieval simulations and laboratory measurements of brown carbon proxies showed low absolute errors and good agreement with expected and reported values. Finally, we implemented this new broadband method to achieve continuous spectral- and time-dependent monitoring of ambient aerosol population, including, for the first time, extinction measurements using cavity-enhanced spectrometry in the 315 to 345 nm UV range, in which significant light absorption may occur.
-
(2016) Atmospheric Chemistry and Physics. 16, 15, p. 9629-9653 Abstract
The Surface PARTiculate mAtter Network (SPARTAN) is a long-term project that includes characterization of chemical and physical attributes of aerosols from filter samples collected worldwide. This paper discusses the ongoing efforts of SPARTAN to define and quantify major ions and trace metals found in fine particulate matter (PM2.5). Our methods infer the spatial and temporal variability of PM2.5 in a cost-effective manner. Gravimetrically weighed filters represent multi-day averages of PM2.5, with a collocated nephelometer sampling air continuously. SPARTAN instruments are paired with AErosol RObotic NETwork (AERONET) sun photometers to better understand the relationship between ground-level PM2.5 and columnar aerosol optical depth (AOD). We have examined the chemical composition of PM2.5 at 12 globally dispersed, densely populated urban locations and a site at Mammoth Cave (US) National Park used as a background comparison. So far, each SPARTAN location has been active between the years 2013 and 2016 over periods of 2-26 months, with an average period of 12 months per site. These sites have collectively gathered over 10 years of quality aerosol data. The major PM2.5 constituents across all sites (relative contribution±SD) are ammoniated sulfate (20%±11%), crustal material (13.4%±9.9%), equivalent black carbon (11.9%±8.4%), ammonium nitrate (4.7%±3.0%), sea salt (2.3%±1.6%), trace element oxides (1.0%±1.1%), water (7.2%±3.3%) at 35% RH, and residual matter (40%±24%). Analysis of filter samples reveals that several PM2.5 chemical components varied by more than an order of magnitude between sites. Ammoniated sulfate ranges from 1.1μg m-3 (Buenos Aires, Argentina) to 17μg m-3 (Kanpur, India in the dry season). Ammonium nitrate ranged from 0.2μg m-3 (Mammoth Cave, in summer) to 6.8 μg m-3 (Kanpur, dry season). Equivalent black carbon ranged from 0.7μg m-3 (Mammoth Cave) to over 8μg m-3 (Dhaka, Bangladesh and Kanpur, India). Comparison of SPARTAN vs. coincident measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network at Mammoth Cave yielded a high degree of consistency for daily PM2.5 (r2 = 0.76, slope = 1.12), daily sulfate (r2 = 0.86, slope = 1.03), and mean fractions of all major PM2.5 components (within 6%). Major ions generally agree well with previous studies at the same urban locations (e.g. sulfate fractions agree within 4% for 8 out of 11 collocation comparisons). Enhanced anthropogenic dust fractions in large urban areas (e.g. Singapore, Kanpur, Hanoi, and Dhaka) are apparent from high Zn:Al ratios. The expected water contribution to aerosols is calculated via the hygroscopicity parameter κv for each filter. Mean aggregate values ranged from 0.15 (Ilorin) to 0.28 (Rehovot). The all-site parameter mean is 0.20±0.04. Chemical composition and water retention in each filter measurement allows inference of hourly PM2.5 at 35% relative humidity by merging with nephelometer measurements. These hourly PM2.5 estimates compare favourably with a beta attenuation monitor (MetOne) at the nearby US embassy in Beijing, with a coefficient of variation r2 = 0.67 (n = 3167), compared to r2 = 0.62 when κv was not considered. SPARTAN continues to provide an open-access database of PM2.5 compositional filter information and hourly mass collected from a global federation of instruments.
-
(2016) Environmental Science & Technology. 50, 7, p. 3425-3434 Abstract
Primary biological organic aerosols (PBOA) represent a major component of the coarse organic matter (OMCOARSE, aerodynamic diameter > 2.5 μm). Although this fraction affects human health and the climate, its quantification and chemical characterization currently remain elusive. We present the first quantification of the entire PBOACOARSE mass and its main sources by analyzing size-segregated filter samples collected during the summer and winter at the rural site of Payerne (Switzerland), representing a continental Europe background environment. The size-segregated water-soluble OM was analyzed by a newly developed offline aerosol mass spectrometric technique (AMS). Collected spectra were analyzed by three-dimensional positive matrix factorization (3D-PMF), showing that PBOA represented the main OMCOARSE source during summer and its contribution to PM10 was comparable to that of secondary organic aerosol. We found substantial cellulose contributions to OMCOARSE, which in combination with gas chromatography mass spectrometry molecular markers quantification, underlined the predominance of plant debris. Quantitative polymerase chain reaction (qPCR) analysis instead revealed that the sum of bacterial and fungal spores mass represented only a minor OMCOARSE fraction (
-
(2016) Environmental Research. 146, p. 252-262 Abstract
In this study we investigated the possible causal role for soluble metal species extracted from roadway traffic emissions in promoting particulate matter (PM)-induced reactive oxygen species (ROS) production and antioxidant response element (ARE) promoter activation. To this end, these responses have been evaluated in alveolar macrophage and epithelial lung cells that have been exposed to 'Unfiltered', 'Filtered' and 'Filtered+Chelexed' water extracts of PM samples collected from the roadway urban environments of Thessaloniki, Milan and London. Except for Thessaloniki, our results demonstrate that filtration resulted in a minor decrease in ROS activity of the fine PM fraction, suggesting that ROS activity is attributed mainly to water-soluble PM species. In contrast to ROS, ARE activity was mediated predominantly by the water-soluble component of PM present in both the fine and coarse extracts. Further removal of metals by Chelex treatment from filtered water extracts showed that soluble metal species are the major factors mediating ROS and ARE activities of the soluble fraction, especially in the London PM extracts. Finally, utilizing step-wise multiple-regression analysis, we show that 87% and 78% of the total variance observed in ROS and ARE assays, respectively, is accounted for by changes in soluble metal concentration. Using a statistical analysis we find that As, Zn and Fe best predict the ROS-generating/ARE-activating capacity of the near roadway particulate matter in the pulmonary cells studied. Collectively, our findings imply that soluble metals present in roadside PM are potential drivers of both pro- and anti-oxidative effects of PM in respiratory tract.
-
(2016) Environmental Science and Technology. 50, 8, p. 4194-4202 Abstract
We evaluated the impact of Saharan dust storms on the local airborne microbiome in a city in the Eastern Mediterranean area. Samples of particles with diameter less than 10 μm were collected during two spring seasons on both dusty and nondusty days. DNA was extracted, and partial 16S rRNA gene amplicons were sequenced using the Illumina platform. Bioinformatic analysis showed the effect of dust events on the diversity of the atmospheric microbiome. The relative abundance of desert soil-associated bacteria increased during dust events, while the relative abundance of anthropogenic-influenced taxa decreased. Quantitative polymerase chain reaction measurements of selected clinically significant antibiotic resistance genes (ARGs) showed that their relative abundance decreased during dust events. The ARG profiles on dust-free days were similar to those in aerosol collected in a poultry house, suggesting a strong agricultural influence on the local ambient profiles. We conclude that dust storms enrich the ambient airborne microbiome with new soil-derived bacteria that disappear as the dust settles, suggesting that the bacteria are transported attached to the dust particles. Dust storms do not seem to be an important vector for transport of probed ARGs.
-
(2016) Environmental Science & Technology. 50, 5, p. 2292-2300 Abstract
The hygroscopic growth factor (HGF) and cloud condensation nuclei (CCN) activity for a series of alkylaminium carboxylate aerosols have been measured using a hygroscopicity tandem differential mobility analyzer coupled to a condensation particle counter and a CCN counter. The particles, consisting of the mixtures of mono- (acetic, propanoic, p-toluic, and cis-pinonic acid) and dicarboxylic (oxalic, succinic, malic, adipic, and azelaic acid) acid with alkylamine (mono-, di-, and trimethylamines), represent those commonly found under diverse environmental conditions. The hygroscopicity parameter (κ) of the alkylaminium carboxylate aerosols was derived from the HGF and CCN results and theoretically calculated. The HGF at 90% RH is in the range of 1.3 to 1.8 for alkylaminium monocarboxylates and 1.1 to 2.2 for alkylaminium dicarboxylates, dependent on the molecular functionality (i.e., the carboxylic or OH functional group in organic acids and methyl substitution in alkylamines). The κ value for all alkylaminium carboxylates is in the range of 0.061.37 derived from the HGF measurements at 90% RH, 0.050.49 derived from the CCN measurements, and 0.220.66 theoretically calculated. The measured hygroscopicity of the alkylaminium carboxylates increases with decreasing acid to base ratio. The deliquescence point is apparent for several of the alkylaminium dicarboxylates but not for the alkylaminium monocarboxylates. Our results reveal that alkylaminium carboxylate aerosols exhibit distinct hygroscopic and deliquescent characteristics that are dependent on their molecular functionality, hence regulating their impacts on human health, air quality, and direct and indirect radiative forcing on climate.
-
(2016) Environmental Pollution. 210, p. 227-237 Abstract
Exposure to particulate matter (PM) pollution in cities and urban canyons can be harmful to the exposed population. However, the underlying mechanisms that lead to health effects are not yet elucidated. It is postulated that exposure to repeated, small, environmentally relevant concentrations can affect lung homeostasis. This study examines the impact of repeated exposures to urban PM on mouse lungs with focus on inflammatory and oxidative stress parameters. Aqueous extracts from collected urban PM were administered to mice by 5 repeated intra-tracheal instillations (IT). Multiple exposures, led to an increase in cytokine levels in both bronchoalveolar lavage fluid and in the blood serum, indicating a systemic reaction. Lung mRNA levels of antioxidant/phase II detoxifying enzymes decreased by exposure to the PM extract, but not when metals were removed by chelation. Finally, disruption of lung tissue oxidant-inflammatory/defense balance was evidenced by increased levels of lipid and protein oxidation. Unlike response to a single IT exposure to the same dose and source of extract, multiple exposures result in lung oxidative damage and a systemic inflammatory reaction. These could be attributed to compromised capacity to activate the protective Nrf2 tissue defense system. It is suggested that water-soluble metals present in urban PM, potentially from break and tire wear, may constitute major drivers of the pulmonary and systemic responses to multiple exposure to urban PM.
-
(2016) Journal of visualized experiments : JoVE. 2016, 109, e53444. Abstract
Outdoor aerosol research commonly uses particulate matter sampled on filters. This procedure enables various characterizations of the collected particles to be performed in parallel. The purpose of the method presented here is to obtain a highly accurate and reliable analysis of the endotoxin and DNA content of bio-aerosols extracted from filters. The extraction of high molecular weight organic molecules, such as lipopolysaccharides, from sampled filters involves shaking the sample in a pyrogen-free water-based medium. The subsequent analysis is based on an enzymatic reaction that can be detected using a turbidimetric measurement. As a result of the high organic content on the sampled filters, the extraction of DNA from the samples is performed using a commercial DNA extraction kit that was originally designed for soils and modified to improve the DNA yield. The detection and quantification of specific microbial species using quantitative polymerase chain reaction (q-PCR) analysis are described and compared with other available methods.
-
(2016) Geophysical Research Letters. 43, 5, p. 2259-2266 Abstract
Accurate knowledge of aerosol variability on a relatively high spatiotemporal scale is needed for better assessment of aerosol radiative effects and aerosol-climate interactions. We investigated the spatial boundaries of the Aerosol Robotic Network (AERONET) observations over the Mediterranean basin using a statistical approach. We used 13 years (2002-2014) of aerosol optical depth (AOD) measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) and 15 AERONET sites around the Mediterranean basin. The gridded correlation maps show moderate to high correlations (R > 0.5) around each AERONET site up to ~200-500 km radius depending on location. Such analyses provide information on the spatial domain in which the AERONET measurements can be reliably used per site. The statistical model provides a better daytime AOD product on finer temporal resolution with higher spatial coverage as compared to using AERONET/MODIS observations separately. The findings from this study can be useful for the assimilation-based model forecasting of aerosol properties.
-
(2016) Atmospheric Chemistry and Physics. 16, 2, p. 1105-1121 Abstract
Interaction of biogenic volatile organic compounds (VOCs) with Anthropogenic VOC (AVOC) affects the physicochemical properties of secondary organic aerosol (SOA). We investigated cloud droplet activation (CCN activity), droplet growth kinetics, and hygroscopicity of mixed anthropogenic and biogenic SOA (ABSOA) compared to pure biogenic SOA (BSOA) and pure anthropogenic SOA (ASOA). Selected monoterpenes and aromatics were used as representative precursors of BSOA and ASOA, respectively.We found that BSOA, ASOA, and ABSOA had similar CCN activity despite the higher oxygen to carbon ratio (O/C) of ASOA compared to BSOA and ABSOA. For individual reaction systems, CCN activity increased with the degree of oxidation. Yet, when considering all different types of SOA together, the hygroscopicity parameter, kappa(CCN), did not correlate with O/C. Droplet growth kinetics of BSOA, ASOA, and ABSOA were comparable to that of (NH4)(2)SO4, which indicates that there was no delay in the water uptake for these SOA in supersaturated conditions.In contrast to CCN activity, the hygroscopicity parameter from a hygroscopic tandem differential mobility analyzer (HTDMA) measurement, kappa(HTDMA) of ASOA was distinctively higher (0.09-0.10) than that of BSOA (0.030-0.06), which was attributed to the higher degree of oxida-tion of ASOA. The ASOA components in mixed ABSOA enhanced aerosol hygroscopicity. Changing the ASOA fraction by adding biogenic VOC (BVOC) to ASOA or vice versa (AVOC to BSOA) changed the hygroscopicity of aerosol, in line with the change in the degree of oxidation of aerosol. However, the hygroscopicity of ABSOA cannot be described by a simple linear combination of pure BSOA and ASOA systems. This indicates that additional processes, possibly oligomerization, affected the hygroscopicity.Closure analysis of CCN and HTDMA data showed kappa(HTDMA) was lower than kappa(CCN) by 30-70 %. Better closure was achieved for ASOA compared to BSOA. This discrepancy can be attributed to several reasons. ASOA seemed to have higher solubility in subsaturated conditions and/or higher surface tension at the activation point than that of BSOA.
-
(2016) Atmospheric Measurement Techniques. 9, 1, p. 41-52 Abstract
Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and it strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99930 ± 0.00003 (1-reflectivity = 700 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.43 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity-enhanced absorption spectroscopy and cavity ring-down spectroscopy agree within 2% (slope for linear fit = 1.02 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity-enhanced absorption spectroscopy and calculated based on flow dilution are also well correlated, with r2 = 0.9998. During constant mixed additions of NO2 and CH2O, the 30s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically based trace gas detection that may complement higher precision techniques based on non-absolute detection methods. In addition to trace gases, this approach will be appropriate for measurements of aerosol extinction in ambient air, and this spectral region is important for characterizing the strong ultraviolet absorption by brown carbon aerosol.
-
(2016) Science of the Total Environment. 541, p. 365-371 Abstract
Understanding the chemical interactions of common allergens in urban environments may help to decipher the general increase in susceptibility to allergies observed in recent decades. In this study, asexual conidia of the allergenic mold Aspergillus fumigatus were exposed to air pollution under natural (ambient) and controlled (laboratory) conditions. The allergenic activity was measured using two immunoassays and supported by a protein mass spectrometry analysis. The allergenicity of the conidia was found to increase by 2-5 fold compared to the control for short exposure times of up to 12h (accumulated exposure of about 50ppb NO2 and 750ppb O3), possibly due to nitration. At higher exposure times, the allergenicity increase lessened due to protein deamidation. These results indicate that during the first 12h of exposure, the allergenic potency of the fungal allergen A. fumigatus in polluted urban environments is expected to increase. Additional work is needed in order to determine if this behavior occurs for other allergens.
-
(2015) Geophysical Research Letters. 42, 24, p. 10,920-10,928 Abstract
Secondary organic aerosol components (SOA) contribute significantly to the activation of cloud condensation nuclei (CCN) in the atmosphere. The CCN activity of internally mixed submicron SOA particles is often parameterized assuming a size-independent single-hygroscopicity parameter κ. In the experiments done in a large atmospheric reactor (SAPHIR, Simulation of Atmospheric PHotochemistry In a large Reaction chamber, Jülich), we consistently observed size-dependent κ and particle composition for SOA from different precursors in the size range of 50 nm-200 nm. Smaller particles had higher κ and a higher degree of oxidation, although all particles were formed from the same reaction mixture. Since decreasing volatility and increasing hygroscopicity often covary with the degree of oxidation, the size dependence of composition and hence of CCN activity can be understood by enrichment of higher oxygenated, low-volatility hygroscopic compounds in smaller particles. Neglecting the size dependence of κ can lead to significant bias in the prediction of the activated fraction of particles during cloud formation.
-
(2015) Atmospheric Chemistry and Physics. 15, 23, p. 13599-13613 Abstract
New measurements of water diffusion in secondary organic aerosol (SOA) material produced by oxidation of α-pinene and in a number of organic/inorganic model mixtures (3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA), levoglucosan, levoglucosan/NH4HSO4, raffinose) are presented. These indicate that water diffusion coefficients are determined by several properties of the aerosol substance and cannot be inferred from the glass transition temperature or bouncing properties. Our results suggest that water diffusion in SOA particles is faster than often assumed and imposes no significant kinetic limitation on water uptake and release at temperatures above 220 K. The fast diffusion of water suggests that heterogeneous ice nucleation on a glassy core is very unlikely in these systems. At temperatures below 220 K, model simulations of SOA particles suggest that heterogeneous ice nucleation may occur in the immersion mode on glassy cores which remain embedded in a liquid shell when experiencing fast updraft velocities. The particles absorb significant quantities of water during these updrafts which plasticize their outer layers such that these layers equilibrate readily with the gas phase humidity before the homogeneous ice nucleation threshold is reached. Glass formation is thus unlikely to restrict homogeneous ice nucleation. Only under most extreme conditions near the very high tropical tropopause may the homogeneous ice nucleation rate coefficient be reduced as a consequence of slow condensed-phase water diffusion. Since the differences between the behavior limited or non limited by diffusion are small even at the very high tropical tropopause, condensed-phase water diffusivity is unlikely to have significant consequences on the direct climatic effects of SOA particles under tropospheric conditions.
-
(2015) Heliyon. 1, 2, e00036. Abstract
This study presents a theoretical investigation of the effect of the aerosol vertical distribution on the aerosol radiative effect (ARE). Four aerosol composition models (dust, polluted dust, pollution and pure scattering aerosols) with varying aerosol vertical profiles are incorporated into a radiative transfer model. The simulations show interesting spectral dependence of the ARE on the aerosol layer height. ARE increases with the aerosol layer height in the ultraviolet (UV: 0.25-0.42 mu m) and thermal-infrared (TH-IR: 4.0-20.0 mu m) regions, whereas it decreases in the visible-near infrared (VIS-NIR: 0.42-4.0 mu m) region. Changes in the ARE with aerosol layer height are associated with different dominant processes for each spectral region. The combination of molecular (Rayleigh) scattering and aerosol absorption is the key process in the UV region, whereas aerosol (Mie) scattering and atmospheric gaseous absorption are key players in the VIS-NIR region. The longwave emission fluxes are controlled by the environmental temperature at the aerosol layer level. ARE shows maximum sensitivity to the aerosol layer height in the TH-IR region, followed by the UV and VIS-NIR regions. These changes are significant even in relatively low aerosol loading cases (aerosol optical depth similar to 0.2-0.3). Dust aerosols are the most sensitive to altitude followed by polluted dust and pollution in all three different wavelength regions. Differences in the sensitivity of the aerosol type are explained by the relative strength of their spectral absorption/scattering properties. The role of surface reflectivity on the overall altitude dependency is shown to be important in the VIS-NIR and UV regions, whereas it is insensitive in the TH-IR region. Our results indicate that the vertical distribution of water vapor with respect to the aerosol layer is an important factor in the ARE estimations. Therefore, improved estimations of the water vapor profiles are needed for the further reduction in uncertainties associated with the ARE estimation.
-
(2015) Environmental Science and Technology. 49, 14, p. 8777-8785 Abstract
Inhalation of traffic-associated atmospheric particulate matter (PM2.5) is recognized as a significant health risk. In this study, we focused on a single ("subclinical response") exposure to water-soluble extracts from PM collected at a roadside site in a major European city to elucidate potential components that drive pulmonary inflammatory, oxidative, and defense mechanisms and their systemic impacts. Intratracheal instillation (IT) of the aqueous extracts induced a 24 h inflammatory response characterized by increased broncho-alveolar lavage fluid (BALF) cells and cytokines (IL-6 and TNF-α), increased reactive oxygen species production, but insignificant lipids and proteins oxidation adducts in mouse lungs. This local response was largely self-resolved by 48 h, suggesting that it could represent a subclinical response to everyday-level exposure. Removal of soluble metals by chelation markedly diminished the pulmonary PM-mediated response. An artificial metal solution (MS) recapitulated the PM extract response. The self-resolving nature of the response is associated with activating defense mechanisms (increased levels of catalase and glutathione peroxidase expression), observed with both PM extract and MS. In conclusion, metals present in PM collected near roadways are largely responsible for the observed transient local pulmonary inflammation and oxidative stress. Simultaneous activation of the antioxidant defense response may protect against oxidative damage. (Figure Presented).
-
(2015) Atmospheric Chemistry and Physics. 15, 14, p. 8217-8299 Abstract
The literature on atmospheric particulate matter (PM), or atmospheric aerosol, has increased enormously over the last 2 decades and amounts now to some 1500-2000 papers per year in the refereed literature. This is in part due to the enormous advances in measurement technologies, which have allowed for an increasingly accurate understanding of the chemical composition and of the physical properties of atmospheric particles and of their processes in the atmosphere. The growing scientific interest in atmospheric aerosol particles is due to their high importance for environmental policy. In fact, particulate matter constitutes one of the most challenging problems both for air quality and for climate change policies. In this context, this paper reviews the most recent results within the atmospheric aerosol sciences and the policy needs, which have driven much of the increase in monitoring and mechanistic research over the last 2 decades. The synthesis reveals many new processes and developments in the science underpinning climate-aerosol interactions and effects of PM on human health and the environment. However, while airborne particulate matter is responsible for globally important influences on premature human mortality, we still do not know the relative importance of the different chemical components of PM for these effects. Likewise, the magnitude of the overall effects of PM on climate remains highly uncertain. Despite the uncertainty there are many things that could be done to mitigate local and global problems of atmospheric PM. Recent analyses have shown that reducing black carbon (BC) emissions, using known control measures, would reduce global warming and delay the time when anthropogenic effects on global temperature would exceed 2°C. Likewise, cost-effective control measures on ammonia, an important agricultural precursor gas for secondary inorganic aerosols (SIA), would reduce regional eutrophication and PM concentrations in large areas of Europe, China and the USA. Thus, there is much that could be done to reduce the effects of atmospheric PM on the climate and the health of the environment and the human population. A prioritized list of actions to mitigate the full range of effects of PM is currently undeliverable due to shortcomings in the knowledge of aerosol science; among the shortcomings, the roles of PM in global climate and the relative roles of different PM precursor sources and their response to climate and land use change over the remaining decades of this century are prominent. In any case, the evidence from this paper strongly advocates for an integrated approach to air quality and climate policies.
-
-
-
(2015) Proceedings of the National Academy of Sciences of the United States of America. 112, 21, p. 6643-6647 Abstract
Marine viruses constitute a major ecological and evolutionary driving force in the marine ecosystems. However, their dispersal mechanisms remain underexplored. Here we follow the dynamics of Emiliania huxleyi viruses (EhV) that infect the ubiquitous, bloom-forming phytoplankton E. huxleyi and show that EhV are emitted to the atmosphere as primary marine aerosols. Using a laboratory-based setup, we showed that the dynamic of EhV aerial emission is strongly coupled to the host-virus dynamic in the culture media. In addition, we recovered EhV DNA from atmospheric samples collected over an E. huxleyi bloom in the North Atlantic, providing evidence for aerosolization of marine viruses in their natural environment. Decay rate analysis in the laboratory revealed that aerosolized viruses can remain infective under meteorological conditions prevailing during E. huxleyi blooms in the ocean, allowing potential dispersal and infectivity over hundreds of kilometers. Based on the combined laboratory and in situ findings, we propose that atmospheric transport of EhV is an effective transmission mechanism for spreading viral infection over large areas in the ocean. This transmission mechanism may also have an important ecological impact on the large-scale host-virus "arms race" during bloom succession and consequently the turnover of carbon in the ocean.
-
(2015) Atmospheric Environment. 109, p. 97-104 Abstract
The Amazon basin is a hot spot of anthropogenically-driven biomass burning, accounting for approximately 15% of total global fire emissions. It is essential to accurately measure these fires for robust regional and global modeling of key environmental processes. Here we have explored the link between spatio-temporal variability patterns in the Amazon basin's fires and the resulting smoke loading using 11 years (2002-2012) of data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Aerosol Robotic Network (AERONET) observations. Focusing on the peak burning season (July-October), our analysis shows strong inter-annual correlation between aerosol optical depth (AOD) and two MODIS fire products: fire radiative power (FRP) and fire pixel counts (FC). Among these two fire products, the FC better indicates the amount of smoke in the basin, as represented in remotely sensed AOD data. This fire product is significantly correlated both with regional AOD retrievals from MODIS and with point AOD measurements from the AERONET stations, pointing to spatial homogenization of the smoke over the basin on a seasonal time scale. However, MODIS AODs are found better than AERONET AODs observation for linking between smoke and fire. Furthermore, MODIS AOD measurements are strongly correlated with number of fires ~10-20 to the east, most likely due to westward advection of smoke by the wind. These results can be rationalized by the regional topography and the wind regimes. Our analysis can improve data assimilation of satellite and ground-based observations into regional and global model studies, thus improving the assessment of the environmental and climatic impacts of frequency and distribution variability of the Amazon basin's fires. We also provide the optimal spatial and temporal scales for ground-based observations, which could be used for such applications.
-
(2015) Journal of Physical Chemistry A. 119, 19, p. 4336-4346 Abstract
Heterogeneous neutralization reactions of ammonia and alkylamines with sulfuric acid play an important role in aerosol formation and particle growth. However, little is known about the physical and chemical properties of alkylaminium salts of organic acids. In this work we studied the thermal stability and volatility of alkylaminium carboxylate salts of short aliphatic alkylamines with monocarboxylic and dicarboxylic acids. The enthalpy of vaporization and saturation vapor pressure at 298 K were derived using the kinetic model of evaporation and the Clausius-Clapeyron relation. The vapor pressure of alkylaminium dicarboxylate salts is ∼10-6 Pa, and the vaporization enthalpy ranges from 73 to 134 kJ mol-1. Alkylaminium monocarboxylate salts show high thermal stability, and their thermograms do not follow our evaporation model. Hence, we inferred their vapor pressure from their thermograms as comparable to that of ammonium sulfate (∼10-9 Pa). Further characterization showed that alkylaminium monocarboxylates are room temperature protic ionic liquids (RTPILs) that are more hygroscopic than ammonium sulfate (AS). We suggest that the irregular thermograms result from an incomplete neutralization reaction leading to a mixture of ionic and nonionic compounds. We conclude that these salts are expected to contribute to new particle formation and particle growth under ambient conditions and can significantly enhance the CCN activity of mixed particles in areas where SO2 emissions are regulated.
-
-
(2015) Atmospheric Measurement Techniques. 8, 1, p. 505-521 Abstract
Ground-based observations have insufficient spatial coverage to assess long-term human exposure to fine particulate matter (PM2.5) at the global scale. Satellite remote sensing offers a promising approach to provide information on both short-and long-term exposure to PM2.5 at local-to-global scales, but there are limitations and outstanding questions about the accuracy and precision with which ground-level aerosol mass concentrations can be inferred from satellite remote sensing alone. A key source of uncertainty is the global distribution of the relationship between annual average PM2.5 and discontinuous satellite observations of columnar aerosol optical depth (AOD). We have initiated a global network of ground-level monitoring stations designed to evaluate and enhance satellite remote sensing estimates for application in health-effects research and risk assessment. This Surface PARTiculate mAtter Network (SPARTAN) includes a global federation of ground-level monitors of hourly PM2.5 situated primarily in highly populated regions and collocated with existing ground-based sun photometers that measure AOD. The instruments, a three-wavelength nephelometer and impaction filter sampler for both PM2.5 and PM10, are highly autonomous. Hourly PM2.5 concentrations are inferred from the combination of weighed filters and nephelometer data. Data from existing networks were used to develop and evaluate network sampling characteristics. SPARTAN filters are analyzed for mass, black carbon, water-soluble ions, and metals. These measurements provide, in a variety of regions around the world, the key data required to evaluate and enhance satellite-based PM2.5 estimates used for assessing the health effects of aerosols. Mean PM2.5 concentrations across sites vary by more than 1 order of magnitude. Our initial measurements indicate that the ratio of AOD to ground-level PM2.5 is driven temporally and spatially by the vertical profile in aerosol scattering. Spatially this ratio is also strongly influenced by the mass scattering efficiency.
-
(2014) Science of the Total Environment. 499, 1, p. 311-318 Abstract
Marine aerosols, that are very common in the highly populated coastal cities and communities, may contain biological constituents. Some of this biological fraction of marine aerosols, such as cyanobacteria and plankton debris, may influence human health by inflammation and allergic reactions when inhaled. In this study we identify and compare sources for endotoxins sampled on filters in an on-shore and more-inland site. Filter analysis included endotoxin content, total bacteria, gram-negative bacteria and cyanobacteria genome concentrations as well as ion content in order to identify possible sources for the endotoxins. Satellite images of chlorophyll-a levels and back trajectory analysis were used to further study the cyanobacteria blooms in the sea, close to the trajectory of the sampled air. The highest endotoxin concentrations found in the shoreline site were during winter (3.23±0.17 EU/m3), together with the highest cyanobacteria genome (1065.5 genome/m3). The elevated endotoxin concentrations were significantly correlated with cyanobacterial levels scaled to the presence of marine aerosol (r=0.90), as well as to chlorophyll-a (r=0.96). Filters sampled further inland showed lower and non-significant correlation between endotoxin and cyanobacteria (r=0.70, P value=0.19), suggesting decrease in marine-originated endotoxin, with possible contributions from other sources of gram-negative non-cyanobacteria. We conclude that marine cyanobacteria may be a dominant contributor to elevated endotoxin levels in coastal areas.
-
The possible association between exposure to air pollution and the risk for congenital malformations(2014) Environmental Research. 135, p. 173-180 Abstract
Background: Over the last decade, there is growing evidence that exposure to air pollution may be associated with increased risk for congenital malformations. Objectives: To evaluate the possible association between exposures to air pollution during pregnancy and congenital malformations among infants born following spontaneously conceived (SC) pregnancies and assisted reproductive technology (ART) pregnancies. Methods: This is an historical cohort study comprising 216,730 infants: 207,825 SC infants and 8905 ART conceived infants, during the periods 1997-2004. Air pollution data including sulfur dioxide (SO2), particulate matter
-
(2014) Current Biology. 24, 17, p. 2041-2046 Abstract
Phytoplankton blooms are ephemeral events of exceptionally high primary productivity that regulate the flux of carbon across marine food webs [1-3]. Quantification of bloom turnover [4] is limited by a fundamental difficulty to decouple between physical and biological processes as observed by ocean color satellite data. This limitation hinders the quantification of bloom demise and its regulation by biological processes [5, 6], which has important consequences on the efficiency of the biological pump of carbon to the deep ocean [7-9]. Here, we address this challenge and quantify algal blooms turnover using a combination of satellite and in situ data, which allows identification of a relatively stable oceanic patch that is subject to little mixing with its surroundings. Using a newly developed multisatellite Lagrangian diagnostic, we decouple the contributions of physical and biological processes, allowing quantification of a complete life cycle of a mesoscale (w10-100 km) bloom of coccolithophores in the North Atlantic, from exponential growth to its rapid demise. We estimate the amount of organic carbon produced during the bloom to be in the order of 24,000 tons, of which two-thirds were turned over within 1 week. Complimentary in situ measurements of the same patch area revealed high levels of specific viruses infecting coccolithophore cells, therefore pointing at the importance of viral infection as a possible mortality agent. Application of the newly developed satellite-based approaches opens the way for large-scale quantification of the impact of diverse environmental stresses on the fate of phytoplankton blooms and derived carbon in the ocean.
-
(2014) Science of the Total Environment. 488-489, 1, p. 456-460 Abstract
To evaluate the health impacts of particulate matter and develop effective pollutant abatement strategies, one needs to know the source contributions to the observed concentrations. The most common approach involves the collection of ambient air samples on filters, laboratory analyses to quantify the chemical composition, and application of receptor modeling methods. This approach is expensive and time consuming and limits the ability to monitor the temporal and spatial impacts from different pollutant sources. An alternative method for apportioning the sources of ambient PM is the application of microscopic chemical imaging (MCI). The MCI method involves measuring individual particle's fluorescence and source attribution is based on the individual particle analysis coupled with identification from a source library. Using this approach, the apportionment of ambient PM can be performed in near real time, which allows for the generation of temporal and spatial maps of pollutant source impacts in an urban area.
-
(2014) Atmospheric Chemistry and Physics. 14, 14, p. 7213-7231 Abstract
The effects of absorbing aerosols on the atmospheric radiation budget and dynamics over the eastern Mediterranean region are studied using satellites and ground-based observations, and radiative transfer model calculations, under summer conditions. Climatology of aerosol optical depth (AOD), single scattering albedo (SSA) and size parameters were analyzed using multi-year (1999-2012) observations from Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging SpectroRadiometer (MISR) and AErosol RObotic NETwork (AERONET). Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)-derived aerosol vertical distributions and their classifications are used to calculate the AOD of four dominant aerosol types: dust, polluted dust, polluted continental, and marine aerosol over the region. The seasonal mean (June-August 2010) AODs are 0.22 ± 0.02, 0.11 ± 0.04, 0.10 ± 0.04 and 0.06 ± 0.01 for polluted dust, polluted continental, dust and marine aerosol, respectively. Changes in the atmospheric temperature profile as a function of absorbing aerosol loading were derived for the same period using observations from the AIRS satellite. We inferred heating rates in the aerosol layer of ∼1.7 ± 0.8 K dayg-1 between 925 and 850 hPa, which is attributed to aerosol absorption of incoming solar radiation. Radiative transfer model (RTM) calculations show significant atmospheric warming for dominant absorbing aerosol over the region. A maximum atmospheric forcing of +16.7 ± 7.9 Wm-2 is calculated in the case of polluted dust, followed by dust (+9.4 ± 4.9 Wm-2) and polluted continental (+6.4 ± 4.5 Wm-2). RTM-derived heating rate profiles for dominant absorbing aerosol show warming of 0.1-0.9 K day-1 in the aerosol layer (
-
(2014) Atmospheric Chemistry and Physics. 14, 11, p. 5793-5806 Abstract
The chemical and physical properties of secondary organic aerosol (SOA) formed by the photochemical degradation of biogenic and anthropogenic volatile organic compounds (VOC) are as yet still poorly constrained. The evolution of the complex refractive index (RI) of SOA, formed from purely biogenic VOC and mixtures of biogenic and anthropogenic VOC, was studied over a diurnal cycle in the SAPHIR photochemical outdoor chamber in Jülich, Germany. The correlation of RI with SOA chemical and physical properties such as oxidation level and volatility was examined. The RI was retrieved by a newly developed broadband cavity-enhanced spectrometer for aerosol optical extinction measurements in the UV spectral region (360 to 420 nm). Chemical composition and volatility of the particles were monitored by a high-resolution time-of-flight aerosol mass spectrometer, and a volatility tandem differential mobility analyzer. SOA was formed by ozonolysis of either (i) a mixture of biogenic VOC (α-pinene and limonene), (ii) biogenic VOC mixture with subsequent addition of an anthropogenic VOC (p-xylene-d10), or (iii) a mixture of biogenic and anthropogenic VOC. The SOA aged by ozone/OH reactions up to 29.5 h was found to be non-absorbing in all cases. The SOA with p-xylene-d10 showed an increase of the scattering component of the RI correlated with an increase of the O / C ratio and with an increase in the SOA density. There was a greater increase in the scattering component of the RI when the SOA was produced from the mixture of biogenic VOCs and anthropogenic VOC than from the sequential addition of the VOCs after approximately the same ageing time. The increase of the scattering component was inversely correlated with the SOA volatility. Two RI retrievals determined for the pure biogenic SOA showed a constant RI for up to 5 h of ageing. Mass spectral characterization shows the three types of the SOA formed in this study have a significant amount of semivolatile components. The influence of anthropogenic VOCs on the oxygenated organic aerosol as well as the atmospheric implications are discussed.
-
(2014) Journal of Geophysical Research. 119, 11, p. 6768-6787 Abstract
Porous glassy particles are a potentially significant but unexplored component of atmospheric aerosol that can form by aerosol processing through the ice phase of high convective clouds. The optical properties of porous glassy aerosols formed from a freeze-dry cycle simulating freezing and sublimation of ice particles were measured using a cavity ring down aerosol spectrometer (CRD-AS) at 532 nm and 355 nm wavelength. The measured extinction efficiency was significantly reduced for porous organic and mixed organic-ammonium sulfate particles as compared to the extinction efficiency of the homogeneous aerosol of the same composition prior to the freeze-drying process. A number of theoretical approaches for modeling the optical extinction of porous aerosols were explored. These include effective medium approximations, extended effective medium approximations, multilayer concentric sphere models, Rayleigh-Debye-Gans theory, and the discrete dipole approximation. Though such approaches are commonly used to describe porous particles in astrophysical and atmospheric contexts, in the current study, these approaches predicted an even lower extinction than the measured one. Rather, the best representation of the measured extinction was obtained with an effective refractive index retrieved from a fit to Mie scattering theory assuming spherical particles with a fixed void content. The single-scattering albedo of the porous glassy aerosols was derived using this effective refractive index and was found to be lower than that of the corresponding homogeneous aerosol, indicating stronger relative absorption at the wavelengths measured. The reduced extinction and increased absorption may be of significance in assessing direct, indirect, and semidirect forcing in regions where porous aerosols are expected to be prevalent.
-
(2014) Atmospheric Chemistry and Physics. 14, 6, p. 2789-2804 Abstract
The impact of nitrogen oxides (NOx Combining double low line NO + NO2) on new particle formation (NPF) and on photochemical ozone production from real plant volatile organic compound (BVOC) emissions was studied in a laboratory setup. At high NOx conditions ([BVOC]/[NOx] x] > 23 ppb) new particle formation was suppressed. Instead, photochemical ozone formation was observed resulting in higher hydroxyl radical (OH) and lower nitrogen monoxide (NO) concentrations. When [NO] was reduced back to levels below 1 ppb by OH reactions, NPF was observed. Adding high amounts of NOx caused NPF to be slowed by orders of magnitude compared to analogous experiments at low NOx conditions ([NOx] ~ 300 ppt), although OH concentrations were higher. Varying NO2 photolysis enabled showing that NO was responsible for suppression of NPF. This suggests that peroxy radicals are involved in NPF. The rates of NPF and photochemical ozone production were related by power law dependence with an exponent approaching -2. This exponent indicated that the overall peroxy radical concentration must have been similar when NPF occurred. Thus, permutation reactions of first-generation peroxy radicals cannot be the rate limiting step in NPF from monoterpene oxidation. It was concluded that permutation reactions of higher generation peroxy-radical-like intermediates limit the rate of new particle formation. In contrast to the strong effects on the particle numbers, the formation of particle mass was substantially less sensitive to NOx concentrations. If at all, yields were reduced by about an order of magnitude only at very high NOx concentrations.
-
(2014) Environmental Science and Technology. 48, 6, p. 3457-3466 Abstract
The cytotoxicity of tungsten disulfide nano tubes (INT-WS2) and inorganic fullerene-like molybdenum disulfide (IF-MoS2) nanoparticles (NPs) used in industrial and medical applications was evaluated in comparison to standard environmental particulate matter. The IF-MoS2 and INT-WS2 reside in vesicles/inclusion bodies, suggestive of endocytic vesicles. In cells representing the respiratory, immune and metabolic systems, both IF-MoS2 and INT-WS2 NPs remained nontoxic compared to equivalent concentrations (up to 100 μg/mL in the medium) of silica dioxide (SiO2), diesel engine-derived and carbon black NPs, which induced cell death. Associating with this biocompatibility of IF-MoS2\INT- WS2, we demonstrate in nontransformed human bronchial cells (NL-20) relative low induction of the pro-inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α. Moreover, IF-MoS2 and INT-WS2 activated antioxidant response as measured by the antioxidant response element (ARE) using a luciferase reporter, and induced Nrf2-mediated Phase II detoxification genes. Collectively, our findings suggest that the lower cytotoxicity of IF-MoS 2 and INT-WS2 NPs does not reflect general biological inertness. Rather, compared to other NP's, it likely results from decreased pro-inflammatory activation, but a comparable significant capacity to induce protective antioxidant/detoxification defense mechanisms.
-
-
(2014) Atmospheric Environment. 84, p. 113-121 Abstract
We examined fungal communities associated with the PM10 mass of Rehovot, Israel outdoor air samples collected in the spring and fall seasons. Fungal communities were described by 454 pyrosequencing of the internal transcribed spacer (ITS) region of the fungal ribosomal RNA encoding gene. To allow for a more quantitative comparison of fungal exposure in humans, the relative abundance values of specific taxa were transformed to absolute concentrations through multiplying these values by the sample's total fungal spore concentration (derived from universal fungal qPCR). Next, the sequencing-based absolute concentrations for Alternaria alternata, Cladosporium cladosporioides, Epicoccum nigrum, and Penicillium/Aspergillus spp. were compared to taxon-specific qPCR concentrations for A.alternata, C.cladosporioides, E.nigrum, and Penicillium/Aspergillus spp. derived from the same spring and fall aerosol samples. Results of these comparisons showed that the absolute concentration values generated from pyrosequencing were strongly associated with the concentration values derived from taxon-specific qPCR (for all four species, p0.70). The correlation coefficients were greater for species present in higher concentrations. Our microbial aerosol population analyses demonstrated that fungal diversity (number of fungal operational taxonomic units) was higher in the spring compared to the fall (p=0.02), and principal coordinate analysis showed distinct seasonal differences in taxa distribution (ANOSIM p=0.004). Among genera containing allergenic and/or pathogenic species, the absolute concentrations of Alternaria, Aspergillus, Fusarium, and Cladosporium were greater in the fall, while Cryptococcus, Penicillium, and Ulocladium concentrations were greater in the spring. The transformation of pyrosequencing fungal population relative abundance data to absolute concentrations can improve next-generation DNA sequencing-based quantitative aerosol exposure assessment.
-
(2014) Physical Chemistry Chemical Physics. 16, 22, p. 10629-10642 Abstract
Atmospheric absorption by brown carbon aerosol may play an important role in global radiative forcing. Brown carbon arises from both primary and secondary sources, but the mechanisms and reactions of the latter are highly uncertain. One proposed mechanism is the reaction of ammonia or amino acids with carbonyl products in secondary organic aerosol (SOA). We generated SOA in situ by reacting biogenic alkenes (alpha-pinene, limonene, and alpha-humulene) with excess ozone, humidifying the resulting aerosol, and reacting the humidified aerosol with gaseous ammonia. We determined the complex refractive indices (RI) in the 360-420 nm range for these aerosols using broadband cavity enhanced spectroscopy (BBCES). The average real part (n) of the measured spectral range of the NH3-aged alpha-pinene SOA increased from n = 1.50 (+/- 0.01) for the unreacted SOA to n = 1.57 (+/- 0.01) after 1.5 h of exposure to 1.9 ppm NH3, whereas the imaginary component (k) remained below k
-
(2014) Geophysical Research Letters. 41, 11, p. 4075-4081 Abstract
Using shipboard and satellite measurements we explore the environmental factors affecting the number concentration of aerosols with diameter 100
-
(2013) Proceedings of the National Academy of Sciences of the United States of America. 110, 51, p. 20414-20419 Abstract
The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freezedrying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.
-
(2013) Journal of Physical Chemistry C. 117, 43, p. 22412-22421 Abstract
Alkyl aminium sulfates have been postulated to constitute important components of nucleation and accumulation mode atmospheric aerosols. In this study we present laboratory data on the thermochemical, cloud condensation nuclei (CCN) activity, and optical properties of selected aminium sulfate compounds of atmospheric relevance (monomethyl aminium sulfate (MMAS), dimethyaminium sulfate (DMAS), trimethylaminium sulfate, monoethylaminium sulfate (MEAS), diethylaminium sulfate (DEAS), and triethylaminium sulfate (TEAS)). We found that the vapor pressure of these aminium salts is 1-3 orders of magnitude lower than that of ammonium sulfate and as such they can contribute to new aerosols and secondary aerosols formation. We infer that these species have very high CCN activity, with hygroscopicity parameter that is similar to that ammonium sulfate. Finally, between 360 and 420 nm, these aminium sulfate salts scatter light less efficiently than ammonium sulfate, and do not absorb light. These derived parameters can contribute to the better understanding and characterization of the role that these compounds play in atmospheric chemical reactions, gas-solid partitioning and their possible contribution to the microphysical and radiative effects of atmospheric aerosols.
-
(2013) Journal of Physical Chemistry C. 117, 43, p. 22171-22171 Abstract
This special issue of the Journal of Physical Chemistry C honors Professor Ron Naaman, the Aryeh and Mintzi Katzman Professor at the Weizmann Institute of Science. Ron has made pioneering contributions to our understanding of molecular physics and the quantum nature of matter through the creative design of experiments that address fundamental physical questions about molecules and molecular assemblies. We are grateful to the editors and staff of the Journal and to all of the contributors to this special issue for making it possible to recognize Ron in this way.
-
(2013) Global Change Biology. 19, 8, p. 2381-2388 Abstract
Increased susceptibility to allergies has been documented in the Western world in recent decades. However, a comprehensive understanding of its causes is not yet available. It is therefore essential to understand trends and mechanisms of allergy-inducing agents, such as fungal conidia. In this study, we investigated the hypothesis that environmental conditions linked to global atmospheric changes can affect the allergenicity of Aspergillus fumigatus, a common allergenic fungal species in indoor and outdoor environments and in airborne particulate matter. We show that fungi grown under present-day CO2 levels (392 ppm) exhibit 8.5 and 3.5 fold higher allergenicity compared to fungi grown at preindustrial (280 ppm) and double (560 ppm) CO2 levels, respectively. A corresponding trend is observed in the expression of genes encoding for known allergenic proteins and in the major allergen Asp f1 concentrations, possibly due to physiological changes such as respiration rates and the nitrogen content of the fungus, influenced by the CO2 concentrations. Increased carbon and nitrogen levels in the growth medium also lead to a significant increase in the allergenicity. We propose that climatic changes such as increasing atmospheric CO2 levels and changes in the fungal growth medium may impact the ability of allergenic fungi such as A. fumigatus to induce allergies.
-
(2013) Aerosol Science and Technology. 47, 8, p. 906-915 Abstract
Semi-arid forests are of growing importance due to expected ecosystem transformations following climatic changes. Dry deposition of atmospheric aerosols was measured for the first time in such an ecosystem, the Yatir forest in southern Israel. Size-segregated flux measurements for particles ranging between 0.25 μm and 0.65 μm were taken with an optical particle counter (OPC) using eddy covariance methodology. The averaged deposition velocity (Vd) at this site was 3.8 ± 4.5 mm s-1 for 0.25-0.28 μm particles, which is in agreement with deposition velocities measured in mid and northern latitude coniferous forests, and is most heavily influenced by the atmospheric stability and turbulence conditions, and to a lesser degree by the particle size. Both downward and upward fluxes were observed. Upward fluxes were not associated with a local particle source. The flux direction correlated strongly with wind direction, suggesting topographical effects. We hypothesize that a complex terrain and a patchy fetch affected the expected dependence of Vd on particle size and caused the observed upward fluxes of particles. The effect of topography on the deposition velocity grows greater as particle size increases, as has been shown in modeling and laboratory studies but had not been demonstrated yet in field studies. This hypothesis is consistent with the observed relationship between Vd and the friction velocity, the topography in the area of the flux tower, and the observed correlation of flux direction with wind direction. [Supplementary materials are available for this article. Go to the publisher's online edition of Aerosol Science and Technology to view the free supplementary files.
-
(2013) Atmospheric Measurement Techniques. 6, 4, p. 861-877 Abstract
Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross sections and complex refractive indices. We describe a new laboratory instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We determined aerosol extinction cross sections and directly observed Mie scattering resonances for aerosols that are purely scattering (polystyrene latex spheres and ammonium sulfate), slightly absorbing (Suwannee River fulvic acid), and strongly absorbing (nigrosin dye). We describe an approach for retrieving refractive indices as a function of wavelength from the measured extinction cross sections over the 360-420 nm wavelength region. The retrieved refractive indices for PSL and ammonium sulfate agree within uncertainty with the literature values for this spectral region. The refractive index determined for nigrosin is 1.78 (±0.03) + 0.19 (±0.08)i at 360 nm and 1.63 (±0.03) + 0.21 (±0.05)i at 420 nm. The refractive index determined for Suwannee River fulvic acid is 1.71 (±0.02) + 0.07 (±0.06)i at 360 nm and 1.66 (±0.02) + 0.06 (±0.04)i at 420 nm. These laboratory results support the potential for a field instrument capable of determining ambient aerosol optical extinction, average aerosol extinction cross section, and complex refractive index as a function of wavelength.
-
(2013) Atmospheric Chemistry and Physics. 13, 17, p. 8755-8770 Abstract
Atmospheric aerosols impact climate by scattering and absorbing solar radiation and by acting as ice and cloud condensation nuclei. Biogenic secondary organic aerosols (BSOAs) comprise an important component of atmospheric aerosols. Biogenic volatile organic compounds (BVOCs) emitted by vegetation are the source of BSOAs. Pathogens and insect attacks, heat waves and droughts can induce stress to plants that may impact their BVOC emissions, and hence the yield and type of formed BSOAs, and possibly their climatic effects. This raises questions of whether stress-induced changes in BSOA formation may attenuate or amplify effects of climate change. In this study we assess the potential impact of stress-induced BVOC emissions on BSOA formation for tree species typical for mixed deciduous and Boreal Eurasian forests. We studied the photochemical BSOA formation for plants infested by aphids in a laboratory setup under well-controlled conditions and applied in addition heat and drought stress. The results indicate that stress conditions substantially modify BSOA formation and yield. Stress-induced emissions of sesquiterpenes, methyl salicylate, and C17-BVOCs increase BSOA yields. Mixtures including these compounds exhibit BSOA yields between 17 and 33%, significantly higher than mixtures containing mainly monoterpenes (4-6% yield). Green leaf volatiles suppress SOA formation, presumably by scavenging OH, similar to isoprene. By classifying emission types, stressors and BSOA formation potential, we discuss possible climatic feedbacks regarding aerosol effects. We conclude that stress situations for plants due to climate change should be considered in climate-vegetation feedback mechanisms.
-
(2012) Nanotoxicology. 6, 8, p. 804-812 Abstract
Upon exposure, TiO2 nanoparticles (NPs) have been recovered in internal organs such as the liver, and are proposed to cause cellular/organ dysfunction, particularly in the liver and lungs. We hypothesized that despite being considered "inert" as bulk material, TiO2 NPs may impair insulin responses in liver-derived cells, either indirectly by inflammatory activation of macrophages, and/or by directly interfering with insulin signaling. Using qRT-PCR and conditioned medium (CM) approaches, we show that exposure to TiO2 NPs activates macrophages' expression of TNF-alpha, IL-6, IL-8, IL-1 alpha and IL-1 beta and the resulting CM induces insulin resistance in Fao cells. Furthermore, direct exposure of Fao cells to TiO2 results in activation of the stress kinases JNK and p38MAP kinase, and in induction of insulin resistance at the signaling and metabolic levels. Collectively, our findings provide a proof-of-concept for the ability of man-made NPs to induce insulin resistance in liver-derived cells, an endocrine abnormality underlying some of the most common human diseases.
-
(2012) Aerosol Science and Technology. 46, 10, p. 1140-1150 Abstract
Cavity ring-down spectroscopy (CRD-S) is widely adapted for studying light extinction by aerosol in laboratory and field studies. The complex refractive index (RI) of an aerosol can be retrieved by finding the theoretical Mie theory curve that best fits the measured extinction efficiency for as many aerosol diameters as possible. In this study, we introduce a new retrieval approach for the complex RI of aerosols using extinction measurements at only two carefully selected size parameters. We show that for three model substances measured (ammonium sulfate, Suwannee river fulvic acid, and nigrosin) and for 22 other reanalyzed datasets, the "2-points" measurement approach enables the retrieval of complex refractive indices with comparable uncertainty to the traditional measurement and retrieval procedure. The advantages and disadvantages of the new approach are discussed.
-
(2012) Journal of Physical Chemistry A. 116, 24, p. 5948-5957 Abstract
This study focuses on the heterogeneous reactions of gas phase glyoxal with aerosols of glycine, the most abundant amino acid in atmospheric aerosols, as well as with a mixture of glycine and ammonium sulfate (AS) at a molar ratio of 1:100 (glycine-AS 1:100). Aerosols were exposed to varying relative humidity (RH) conditions in the presence of gas phase glyoxal for ∼1 h, followed by drying and efflorescence. The changes in size, chemical composition, and optical properties were consequently measured. The reactions occur over a wide range of relative humidities, from ∼30% up to 90% RH, covering values that are substantially lower as well as above the deliquescence point of the investigated aerosols. The product aerosols exhibit a trend of increasing growth in size, in optical extinction cross sections, and in extinction efficiencies (at λ = 355 nm) with decreasing seed aerosol size, and with decreasing RH values from 90% to ∼50%. For glycine-AS 1:100 particles, the ratio of the geometric cross section of the product aerosol to the original seed aerosol reached a value of ∼3, the optical extinction cross section ratio was up to ∼25, and the Q ext ratio was up to ∼8, exceeding those of both AS and glycine separately, suggesting a synergistic effect. Aerosol mass spectrometer analyses show that the main products of all the studied reactions are glyoxal oligomers (light scattering compounds), with a minor contribution from imidazoles (absorbing compounds at λ = 355 nm). These findings imply that the changes in the optical properties are likely due to enhanced scattering by the reaction products. The fraction of absorbing substances in the reacted aerosol increases with increasing RH, suggesting that the absorption component may become more substantial after longer reaction times, possibly in cloud or fog droplets. The results suggest that these reactions are possibly important in low RH regions, plausibly due to the reaction occurring in a few interfacial monolayers of water well before deliquescence.
-
-
(2012) Proceedings of the National Academy of Sciences of the United States of America. 109, 18, p. 6840-6844 Abstract
Credible climate change predictions require reliable fundamental scientific knowledge of the underlying processes. Despite extensive observational data accumulated to date, atmospheric aerosols still pose key uncertainties in the understanding of Earth's radiative balance due to direct interaction with radiation and because they modify clouds' properties. Specifically, major gaps exist in the understanding of the physicochemical pathways that lead to aerosol growth in the atmosphere and to changes in their properties while in the atmosphere. Traditionally, the driving forces for particle growth are attributed to condensation of low vapor pressure species following atmospheric oxidation of volatile compounds by gaseous oxidants. The current study presents experimental evidence of an unaccounted-for new photoinduced pathway for particle growth. We show that heterogeneous reactions activated by light can lead to fast uptake of noncondensable Volatile Organic Compounds (VOCs) at the surface of particles when only traces of a photosensitizer are present in the seed aerosol. Under such conditions, size and mass increase; changes in the chemical composition of the aerosol are also observed upon exposure to volatile organic compounds such as terpenes and near-UV irradiation. Experimentally determined growth rate values match field observations, suggesting that this photochemical process can provide a new, unaccounted-for pathway for atmospheric particle growth and should be considered by models.
-
(2012) Atmospheric Chemistry and Physics. 12, 5, p. 2681-2690 Abstract
Airborne fungal spores are an important fraction of atmospheric particulate matter and are major causative agents of allergenic and infectious diseases. Predicting the variability and species of allergy-causing fungal spores requires detailed and reliable methods for identification and quantification. There are diverse methods for their detection in the atmosphere and in the indoor environments; yet, it is important to optimize suitable methods for characterization of fungal spores in atmospheric samples. In this study we sampled and characterized total and specific airborne fungal spores from PM10 samples collected in Rehovot, Israel over an entire year. The total fungal spore concentrations vary throughout the year although the species variability was nearly the same. Seasonal equivalent spore concentrations analyzed by real-time quantitative-PCR-based methods were fall > winter > spring > summer. Reported concentrations based on ergosterol analysis for the same samples were and fall > spring > winter > summer. Correlation between the two analytical methods was found only for the spring season. These poor associations may be due to the per-spore ergosterol variations that arise from both varying production rates, as well as molecular degradation of ergosterol. While conversion of genome copies to spore concentration is not yet straightforward, the potential for improving this conversion and the ability of qPCR to identify groups of fungi or specific species makes this method preferable for environmental spore quantification. Identifying tools for establishing the relation between the presence of species and the actual ability to induce allergies is still needed in order to predict the effect on human health.
-
(2012) Atmospheric Chemistry and Physics. 12, 12, p. 5511-5521 Abstract
One of the major uncertainties in the understanding of Earth's climate system is the interaction between solar radiation and aerosols in the atmosphere. Aerosols exposed to high humidity will change their chemical, physical, and optical properties due to their increased water content. To model hydrated aerosols, atmospheric chemistry and climate models often use the volume weighted mixing rule to predict the complex refractive index (RI) of aerosols when they interact with high relative humidity, and, in general, assume homogeneous mixing. This study explores the validity of these assumptions. A humidified cavity ring down aerosol spectrometer (CRD-AS) and a tandem hygroscopic DMA (differential mobility analyzer) are used to measure the extinction coefficient and hygroscopic growth factors of humidified aerosols, respectively. The measurements are performed at 80% and 90%RH at wavelengths of 532 nm and 355 nm using size-selected aerosols with different degrees of absorption; from purely scattering to highly absorbing particles. The ratio of the humidified to the dry extinction coefficients (fRH ext(%RH, Dry)) is measured and compared to theoretical calculations based on Mie theory. Using the measured hygroscopic growth factors and assuming homogeneous mixing, the expected RIs using the volume weighted mixing rule are compared to the RIs derived from the extinction measurements. We found a weak linear dependence or no dependence of fRH(%RH, Dry) with size for hydrated absorbing aerosols in contrast to the non-monotonically decreasing behavior with size for purely scattering aerosols. No discernible difference could be made between the two wavelengths used. Less than 7% differences were found between the real parts of the complex refractive indices derived and those calculated using the volume weighted mixing rule, and the imaginary parts had up to a 20% difference. However, for substances with growth factor less than 1.15 the volume weighted mixing rule assumption needs to be taken with caution as the imaginary part of the complex RI can be underestimated.
-
(2012) Biogeosciences. 9, 12, p. 5111-5123 Abstract
Climate change will induce extended heat waves to parts of the vegetation more frequently. High temperatures may act as stress (thermal stress) on plants changing emissions of biogenic volatile organic compounds (BVOCs). As BVOCs impact the atmospheric oxidation cycle and aerosol formation, it is important to explore possible alterations of BVOC emissions under high temperature conditions. Applying heat to European beech, Palestine oak, Scots pine, and Norway spruce in a laboratory setup either caused the well-known exponential increases of BVOC emissions or induced irreversible changes of BVOC emissions. Considering only irreversible changes of BVOC emissions as stress impacts, we found that high temperatures decreased the de novo emissions of monoterpenes, sesquiterpenes and phenolic BVOC. This behaviour was independent of the tree species and whether the de novo emissions were constitutive or induced by biotic stress. In contrast, application of thermal stress to conifers amplified the release of monoterpenes stored in resin ducts of conifers and induced emissions of green leaf volatiles. In particular during insect attack on conifers, the plants showed de novo emissions of sesquiterpenes and phenolic BVOCs, which exceeded constitutive monoterpene emissions from pools. The heat-induced decrease of de novo emissions was larger than the increased monoterpene release caused by damage of resin ducts. For insect-infested conifers the net effect of thermal stress on BVOC emissions could be an overall decrease. Global change-induced heat waves may put hard thermal stress on plants. If so, we project that BVOC emissions increase is more than predicted by models only in areas predominantly covered with conifers that do not emit high amounts of sesquiterpenes and phenolic BVOCs. Otherwise overall effects of high temperature stress will be lower increases of BVOC emissions than predicted by algorithms that do not consider stress impacts.
-
(2011) Analytical Chemistry. 83, 24, p. 9418-9423 Abstract
We report on a new ultrasensitive and fast technique for the detection and identification of both DNA and RNA with sensitivity of a few molecules. The new method is based on a patterned capillary tube (PCT) in which the internal surface of a glass tube is patterned with rings of different single-stranded DNA probes. A solution containing single-stranded analyte flows through the tube. Upon hybridization of appropriate DNA and RNA from the solution, DNA polymerase and reverse transcriptase (RT) are employed to synthesize the complementary nucleic acids with deoxynucleoside triphosphate (dNTP) labeled with fluorophores. The sample-analyte hybrids are detected by their fluorescence signal. We show that the new method is sensitive, is specific, can detect simultaneously both DNA and RNA from the same sample, and allows detection of analytes in serum.
-
(2011) Physical Chemistry Chemical Physics. 13, 48, p. 21647-21647 Abstract
The correct version of Fig. 9 is shown in this document
-
(2011) Journal Of The Atmospheric Sciences. 68, 9, p. 1845-1852 Abstract
Calculations of the radiative properties of hydrated ammonium sulfate (AS) aerosols often employ the conventional volume mixing rule, in which the refractive indices of AS and water are linearly averaged, weighted by their respective volume fractions in solution, and the real part of the refractive index of pure AS is taken to be 1.52-1.55, based on measurements of dry crystalline AS. However, there are significant differences between the refractive indices of AS-water solutions calculated using the conventional volume mixing rule and empirically derived refractive indices. The authors use a simple model for calculating the direct solar radiative forcing efficiency (RFE; radiative forcing divided by optical depth) of an optically thin layer of aerosols to investigate the magnitude of these differences. The difference between the conventional volume mixing rule and empirically derived refractive indices amounts to a modest difference in the direct solar RFE of AS aerosols at the top of the atmosphere at 0.550-μm wavelength and at relative humidities of 37%-99.9%. Without black carbon, the difference in RFE is up to -0.42 W m-2 for relative humidities less than around 66% and up to 0.25W m-2 for relative humidities greater than 66%, whereas with 2% black carbon by volume, the range of difference in RFE is up to 20.59 W m-2 for relative humidities less than 66% and up to 0.30 W m-2 for relative humidities greater than 66%. Although modest, this difference in RFE may become important when investigating regional aerosol forcing in areas with a high concentration of urban and industrial pollution.
-
(2011) APPLIED OPTICS. 50, 22, p. 4393-4402 Abstract
Simultaneously retrieving the complex refractive indices of the core and shell of coated aerosol particles given the measured extinction efficiency as a function of particle dimensions (core diameter and coated diameter) is much more difficult than retrieving the complex refractive index of homogeneous aerosol particles. Not only must the minimization be performed over a four-parameter space, making it less efficient, but in addition the absolute value of the difference between the measured extinction and the calculated extinction does not have an easily distinguished global minimum. Rather, there are a number of local minima to which almost all conventional retrieval algorithms converge. In this work, we develop a new (to our knowledge) retrieval algorithm that employs the numerical method known as simulated annealing with an innovative "temperature" schedule. This study is limited only to spherical particles with a concentric shell and to cases in which the diameter of both the core and the coated particle are known. We find that when the top ranking particle sizes according to their information content are combined from separate experiments to make up the particle size distribution, the simulated annealing retrieval algorithm is quite robust and by far superior to a greedy random perturbation approach often used.
-
(2011) Physical Chemistry Chemical Physics. 13, 14, p. 6484-6492 Abstract
Chemical reactions can alter the chemical, physical, and optical properties of aerosols. It has been postulated that nitration of aerosols can account for atmospheric absorbance over urban areas. To study this potentially important process, the change in optical properties of laboratory-generated benzo[a]pyrene (BaP)-coated aerosols following exposure to NO2 and NO3 was investigated at 355 nm and 532 nm by three aerosol analysis techniques. The extinction coefficient was determined at 355 nm and 532 nm from cavity ring-down aerosol spectroscopy (CRD-AS); the absorption coefficient was measured by photoacoustic spectroscopy (PAS) at 532 nm, while an on-line aerosol mass spectrometer (AMS) supplied real-time quantitative information about the chemical composition of aerosols. In this study, 240 nm polystyrene latex (PSL) spheres were thinly coated with BaP to form 300 or 310 nm aerosols that were exposed to high concentrations of NO2 and NO3 and measured with CRD-AS, PAS, and the AMS. The extinction efficiencies (Qext) changed after exposure to NO2 and NO3 at both wavelengths. Prior to reaction, Qext for the 355 nm and 532 nm wavelengths were 4.36 ± 0.04 and 2.39 ± 0.05, respectively, and Qext increased to 5.26 ± 0.04 and 2.79 ± 0.05 after exposure. The absorption cross-section at 532 nm, determined with PAS, reached σabs = (0.039 ± 0.001) × 10-8 cm 2, indicating that absorption increased with formation of nitro-BaP, the main reaction product detected by the AMS. The single-scattering albedo (SSA), a measure of particle scattering efficiency, decreased from 1 to 0.85 ± 0.03, showing that changes in the optical properties of BaP-covered aerosols due to nitration may have implications for regional radiation budget and, hence, climate.
-
(2011) Atmospheric Chemistry and Physics. 11, 2, p. 829-839 Abstract
Aerosols containing biological components can have a significant effect on human health by causing primarily irritation, infection and allergies. Specifically, airborne fungi can cause a wide array of adverse responses in humans depending on the type and quantity present. In this study we used chemical biomarkers for analyzing fungi-containing aerosols in the eastern Mediterranean region during the year 2009 in order to quantify annual fungal abundances. The prime marker for fungi used in this study was ergosterol, and its concentrations were compared with those of mannitol and arabitol which were recently suggested to also correlate with fungal spores concentrations (Bauer et al., 2008a). Back trajectory analysis, inorganic ions, humidity and temperature were used in an attempt to identify sources as well as the dependence on seasonal and environmental conditions. We found that the ambient concentrations of ergosterol, arabitol and mannitol range between 0 and 2.73 ng m-3, 1.85 and 58.27 ng m-3, 5.57 and 138.03 ng m-3, respectively. The highest levels for all biomarkers were during the autumn, probably from local terrestrial sources, as deduced from the inorganic ions and back trajectory analysis. Significant correlations were observed between arabitol and mannitol during the entire year except for the winter months. Both sugars correlated with ergosterol only during the spring and autumn. We conclude that mannitol and arabitol might not be specific biomarkers for fungi and that the observed correlations during spring and autumn may be attributed to high levels of vegetation during spring blossoms and autumn decomposing.
-
(2011) Environmental Chemistry. 8, 4, p. 450-460 Abstract
Environmental contextThe absorption of water by mixtures of organic matter in aerosols influences various atmospheric processes, such as scattering of solar radiation and cloud formation. We use X-ray techniques to elucidate the swelling behaviour of representative organic matter under humid, sub-saturated conditions, and show chemical separation according to the functional group composition in the organic mixtures upon water uptake. The results will further our understanding of the complex role of aerosol organic matter in atmospheric processes. AbstractHumic-like substances (HULIS) represent an important fraction of particulate organic matter in the atmosphere. Understanding the water uptake by HULIS and the associated morphology evolution will improve the assessment of their ability to act as cloud condensation nuclei as well as their light scattering properties. The water uptake properties of Suwannee River Fulvic Acid and of tannic acid used as proxy for atmospheric HULIS, were investigated using X-ray absorption spectroscopy in combination with a scanning transmission X-ray microscope. For both compounds, continuous water uptake was observed, whereby in fulvic acid phase separation occurred, resulting in an inhomogeneous organic matrix. Within the inhomogeneous mixture, different regions with different amounts of water uptake could be differentiated based on their spectral signatures in near-edge X-ray absorption fine structure (NEXAFS) spectra, thus based on carbon functional group signatures, indicating that carboxyl-poor compounds separated from carboxyl-rich compounds upon water uptake. The differentiation into fractions with high/low water uptake ability is further refined by considering phenols, aromatic groups, and O-alkylic groups.
-
(2011) Atmospheric Chemistry and Physics. 11, 4, p. 1491-1503 Abstract
In-situ chemical composition measurements of ambient aerosols have been used for characterizing the evolution of submicron aerosols from a large anthropogenic biomass burning (BB) event in Israel. A high resolution Time of Flight Aerosol Mass Spectrometer (HR-RES-TOF-AMS) was used to follow the chemical evolution of BB aerosols during a night-long, extensive nationwide wood burning event and during the following day. While these types of extensive BB events are not common in this region, burning of agricultural waste is a common practice. The aging process of the BB aerosols was followed through their chemical, physical and optical properties. Mass spectrometric analysis of the aerosol organic component showed that aerosol aging is characterized by shifting from less oxidized fresh BB aerosols to more oxidized aerosols. Evidence for aerosol aging during the day following the BB event was indicated by an increase in the organic mass, its oxidation state, the total aerosol concentration, and a shift in the modal particle diameter. The effective broadband refractive index (EBRI) was derived using a white light optical particle counter (WELAS). The average EBRI for a mixed population of aerosols dominated by open fires was m = 1.53(+/- 0.03) + 0.07i(+/- 0.03), during the smoldering phase of the fires we found the EBRI to be m = 1.54(+/- 0.01) + 0.04i(+/- 0.01) compared to m = 1.49(+/- 0.01) + 0.02i(+/- 0.01) of the aged aerosols during the following day. This change indicates a decrease in the overall aerosol absorption and scattering. Elevated levels of particulate Polycyclic Aromatic Hydrocarbons (PAHs) were detected during the entire event, which suggest possible implications for human health during such extensive event.
-
(2011) Atmospheric Chemistry and Physics. 11, 18, p. 9697-9707 Abstract
The heterogeneous reaction between gas phase glyoxal and ammonium sulfate (AS) aerosols, a proxy for inorganic atmospheric aerosol, was studied in terms of the dependence of the optical, physical and chemical properties of the product aerosols on initial particle size and ambient relative humidity (RH). Our experiments imitate an atmospheric scenario of a dry particle hydration at ambient RH conditions in the presence of glyoxal gas followed by efflorescence due to decrease of the ambient RH. The reactions were studied under different RH conditions, starting from dry conditions (∼20% RH) and up to 90% RH, covering conditions prevalent in many atmospheric environments, and followed by consequent drying of the reacted particles before their analysis by the aerosol mass spectrometer (AMS), cavity ring down (CRD) and scanning mobility particle sizer (SMPS) systems. At λ Combining double low line 355 nm, the reacted aerosols demonstrate a substantial growth in optical extinction cross section, as well as in mobility diameter under a broad range of RH values (35-90%). The ratio of the product aerosol to seed aerosol geometric cross section reached up to ∼3.5, and the optical extinction cross-section up to ∼250. The reactions show a trend of increasing physical and optical growth with decreasing seed aerosol size, from 100 nm to 300 nm, as well as with decreasing RH values from 90% to ∼40%. Optically inactive aerosols, at the limit of the Mie range (100 nm diameter) become optically active as they grow due to the reaction. AMS analyses of the reaction of 300 nm AS at RH values of 50%, 75% and 90% show that the main products of the reaction are glyoxal oligomers, formed by acetal formation in the presence of AS. In addition, imidazole formation, which is a minor channel, is observed for all reactions, yielding a product which absorbs at λ Combining double low line 290 nm, with possible implications on the radiative properties of the product aerosols. The ratio of absorbing substances (C-N compounds, including imidazoles) increases with increasing RH value. A core/shell model used for the investigation of the optical properties of the reaction products of AS with gas phase glyoxal, shows that the refractive index (RI) of the reaction products are n=1.68(±0.10) + 0.01(±0.02) at 50% RH and n = 1.65(±0.06) + 0.02(±0.01) at 75% RH at 355 nm. The observed increase in the ratio of the absorbing substances is not indicated in the imaginary part of the products at RH 50% and 75%. A further increase in the ratio of absorbing substances and a resulting increase in the imaginary part of the RI at higher RH values is expected, and may become even more substantial after longer reaction times, possibly in cloud or fog droplets. This study shows that the reaction of abundant substances present in atmospheric aerosols, such as AS, and gas phase glyoxal alters the aerosols' optical, physical and chemical properties and may have implications on the radiative effect of these aerosols.
-
(2010) Physical Chemistry Chemical Physics. 12, 1, p. 21-31 Abstract
Atmospheric aerosols scatter and absorb solar radiation leading to variable effects on Earths radiative balance. Aerosols individually comprising mixtures of different components (\u201cinternally mixed\u201d) interact differently with light than mixtures of aerosols, each comprising a different single component (\u201cexternally mixed\u201d), even if the relative fractions of the different components are equal. In climate models, the optical properties of internally mixed aerosols are generally calculated by using electromagnetic \u201cmixing rules\u201d, which average the refractive indices of the individual components in different proportions, or by using coated-sphere Mie scattering codes, which solve the full light scattering problem assuming that the components are divided into two distinct layers. Because these calculation approaches are in common use, it is important to validate them experimentally. In this article, we present a broad perspective on the optical properties of internally mixed aerosols based on a series of laboratory experiments and theoretical calculations. The optical properties of homogenously mixed aerosols comprised of non-absorbing and weakly absorbing compounds, and of coated aerosols comprised of strongly absorbing, non-absorbing, and weakly absorbing compounds in different combinations are measured using pulsed and continuous wave cavity ring down aerosol spectrometry (CRD-AS). The success of electromagnetic mixing rules and Mie scattering codes in reproducing the measured aerosol extinction values is discussed.
-
(2010) Journal Of Physical Chemistry B. 114, 45, p. 14389-14396 Abstract
We report on the synthesis of organic dye-metal nanoparticle hybrids from two thiol-derivatized perylenediimide (PDI) ligands and 1.5 nm gold nanoparticles. The hybrids form spherical nanostructures when cast from 40% methanol/chloroform solution and toluene. The spherical aggregates are in the size range 50-230 nm in 40% MeOH/CHCl3 mixture and 100-400 nm in toluene solution, as evidenced by transmission electron microscopy (TEM). Scanning electron microscopy (SEM) measurements show that these spherical aggregates are vesicles with a hollow interior. The π-π interactions of the perylenediimides are the predominant driving force leading to the aggregation of the hybrids, whereby the sizes of the nanospheres can be regulated via the PDI linker moiety and solvent choice. Femtosecond transient absorption studies of the hybrids reveal complex photophysical behavior involving electron transfer from the gold nanoparticles to the PDI moieties. This study shows that the formation of well-defined hybrid nanostructures as well as tuning their sizes can be achieved through employing a combination of the capping ligand choice and regulating the solvophobic interactions between the ligands.
-
(2010) Proceedings of the National Academy of Sciences of the United States of America. 107, 15, p. 6699-6704 Abstract
This study focuses on the retrieval of the normalized mass absorption cross section (MAC) of soot using theoretical calculations that incorporate new measurements of the optical properties of organic carbon (OC) intrinsic to fresh diesel soot. Intrinsic OC was extracted by water and an organic solvent, and the complex refractive index of the extracted OC was derived at 532 and 355-nm wavelengths using cavity ring-down aerosol spectrometry. The extracted OC was found to absorb weakly in the visible wavelengths and moderately at blue wavelengths. The mass ratio of OC and elemental carbon (EC) in the collected particles was evaluated using a thermo-optical method. The measured EC/OC ratio in the soot exhibited substantial variability from measurement to measurement, ranging between 2 and 5. To test the sensitivity of the MAC to this variability, three different EC/OC ratios (2:1, 1:1, and 1:2) were chosen as representative. Particle size and spherule morphology were estimated using scanning electron microscopy, and the soot was found to be primarily in the form of aggregates with a dominant aggregate diameter mode in the range 200-250 nm. The measured refractive index of the extracted OC was used with a variety of theoretical models to calculate the MAC of internally mixed diesel soot at 532 and 355 nm. We conclude that Rayleigh-Debye-Gans theory on clusters of coated spherules and T-matrix of a solid EC spheroid coated by intrinsic OC are both consistent with previous measurements; however, Rayleigh-Debye-Gans theory provides a more realistic physical model for the calculation.
-
(2010) Atmospheric Chemistry and Physics. 10, 21, p. 10561-10605 Abstract
A workshop was held in the framework of the ACCENT (Atmospheric Composition Change ĝ\u20ac" a European Network) Joint Research Programme on "Aerosols" and the Programme on "Access to Laboratory Data". The aim of the workshop was to hold "Gordon Conference" type discussion covering accommodation and reactive uptake of water vapour and trace pollutant gases on condensed phase atmospheric materials. The scope was to review and define the current state of knowledge of accommodation coefficients for water vapour on water droplet and ice surfaces, and uptake of trace gas species on a variety of different surfaces characteristic of the atmospheric condensed phase particulate matter and cloud droplets. Twenty-six scientists participated in this meeting through presentations, discussions and the development of a consensus review. In this review we present an analysis of the state of knowledge on the thermal and mass accommodation coefficient for water vapour on aqueous droplets and ice and a survey of current state-of the-art of reactive uptake of trace gases on a range of liquid and solid atmospheric droplets and particles. The review recommends consistent definitions of the various parameters that are needed for quantitative representation of the range of gas/condensed surface kinetic processes important for the atmosphere and identifies topics that require additional research.
-
(2010) Atmospheric Chemistry and Physics. 10, 15, p. 7253-7265 Abstract
The Mediterranean region is expected to experience substantial climatic change in the next 50 years. But, possible effects of climate change on biogenic volatile organic compound (VOC) emissions as well as on the formation of secondary organic aerosols (SOA) produced from these VOC are yet unexplored. To address such issues, the effects of temperature on the VOC emissions of Mediterranean Holm Oak and small Mediterranean stand of Wild Pistacio, Aleppo Pine, and Palestine Oak have been studied in the Jülich plant aerosol atmosphere chamber. For Holm Oak the optical and microphysical properties of the resulting SOA were investigated. Monoterpenes dominated the VOC emissions from Holm Oak (97.5%) and Mediterranean stand (97%). Higher temperatures enhanced the overall VOC emission but with different ratios of the emitted species. The amount of SOA increased linearly with the emission strength with a fractional mass yield of 6.0±0.6%, independent of the detailed emission pattern. The investigated particles were highly scattering with no absorption abilities. Their average hygroscopic growth factor of 1.13 ±0.03 at 90% RH with a critical diameter of droplet activation was 100 ± 4 nm at a supersaturation of 0.4%. All microphysical properties did not depend on the detailed emission pattern, in accordance with an invariant O/C ratio (0.57(+0.03-0.1)) of the SOA observed by high resolution aerosol mass spectrometry. The increase of Holm oak emissions with temperature (20% per degree) was stronger than e.g. for Boreal tree species (-10% per degree). The SOA yield for Mediterranean trees determined here is similar as for Boreal trees. Increasing mean temperature in Mediterranean areas could thus have a stronger impact on BVOC emissions and SOA formation than in areas with Boreal forests.
-
(2010) Atmospheric Chemistry and Physics. 10, 16, p. 7533-7544 Abstract
Through long-range transport of dust, the North-African desert supplies essential minerals to the Amazon rain forest. Since North African dust reaches South America mostly during the Northern Hemisphere winter, the dust sources active during winter are the main contributors to the forest. Given that the Bodélé depression area in southwestern Chad is the main winter dust source, a close link is expected between the Bodélé emission patterns and volumes and the mineral supply flux to the Amazon. Until now, the particular link between the Bodélé and the Amazon forest was based on sparse satellite measurements and modeling studies. In this study, we combine a detailed analysis of space-borne and ground data with reanalysis model data and surface measurements taken in the central Amazon during the Amazonian Aerosol Characterization Experiment (AMAZE-08) in order to explore the validity and the nature of the proposed link between the Bodélé depression and the Amazon forest. This case study follows the dust events of 11-16 and 18-27 February 2008, from the emission in the Bodélé over West Africa (most likely with contribution from other dust sources in the region) the crossing of the Atlantic Ocean, to the observed effects above the Amazon canopy about 10 days after the emission. The dust was lifted by surface winds stronger than 14 m sg-1, usually starting early in the morning. The lofted dust, mixed with biomass burning aerosols over Nigeria, was transported over the Atlantic Ocean, and arrived over the South American continent. The top of the aerosol layer reached above 3 km, and the bottom merged with the boundary layer. The arrival of the dusty air parcel over the Amazon forest increased the average concentration of aerosol crustal elements by an order of magnitude.
-
(2010) New Phytologist. 186, 4, p. 869-878 Abstract
P>Carbonyl sulfide (COS) exchange in C-3 leaves is linked to that of CO2, providing a basis for the use of COS as a powerful tracer of gross CO2 fluxes between plants and the atmosphere, a critical element in understanding the response of the land biosphere to global change. Here, we carried out controlled leaf-scale gas-exchange measurements of COS and CO2 in representative C-3 plants under a range of light intensities, relative humidities and temperatures, CO2 and COS concentrations, and following abscisic acid treatments. No 'respiration-like' emission of COS or detectable compensation point, and no cross-inhibition effects between COS and CO2 were observed. The mean ratio of COS to CO2 assimilation flux rates, As/Ac, was c. 1.4 pmol mu mol-1 and the leaf relative uptake (assimilation normalized to ambient concentrations, (As/Ac)(C(a)c/C(a)s)) was 1.6-1.7 across species and conditions, with significant deviations under certain conditions. Stomatal conductance was enhanced by increasing COS, which was possibly mediated by hydrogen sulfide (H2S) produced from COS hydrolysis, and a correlation was observed between As and leaf discrimination against C18OO. The results provide systematic and quantitative information necessary for the use of COS in photosynthesis and carbon-cycle research on the physiological to global scales.
-
(2010) Atmospheric Chemistry and Physics. 10, 10, p. 4625-4641 Abstract
In this study we compile and present results from the factor analysis of 43 Aerosol Mass Spectrometer (AMS) datasets (27 of the datasets are reanalyzed in this work). The components from all sites, when taken together, provide a holistic overview of Northern Hemisphere organic aerosol (OA) and its evolution in the atmosphere. At most sites, the OA can be separated into oxygenated OA (OOA), hydrocarbon-like OA (HOA), and sometimes other components such as biomass burning OA (BBOA). We focus on the OOA components in this work. In many analyses, the OOA can be further deconvolved into low-volatility OOA (LV-OOA) and semi-volatile OOA (SV-OOA). Differences in the mass spectra of these components are characterized in terms of the two main ions m/z 44 (CO2+) and m/z 43 (mostly C2H3O+), which are used to develop a new mass spectral diagnostic for following the aging of OA components in the atmosphere. The LV-OOA component spectra have higher f44 (ratio of m/z 44 to total signal in the component mass spectrum) and lower f43 (ratio of m/z 43 to total signal in the component mass spectrum) than SV-OOA. A wide range of f44 and O:C ratios are observed for both LV-OOA (0.17±0.04, 0.73±0.14) and SV-OOA (0.07±0.04, 0.35±0.14) components, reflecting the fact that there is a continuum of OOA properties in ambient aerosol. The OOA components (OOA, LV-OOA, and SV-OOA) from all sites cluster within a well-defined triangular region in the f44 vs.\f43 space, which can be used as a standardized means for comparing and characterizing any OOA components (laboratory or ambient) observed with the AMS. Examination of the OOA components in this triangular space indicates that OOA component spectra become increasingly similar to each other and to fulvic acid and HULIS sample spectra as f44 (a surrogate for O:C and an indicator of photochemical aging) increases. This indicates that ambient OA converges towards highly aged LV-OOA with atmospheric oxidation. The common features of the transformation between SV-OOA and LV-OOA at multiple sites potentially enable a simplified description of the oxidation of OA in the atmosphere. Comparison of laboratory SOA data with ambient OOA indicates that laboratory SOA are more similar to SV-OOA and rarely become as oxidized as ambient LV-OOA, likely due to the higher loadings employed in the experiments and/or limited oxidant exposure in most chamber experiments.
-
(2009) Atmospheric Environment. 43, 33, p. 5351-5414 Abstract
Scientific findings from the last decades have clearly highlighted the need for a more comprehensive approach to atmospheric change processes. In fact, observation of atmospheric composition variables has been an important activity of atmospheric research that has developed instrumental tools (advanced analytical techniques) and platforms (instrumented passenger aircrafts, ground-based in situ and remote sensing stations, earth observation satellite instruments) providing essential information on the composition of the atmosphere. The variability of the atmospheric system and the extreme complexity of the atmospheric cycles for short-lived gaseous and aerosol species have led to the development of complex models to interpret observations, test our theoretical understanding of atmospheric chemistry and predict future atmospheric composition. The validation of numerical models requires accurate information concerning the variability of atmospheric composition for targeted species via comparison with observations and measurements.In this paper, we provide an overview of recent advances in instrumentation and methodologies for measuring atmospheric composition changes from space, aircraft and the surface as well as recent improvements in laboratory techniques that permitted scientific advance in the field of atmospheric chemistry. Emphasis is given to the most promising and innovative technologies that will become operational in the near future to improve knowledge of atmospheric composition. Our current observation capacity, however, is not satisfactory to understand and predict future atmospheric composition changes, in relation to predicted climate warming. Based on the limitation of the current European observing system, we address the major gaps in a second part of the paper to explain why further developments in current observation strategies are still needed to strengthen and optimise an observing system not only capable of responding to the requirements of atmospheric services but also to newly open scientific questions. (C) 2009 Elsevier Ltd. All rights reserved.
-
(2009) Atmospheric Environment. 43, 33, p. 5268-5350 Abstract
Air quality transcends all scales with in the atmosphere from the local to the global with handovers and feedbacks at each scale interaction. Air quality has manifold effects on health, ecosystems, heritage and climate. In this review the state of scientific understanding in relation to global and regional air quality is outlined. The review discusses air quality, in terms of emissions, processing and transport of trace gases and aerosols. New insights into the characterization of both natural and anthropogenic emissions are reviewed looking at both natural (e.g. dust and lightning) as well as plant emissions. Trends in anthropogenic emissions both by region and globally are discussed as well as biomass burning emissions. In terms of chemical processing the major air quality elements of ozone, non-methane hydrocarbons, nitrogen oxides and aerosols are covered. A number of topics are presented as a way of integrating the process view into the atmospheric context; these include the atmospheric oxidation efficiency, halogen and HOx chemistry, nighttime chemistry, tropical chemistry, heat waves, megacities, biomass burning and the regional hot spot of the Mediterranean. New findings with respect to the transport of pollutants across the scales are discussed, in particular the move to quantify the impact of long-range transport on regional air quality. Gaps and research questions that remain intractable are identified. The review concludes with a focus of research and policy questions for the coming decade. In particular, the policy challenges for concerted air quality and climate change policy (co-benefit) are discussed.
-
(2009) Geochimica et Cosmochimica Acta. 73, 13S, p. A1130-A1130 Abstract
Atmospheric aerosols affect Earth's climate in direct and
indirect manners. The direct effect of aerosols on climate is by
scattering and/or absorbing incoming solar and outgoing
terrestrial radiation, which strongly modify Earth's radiation
budget. These climatic effects depend on the chemical
composition, size and morphology.
We will present laboratory studies aiming at
understanding how the organic components of atmospheric
aerosols affect scattering and absorption. We will present the
use of cavity ring down (CRD) spectrometer to derive the
extinction and complex refractive index of aerosols containing
a significant organic component. We will present results on
aerosol particles containing humic like substances (HULIS).
HULIS are a common component of aerosols in the
atmosphere. They contribute to the CCN activity, hygroscopic
properties and the density of aerosols. In addition, HULIS
absorb throughout the visible range, and hence contribute to
the direct climatic effect of aerosols. The absorption by
organic aerosols is largely unaccounted for in models.
Specifically, we will present how the absorption of aerosols
containing HULIS and inorganic salts varies with wavelength,
test various optical mixing rules and will present results on the
extinction of core-shell model and soot aerosols. Finally, a
new continuous wave CRD system will be presented. -
(2009) Geochimica et Cosmochimica Acta. 73, 13S, p. A871-A871 Abstract
By emission of volatile organic compounds (VOC) which
on oxidation form secondary organic aerosols (SOA) the
vegetation is coupled to atmosphere and climate. We
investigated new particle formation from tree emissions in a
new setup: a plant chamber housing the trees coupled to a
reaction chamber for oxidizing the plant emissions and for
forming SOA (J¸lich Plant Aerosol Atmosphere Chamber,
JPAC).
Boreal, temperate Midlatitude, and Mediterranean tree
species were studied and α-pinene was used as reference
compound to characterize the specifics of JPAC and to study
humidity and OH dependence of new particle formation. The
strength and the pattern of the tree emissions were varied by
increasing the temperature for the plants, thus mimicking the
higher frequency of occurrence of warmer days in a future
climate.
Under the experimental conditions OH radicals were
essential for inducing new particle formation, although O3 (≤
80 ppb) was always present and a part of the monoterpenes
and the sesquiterpenes reacted already with ozone before OH
was generated. Formation rates of 3 nm particles were linearly
related to the carbon mixing ratios of the VOC, as were the
maximum observed volume and the condensational growth
rates. The threshold of new particle formation was lower for
the tree emissions than for α-pinene.
Hygroscopic growth factors and activation to cloud
droplets were measured to characterize climate relevant
properties of the resulting aerosols. Overall the hygroscopic
properties of the biogenic SOA from the highly mixed tree
emissions are similar to those found for individual
monoterpenes and sesquiterpenes. However, changes of
emission pattern from species to species or induced by heat
stress is reflected in the hygroscopic properties of the resulting
SOA. The biogenic SOA revealed close to ideal Kˆhler
behavior with significantly reduced surface tension at
activation compared to pure water. -
(2009) Analytical Chemistry. 81, 5, p. 1762-1769 Abstract
The major uncertainties associated with the direct impact of aerosols on climate call for fast and accurate characterization of their optical properties. Cavity ring down (CRD) spectroscopy provides highly sensitive measurement of aerosols' extinction coefficients from which the complex refractive index (RI) of the aerosol may be retrieved accurately for spherical particles of known size and number density, thus it is possible to calculate the single scattering albedo and other atmospherically relevant optical parameters. We present a CRD system employing continuous wave (CW) single mode laser. The single mode laser and the high repetition rate obtained significantly improve the sensitivity and reliability of the system, compared to a pulsed laser CRD setup. The detection limit of the CW-CRD system is between 6.67 × 10-10 cm -1 for an empty cavity and 3.63 × 10-9 cm -1 for 1000 particles per cm3 inside the cavity, at a 400 Hz sampling and averaging of 2000 shots for one sample measurement taken in 5 s. For typical pulsed-CRD, the detection limit for an empty cavity is less than 3.8 × 10-9 cm-1 for 1000 shots averaged over 100 s at 10 Hz. The system was tested for stability, accuracy, and RI retrievals for scattering and absorbing laboratory-generated aerosols. Specifically, the retrieved extinction remains very stable for long measurement times (1 h) with an order of magnitude change in aerosol number concentration. In addition, the optical cross section (σext) of a 400 nm polystyrene latex sphere (PSL) was determined within 2% error compared to the calculated value based on Mie theory. The complex RI of PSL, nigrosin, and ammonium sulfate (AS) aerosols were determined by measuring the extinction efficiency (Q ext) as a function of the size parameter ((πD)/λ) and found to be in very good agreement with literature values. A mismatch in the retrieved RI of Suwannee River fulvic acid (SRFA) compared to a previous study was observed and is attributed to variation in the sample composition. The small system presented delivers high ability for fast measurements and accurate analysis, making it a good candidate for field aerosol optical properties studies.
-
(2009) Environmental Science and Technology. 43, 6, p. 1811-1817 Abstract
Atmospheric humic-like substances (HULIS) constitute a major fraction of the water soluble organic carbon of aerosol particles. We investigated sorption and desorption of water and two model organic contaminants (toluene and benzyl alcohol) on HULIS and a standard humic substance (Suwannee River fulvic acid; SRFA) under varying relative humidity using a quartz crystal microbalance. Simultaneous sorption of water and benzyl alcohol (capable of specific interactions like hydrogen bonding or charge transfer) on HULIS and SRFA shows significant, humidity-dependent, cooperative sorption at intermediate water activity, as well as a dependence of sorption distribution coefficient on the wetting - drying pathway. In contrast, sorption of toluene (capable of only nonspecific interactions) was humidity-independent. Atmospheric HULIS is thus found to have several sorption features in common with terrestrial and aquatic humic substances and soil organic matter. These features are consistent with the link solvation model (LSM), whereby water assists in cooperative sorption of specifically interacting compounds by the organic matter sorbent, and subsequent changes in sorbent structure result in sorption hysteresis. Sorption of compounds capable of only nonspecific interactions is unaffected by hydration status. Such sorption features can lead to considerable uncertainty in predicting and modeling transport of organic pollutants in the atmosphere.
-
(2009) Physical Chemistry Chemical Physics. 11, 36, p. 7943-7950 Abstract
A new approach to retrieve the effective broadband refractive indices (nbroad,eff) of aerosol particles by a white light aerosol spectrometer (WELAS) optical particle counter (OPC) is presented. Using a tandem differential mobility analyzer (DMA)-OPC system, the nbroad,eff are obtained for both laboratory and field applications. This method was tested in the laboratory using substances with a wide range of optical properties. With the obtained nbroad,eff, WELAS aerosol size distributions can be corrected. Therefore, this method can be used for instrument calibration in both laboratory and field measurements. The retrieved effective broadband refractive indices for the scattering aerosols were: ammonium sulfate ((NH 4)2SO4, AS) nbroad,eff = 1.52(±0.01) + i0.0, glutaric acid (HOOC(CH2)3COOH, GA) nbroad,eff = 1.45(±0.01) + i0.0, and sodium chloride (NaCl) nbroad,eff = 1.49(±0.02) + i0.0, all within 4% of literature values. A lightly absorbing substance, Suwannee river fulvic acid (SRFA), was also measured, and its retrieved nbroad,eff is like that of a pure scatterer, with a value of nbroad,eff = 1.53(±0.01) + i0.0. The retrieved real part of nbroad,eff is in accordance with literature values and the imaginary part with the behavior of the white light spectrum of the WELAS, which is not sensitive below a wavelength of 380 nm, where SRFA mainly absorbs. For absorbing substances, nigrosine and various mixtures of nigrosine with AS and GA were measured. For nigrosine, n broad,eff = 1.64(±0.04) + i0.20(±0.03) was retrieved, in very good agreement with values found in the literature. The n broad,eff retrieved by this method for the mixtures was in accordance with the complex refractive index expected. The nbroad,eff retrieved by this method would be similar to the values obtained using the solar spectrum.
-
(2009) Atmospheric Chemistry and Physics. 9, 12, p. 3867-3879 Abstract
We compare a full-year (2006) record of surface air NO2 concentrations measured in Israeli cities to coinciding retrievals of tropospheric NO2 columns from satellite sensors (SCIAMACHY aboard ENVISAT and OMI aboard Aura). This provides a large statistical data set for validation of NO2 satellite measurements in urban air, where validation is difficult yet crucial for using these measurements to infer NOx emissions by inverse modeling. Assuming that NO2 is well-mixed throughout the boundary layer (BL), and using observed average seasonal boundary layer heights, near-surface NO2 concentrations are converted into BL NO2 columns. The agreement between OMI and (13:45) BL NO2 columns (slope=0.93, n=542), and the comparable results at 10:00 h for SCIAMACHY, allow a validation of the seasonal, weekly, and diurnal cycles in satellite-derived NO2. OMI and BL NO2 columns show consistent seasonal cycles (winter NO2 1.6-2.7× higher than summer). BL and coinciding OMI columns both show a strong weekly cycle with 45-50% smaller NO2 columns on Saturday relative to the weekday mean, reflecting the reduced weekend activity, and validating the weekly cycle observed from space. The diurnal difference between SCIAMACHY (10:00) and OMI (13:45) NO2 is maximum in summer when SCIAMACHY is up to 40% higher than OMI, and minimum in winter when OMI slightly exceeds SCIAMACHY. A similar seasonal variation in the diurnal difference is found in the source region of Cairo. The surface measurements in Israel cities confirm this seasonal variation in the diurnal cycle. Using simulations froma global 3-D chemical transport model (GEOS-Chem), we show that this seasonal cycle can be explained by a much stronger photochemical loss of NO2 in summer than in winter.
-
(2009) Atmospheric Chemistry and Physics. 9, 13, p. 4387-4406 Abstract
Emission of biogenic volatile organic compounds (VOC) which on oxidation form secondary organic aerosols (SOA) can couple the vegetation with the atmosphere and climate. Particle formation from tree emissions was investigated in a new setup: a plant chamber coupled to a reaction chamber for oxidizing the plant emissions and for forming SOA. Emissions from the boreal tree species birch, pine, and spruce were studied. In addition, α-pinene was used as reference compound. Under the employed experimental conditions, OH radicals were essential for inducing new particle formation, although O3 (≤80 ppb) was always present and a fraction of the monoterpenes and the sesquiterpenes reacted with ozone before OH was generated. Formation rates of 3 nm particles were linearly related to the VOC carbon mixing ratios, as were the maximum observed volume and the condensational growth rates. For all trees, the threshold of new particle formation was lower than for α-pinene. It was lowest for birch which emitted the largest fraction of oxygenated VOC (OVOC), suggesting that OVOC may play a role in the nucleation process. Incremental mass yields were ≈5% for pine, spruce and α-pinene, and ≈10% for birch. α-Pinene was a good model compound to describe the yield and the growth of SOA particles from coniferous emissions. The mass fractional yields agreed well with observations for boreal forests. Despite the somewhat enhanced VOC and OH concentrations our results may be up-scaled to eco-system level. Using the mass fractional yields observed for the tree emissions and weighting them with the abundance of the respective trees in boreal forests SOA mass concentration calculations agree within 6% with field observations. For a future VOC increase of 50% we predict a particle mass increase due to SOA of 19% assuming today's mass contribution of pre-existing aerosol and oxidant levels.
-
(2009) Atmospheric Chemistry and Physics. 9, 14, p. 5155-5236 Abstract
Secondary organic aerosol (SOA) accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated with SOA formation are complex and varied, and, despite considerable progress in recent years, a quantitative and predictive understanding of SOA formation does not exist and therefore represents a major research challenge in atmospheric science. This review begins with an update on the current state of knowledge on the global SOA budget and is followed by an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and the analytical techniques used to determine the chemical composition of SOA. A survey of recent laboratory, field and modeling studies is also presented. The following topical and emerging issues are highlighted and discussed in detail: molecular characterization of biogenic SOA constituents, condensed phase reactions and oligomerization, the interaction of atmospheric organic components with sulfuric acid, the chemical and photochemical processing of organics in the atmospheric aqueous phase, aerosol formation from real plant emissions, interaction of atmospheric organic components with water, thermodynamics and mixtures in atmospheric models. Finally, the major challenges ahead in laboratory, field and modeling studies of SOA are discussed and recommendations for future research directions are proposed.
-
(2008) Geophysical Research Letters. 35, 20, Abstract
Humic-like substances (HULIS) in the atmosphere are ubiquitous macromolecular substances that comprise a major fraction of the organic component of atmospheric aerosols. In this study we report that HULIS extracted from collected wood burning and urban pollution atmospheric particles enhance aqueous phase oxidation of model organic contaminants (pyrene and phenol), by promoting the dark Fenton reaction under atmospherically relevant conditions. The paucity of radical sources at night makes this reaction, which is not accounted for in cloud chemistry models, potentially quite important for understanding and quantifying in-cloud degradation of organic pollutants, and for understanding Fe oxidation state speciation in atmospheric waters. Citation: Moonshine, M., Y. Rudich, S. Katsman, and E. R. Graber (2008), Atmospheric HULIS enhance pollutant degradation by promoting the dark Fenton reaction, Geophys. Res. Lett., 35, L20807, doi: 10.1029/2008GL035285.
-
(2008) Geophysical Research Letters. 35, 19, L19810. Abstract
Surfactants often found in tropospheric aerosols, can affect the onset and development of clouds. Due to high dilution during droplet growth, the effects of surfactants on cloud microphysical processes have been mostly neglected. However, while cloud growth by coalescence conserves the combined volume of all cloud droplets, it reduces the combined surface area. This could lead to enrichment of water-insoluble surfactants (WIS) and to reduced surface tension of droplets forming in warm processes. Measurements of individual raindrops reveal the presence of water insoluble surfactants. Our field and laboratory studies as well as simple theoretical arguments suggest that by causing varying and size-dependent surface tension, WIS can affect cloud microphysics.
-
(2008) Eos. 89, 23, p. 212-212 Abstract
Observations indicate that the amount of solar radiation reaching the surface of the Earth has varied significantly over decadal timescales during the past half century. A workshop of the Israel Science Foundation evaluated the observational evidence for global dimming and brightening (GDB), its possible causes, and its implications for the Earths climate, hydrology, agriculture, and land use. The workshop also identified gaps in our knowledge and made recommendations to fill these gaps. Speakers at the workshop reviewed current understanding of GDB. Surface observations indicate that widespread global dimming (reduced solar radiation) at a rate of about 23 watts per square meter per decade occurred between the late 1950s and the late 1980s over mid-latitude land surfaces of the Northern Hemisphere. These records also show a reversal of this trend over many land areas in the past two decadesbrightening of the order of 2 watts per square meter per decade. Satellite estimates of solar radiation reaching the surface and aerosol trends, only available since the early 1980s, are generally consistent with these findings. Some analyses of the surface observations indicate that the rates of dimming and brightening are highest in major population centers and fall off significantly in areas with lower population densities....
-
(2008) Aerosol Science and Technology. 42, 4, p. 255-269 Abstract
The concentrations of the water-soluble inorganic aerosol species, ammonium (NH4+), nitrate (NO3-), chloride (Cl-), and sulfate (SO42-), were measured from September to November 2002 at a pasture site in the Amazon Basin (Rondônia, Brazil) (LBA-SMOCC). Measurements were conducted using a semi-continuous technique (Wet-annular denuder/Steam-Jet Aerosol Collector: WAD/SJAC) and three integrating filter-based methods, namely (1) a denuder-filter pack (DFP: Teflon and impregnated Whatman filters), (2) a stacked-filter unit (SFU: polycarbonate filters), and (3) a High Volume dichotomous sampler (HiVol: quartz fiber filters). Measurements covered the late dry season (biomass burning), a transition period, and the onset of the wet season (clean conditions). Analyses of the particles collected on filters were performed using ion chromatography (IC) and Particle-Induced X-ray Emission spectrometry (PIXE). Season-dependent discrepancies were observed between the WAD/SJAC system and the filter-based samplers. During the dry season, when PM2.5 (Dp ≤ 2.5 μm) concentrations were ∼100 μg m-3, aerosol NH4+ and SO42- measured by the filter-based samplers were on average two times higher than those determined by the WAD/SJAC. Concentrations of aerosol NO3- and Cl- measured with the HiVol during daytime, and with the DFP during day- and nighttime also exceeded those of the WAD/SJAC by a factor of two. In contrast, aerosol NO3- and Cl- measured with the SFU during the dry season were nearly two times lower than those measured by the WAD/SJAC. These differences declined markedly during the transition period and towards the cleaner conditions during the onset of the wet season (PM2.5 ∼5 μg m-3); when filter-based samplers measured on average 40-90% less than the WAD/SJAC. The differences were not due to consistent systematic biases of the analytical techniques, but were apparently a result of prevailing environmental conditions and different sampling procedures. For the transition period and wet season, the significance of our results is reduced by a low number of data points. We argue that the observed differences are mainly attributable to (a) positive and negative filter sampling artifacts, (b) presence of organic compounds and organosulfates on filter substrates, and (c) a SJAC sampling efficiency of less than 100%.
-
(2008) Atmospheric Chemistry and Physics. 8, 6, p. 1823-1833 Abstract
In this study, we measure the extinction efficiency at 532 nm of absorbing aerosol particles coated with a non-absorbing solid and liquid organic shell with coating thickness varying between 5 and 100 nm using cavity ring down aerosol spectrometry. For this purpose, we use nigrosin, an organic black dye, as a model absorbing core and two non-absorbing organic substances as shells, glutaric acid (GA) and Di-Ethyl-Hexyl-Sebacate (DEHS). The measured behavior of the coated particles is consistent with Mie calculations of core-shell particles. Errors between measured and calculated values for nigrosin coated with GA and DEHS are between 0.5% and 10.5% and between 0.5% and 9%, respectively. However, it is evident that the calculations are in better agreement with the measured results for thinner coatings. Possible reasons for these discrepancies are discussed.
-
(2008) Environmental Science & Technology. 42, 3, p. 793-799 Abstract
Recent field observations suggest that ammonium salts of organic acids may be very important in accounting for aerosols' properties in many environments. In this study we present laboratory experiments and calculations on the influence of ammonia reaction with organic aerosol components and its effect upon their (1) subsaturation hygroscopic growth (HG) and (2) supersaturation cloud condensation nuclei (CCN) activity. By using adipic acid (slightly soluble), citric acid (soluble), and di(ethylene glycol) monovinyl ether (DEGMVE, nonacidic compound) aerosols we show the feasibility and importance of atmospherically relevant acid-base neutralization by ammonia for different organic species. It is suggested that the formation of ammonium salts due to reaction of ammonia with slightly soluble organic acids (such as adipic acid) can affect the CCN activity and hygroscopic growth of aerosols with a significant organic component. It is further confined that the reaction involves carboxylic groups, it requires presence of water in the aerosol, and that the effects are stronger for less soluble organic acids.
-
(2008) Journal of Geophysical Research Atmospheres. 113, 14, D14S13. Abstract
Quantifying transboundary transport of pollution is important for understanding the global distribution of pollution and pollutant burdens in regional and global scales. Using observations from the Moderate resolution Imaging Spectroradiometer (MODIS) on board the Terra and Aqua satellites, the transport of pollution sulfate aerosol was estimated in the eastern Mediterranean. Over a 150 km line west of the Israeli coast, the estimated annual sulfate flux is in a range of 0.025 to 0.062 Tg S a-1 . These estimates are consistent with airborne measurements which estimated an annual flux of sulfate of 0.024-0.054 TgS a-1. The MODIS-based estimates are also in good agreement with estimates of seasonal and annual fluxes from the GOCART model. This case study demonstrates a feasible way to estimate transboundary transport of pollution aerosol by remote sensing means.
-
(2007) Journal of Geophysical Research Atmospheres. 112, 24, D24205. Abstract
Anthropogenic aerosol particles alter clouds, radiation, and precipitation, thereby affecting weather, climate, and air pollution. To examine and understand such feedbacks, a module that simulates the evolution, movement, and microphysics of three-dimensional size-resolved mixed-phase clouds and precipitation and their multicomponent aerosol inclusions was developed and implemented into the GATOR-GCMOM global-through-urban air pollution-weather-climate model. A unique feature of the module is that aerosol particles and their chemical components are tracked in time and space within size-resolved liquid, ice, and graupel and interstitially within clouds. Modeled parameters were evaluated against in situ data, compared with MODIS climatologies, and nested with emission data down to 5 km resolution to study aerosol-cloud feedbacks in Los Angeles. Although updrafts are not resolved during deep convection at this resolution, most convection is shallow in Los Angeles. This resolution is also near the lower limit for which a hydrostatic solution to vertical momentum (used here) is similar to a nonhydrostatic solution. Aerosols in Los Angeles were found to increase cloud optical depth, cloud liquid water, cloud fraction, net downward thermal-infrared radiation, soil moisture, the relative humidity, and (slightly) middle-boundary layer air temperatures. Aerosols also decreased precipitation, surface solar, and near-surface temperatures. Both boundary layer warming due to black carbon and surface cooling due to all aerosol components increased stability, inhibiting cloud top growth under some conditions. Aerosols may feed back to themselves by increasing cloud liquid, gas dissolution, and aerosol volume upon evaporation. They may also decrease visibility by increasing the relative humidity and decrease photolysis below them by enhancing cloud thickness.
-
(2007) Aerosol Science and Technology. 41, 11, p. 1011-1017 Abstract
Cavity ring down aerosol extinction measurements are combined with size distribution measurements to provide a multi-parameter basis for the retrieval of the aerosol complex refractive index. We show that two distinct size distributions of small particles (
-
(2007) Geophysical Research Letters. 34, 16, L16807. Abstract
Surface-active organics such as humic-like substances (HULIS) are abundant in aerosol particles and can lower the surface tension of cloud droplets forming on secondary organic and biomass burning aerosols. How fast is the diffusion of these species, relative to the time scale of cloud droplet growth? Here we report surface tension measurements of solutions containing HULIS extracted from smoke and pollution aerosol particles as well those of molecular weight-fractionated aquatic fulvic acids. Diffusion coefficients are estimated based on the Gibbs adsorption isotherms. The results suggest that HULIS diffusion to the surface of forming droplets is typically more rapid than the time scale of droplet growth so that cloud microphysical properties are affected.
-
(2007) Geophysical Research Letters. 34, 8, L08805. Abstract
Cloud and aerosols interact and form a complex system leading to high uncertainty in understanding climate change. To simplify this non-linear system it is customary to distinguish between "cloudy" and "cloud-free" areas and measure them separately. However, we find that clouds are surrounded by a "twilight zone" - a belt of forming and evaporating cloud fragments and hydrated aerosols extending tens of kilometers from the clouds into the so-called cloud-free zone. The gradual transition from cloudy to dry atmosphere is proportional to the aerosol loading, suggesting an additional aerosol effect on the composition and radiation fluxes of the atmosphere. Using AERONET data, we find that the measured aerosol optical depth is higher by 13% ± 2% in the visible and 22% ± 2% in the NIR in measurements taken near clouds relative to its value in the measurements taken before or after, and that 30%-60% of the free atmosphere is affected by this phenomenon.
-
(2007) Journal of Geophysical Research Atmospheres. 112, 5, D05211. Abstract
The hygroscopic growth (HG) of humic-like substances (HULIS) extracted from smoke and pollution aerosol particles and of Suwannee River fulvic acid (SRFA, bulk and fractions of different molecular weight) was measured by humidity tandem differential mobility analyzer (H-TDMA). By characterizing physical and chemical parameters such as molecular weight, elemental composition, and surface tension, we test the effect of these parameters on particle interactions with water vapor. For molecular weight-fractionated SRFA fractions, the growth factor at 90% relative humidity was generally inversely proportional to the molecular weight. HULIS extracts from ambient particles are more hygroscopic than all the SRFA fractions and exhibit different hygroscopic properties depending on their origin and residence time in the atmosphere. The results point out some dissimilarities between SRFA and aerosol-derived HULIS. The cloud condensation nuclei (CCN) behavior of the studied materials was predicted on the basis of hygroscopic growth using a recently introduced approach of Kreidenweis et al. (2005) and compared to CCN activity measurements on the same samples (Dinar et al., 2006). It is found that the computational approach (Kreidenweis et al., 2005) works reasonably well for SRFA fractions but is limited in use for the HULIS extracts from aerosol particles. The difficulties arise from uncertainties associated with HG measurements at high relative humidity, which leads to large errors in the predicted CCN activity.
-
(2007) Atmospheric Environment. 41, 5, p. 1107-1118 Abstract
The role of biomass burning aerosols in the climate system is still poorly quantified, in part due to uncertainties regarding the optical properties of elemental and organic carbon (EC and OC, respectively), the main constituents of pyrogenic aerosols. In this study, we utilize comprehensive physical and chemical field measurements of biomass burning aerosols in Brazil to constrain the densities and refractive indices (RI) of EC and OC in these particles, by comparing their optically and chemically derived RI. The optically derived effective RI are retrieved from the measured absorption and scattering coefficients using a Mie scattering algorithm, and serve as a reference dataset, while the chemically derived effective RI are calculated from the measured chemical composition using electromagnetic mixing rules. The results are discussed in light of the observed combustion conditions, and in an effort to derive conclusions as to the chemical and optical properties of the usually less well-characterized components of biomass burning aerosols, namely, elemental carbon and organic matter. The best agreement between the optically and chemically derived RI was achieved by assigning a density of ρEC = 1.8 g cm- 3 and refractive index RIEC = 1.87 - 0.22 i to the EC component, and ρ = 0.9 g cm- 3 and RI = 1.4 - 0 i to the unidentified organic matter fraction of the particles. These parameters suggest low graphitization levels for the EC, and a dominant proportion of aliphatic compounds in the unidentified organic matter. Combining the density and RI of the unidentified organic matter with the properties of the chemically characterized organic fraction yields ρ = 1.1 g cm- 3 and RI = 1.3 - 0 i for the total aerosol OC.
-
(2007) Faraday Discussions. 137, p. 279-295 Abstract
Atmospheric aerosols absorb and reflect solar radiation causing surface cooling and heating of the atmosphere. The interaction between aerosols and radiation depends on their complex index of refraction, which is related to the particles' chemical composition. The contribution of light absorbing organic compounds, such as HUmic-LIke Substances (HULIS) to aerosol scattering and absorption is among the largest uncertainties in assessing the direct effect of aerosols on climate. Using a Cavity Ring Down Aerosol Spectrometer (CRD-AS), the complex index of refraction of aerosols containing HULIS extracted from pollution, smoke, and rural continental aerosols, and molecular weight-fractionated fulvic acid was measured at 390 nm and 532 nm. The imaginary part of the refractive index (absorption) substantially increases towards the UV range with increasing molecular weight and aromaticity. At both wavelengths, HULIS extracted from pollution and smoke particles absorb more than HULIS from the rural aerosol. Sensitivity calculations for a pollution-type aerosol containing ammonium sulfate, organic carbon (HULIS), and soot suggests that accounting for absorption by HULIS leads in most cases to a significant decrease in the single scattering albedo and to a significant increase in aerosol radiative forcing efficiency, towards more atmospheric absorption and heating. This indicates that HULIS in biomass smoke and pollution aerosols, in addition to black carbon, can contribute significantly to light absorption in the ultraviolet and visible spectral regions.
-
(2007) Atmospheric Chemistry and Physics. 7, 23, p. 5989-6023 Abstract
Aerosols and clouds play central roles in atmospheric chemistry and physics, climate, air pollution, and public health. The mechanistic understanding and predictability of aerosol and cloud properties, interactions, transformations, and effects are, however, still very limited. This is due not only to the limited availability of measurement data, but also to the limited applicability and compatibility of model formalisms used for the analysis, interpretation, and description of heterogeneous and multiphase processes. To support the investigation and elucidation of atmospheric aerosol and cloud surface chemistry and gas-particle interactions, we present a comprehensive kinetic model framework with consistent and unambiguous terminology and universally applicable rate equations and parameters. It enables a detailed description of mass transport and chemical reactions at the gas-particle interface, and it allows linking aerosol and cloud surface processes with gas phase and particle bulk processes in systems with multiple chemical components and competing physicochemical processes. The key elements and essential aspects of the presented framework are: a simple and descriptive double-layer surface model (sorption layer and quasi-static layer); straightforward flux-based mass balance and rate equations; clear separation of mass transport and chemical reactions; well-defined and consistent rate parameters (uptake and accommodation coefficients, reaction and transport rate coefficients); clear distinction between gas phase, gas-surface, and surface-bulk transport (gas phase diffusion, surface and bulk accommodation); clear distinction between gas-surface, surface layer, and surface-bulk reactions (Langmuir-Hinshelwood and Eley-Rideal mechanisms); mechanistic description of concentration and time dependences (transient and steady-state conditions); flexible addition of unlimited numbers of chemical species and physicochemical processes; optional aggregation or resolution of intermediate species, sequential processes, and surface layers; and full compatibility with traditional resistor model formulations. The outlined double-layer surface concept and formalisms represent a minimum of model complexity required for a consistent description of the non-linear concentration and time dependences observed in experimental studies of atmospheric multiphase processes (competitive co-adsorption and surface saturation effects, etc.). Exemplary practical applications and model calculations illustrating the relevance of the above aspects are presented in a companion paper (Ammann and Pöschl, 2007). We expect that the presented model framework will serve as a useful tool and basis for experimental and theoretical studies investigating and describing atmospheric aerosol and cloud surface chemistry and gas-particle interactions. It shall help to end the "Babylonian confusion" that seems to inhibit scientific progress in the understanding of heterogeneous chemical reactions and other multiphase processes in aerosols and clouds. In particular, it shall support the planning and design of laboratory experiments for the elucidation and determination of fundamental kinetic parameters; the establishment, evaluation, and quality assurance of comprehensive and self-consistent collections of rate parameters; and the development of detailed master mechanisms for process models and derivation of simplified but yet realistic parameterizations for atmospheric and climate models.
-
(2007) Journal of Geophysical Research Atmospheres. 112, 1, D01201. Abstract
The aerosol characterization experiment performed within the Large-Scale Biosphere-Atmosphere Experiment in Amazonia-Smoke, Aerosols, Clouds, Rainfall and Climate (LBA-SMOCC) field experiment carried out in Rondonia, Brazil, in the period from September to November 2002 provides a unique data set of size-resolved chemical composition of boundary layer aerosol over the Amazon Basin from the intense biomass-burning period to the onset of the wet season. Three main periods were clearly distinguished on the basis of the PM10 concentration trend during the experiment: (1) dry period, with average PM10 well above 50 mu g m(-3); (2) transition period, during which the 24-hour-averaged PM10 never exceeded 40 mu g m(-3) and never dropped below 10 mg m(-3); (3) and wet period, characterized by 48-hour-averaged concentrations of PM10 below 12 mu g m(-3) and sometimes as low as 2 mu g m(-3). The trend of PM10 reflects that of CO concentration and can be directly linked to the decreasing intensity of the biomass- burning activities from September through November, because of the progressive onset of the wet season. Two prominent aerosol modes, in the submicron and supermicron size ranges, were detected throughout the experiment. Dry period size distributions are dominated by the fine mode, while the fine and coarse modes show almost the same concentrations during the wet period. The supermicron fraction of the aerosol is composed mainly of primary particles of crustal or biological origin, whereas submicron particles are produced in high concentrations only during the biomass-burning periods and are mainly composed of organic material, mostly water-soluble, and similar to 10% of soluble inorganic salts, with sulphate as the major anion. Size-resolved average aerosol chemical compositions are reported for the dry, transition, and wet periods. However, significant variations in the aerosol composition and concentrations were observed within each period, which can be classif
-
(2007) Annual Review of Physical Chemistry. p. 321-352 Abstract
The oxidation of organics in aerosol particles affects the physical properties of aerosols through a process known as aging. Atmospheric particles compose a huge set of specific organic compounds, most of which have not been identified in field measurements. Laboratory experiments inevitably address model systems of reduced complexity to isolate critical chemical phenomena, but growing evidence suggests that composition effects may play a central role in the atmospheric aging of organic particles. In this review we seek to address the connections between recent laboratory studies and recent field campaigns addressing the aging of organic aerosols. We review laboratory studies on the uptake of oxidants, the evolution of particle-water interactions, and the evolution of particle density with aging. Finally, we review field data addressing condensed-phase lifetimes of organic tracers. These data suggest that although matrix effects identified in the laboratory have taken a step toward reconciling laboratory-field disagreements, further work is needed to understand the actual aging rates of organics in ambient particles.
-
Optical properties of absorbing and non-absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy(2007) Atmospheric Chemistry and Physics. 7, 6, p. 1523-1536 Abstract
Application of cavity ring down (CRD) spectrometry for measuring the optical properties of pure and mixed laboratory-generated aerosols is presented. The extinction coefficient (αext), extinction cross section (σext) and extinction efficiency (Qext) were measured for polystyrene spheres (PSS), ammonium sulphate ((NH4) 2(SO4)), sodium chloride (NaCl), glutaric acid (GA), and Rhodamine-590 aerosols. The refractive indices of the different aerosols were retrieved by comparing the measured extinction efficiency of each aerosol type to the extinction predicted by Mie theory. Aerosols composed of sodium chloride and glutaric acid in different mixing ratios were used as model for mixed aerosols of two non-absorbing materials, and their extinction and complex refractive index were derived. Aerosols composed of Rhodamine-590 and ammonium sulphate in different mixing ratios were used as model for mixing of absorbing and non-absorbing species, and their optical properties were derived. The refractive indices of the mixed aerosols were also calculated by various optical mixing rules. We found that for non-absorbing mixtures, the linear rule, Maxwell-Garnett rule, and extended effective medium approximation (EEMA), give comparable results, with the linear mixing rule giving a slightly better fit than the others. Overall, calculations for the mixed aerosols are not as good as for single component aerosols. For absorbing mixtures, the differences between the refractive indices calculated using the mixing rules and those retrieved by CRD are generally higher.
-
(2006) Environmental Research Letters. 1, 1, 014005. Abstract
About 40 million tons of dust are transported annually from the Sahara to the Amazon basin. Saharan dust has been proposed to be the main mineral source that fertilizes the Amazon basin, generating a dependence of the health and productivity of the rain forest on dust supply from the Sahara. Here we show that about half of the annual dust supply to the Amazon basin is emitted from a single source: the Bodélé depression located northeast of Lake Chad, approximately 0.5% of the size of the Amazon or 0.2% of the Sahara. Placed in a narrow path between two mountain chains that direct and accelerate the surface winds over the depression, the Bodélé emits dust on 40% of the winter days, averaging more than 0.7 million tons of dust per day.
-
(2006) Environmental Science and Technology. 40, 9, p. 2996-3005 Abstract
The transport of anthropogenic pollution by desert dust in the Eastern Mediterranean region was studied by analyzing major and trace element composition, organic species, and Pb isotope ratios in suspended dust samples collected in Jerusalem, Israel. Dust storms in this region are associated with four distinct synoptic conditions (Red Sea Trough (RS), Eastern High (EH), Sharav Cyclone (SC), and Cold Depression (Cyprus low, CD)) that carry dust mostly from North African (SC, CD, EH) and Arabian and Syrian (RS, EH) deserts. Substantial contamination of dust particles by Pb, Cu, Zn, and Ni is observed, while other elements (Na, Ca, Mg, Mn, Sr, Rb, REE, U, and Th) display natural concentrations. Sequential extraction of the abovementioned elements from the dust samples shows that the carbonate and sorbed fractions contain most of the pollution, yet the Al-silicate fraction is also contaminated, implying that soils and sediments in the source terrains of the dust are already polluted. We identified the pollutant sources by using Pb isotopes. It appears that before the beginning of the dust storm, the pollutants in the collected samples are dominated by local sources but with the arrival of dust from North Africa, the proportion of foreign pollutants increases. Organic pollutants exhibit behavior similar and complementary to that of the inorganic tracers, attesting to the importance of anthropogenic-pollutant addition en route of the dust from its remote sources. Pollution of suspended dust is observed under all synoptic conditions, yet it appears that easterly winds carry higher proportions of local pollution and westerly winds carry pollution emitted in the Cairo basin. Therefore, pollution transport by mineral dust should be accounted for in environmental models and in assessing the health-related effects of mineral dust.
-
(2006) Analytical and Bioanalytical Chemistry. 385, 1, p. 26-33 Abstract
Levoglucosan is a tracer for biomass burning sources in atmospheric aerosol particles. Therefore, much effort has been recently put into developing methods for its quantification. This review describes and compares both established and emerging analytical methods for levoglucosan quantification in ambient aerosol samples, with the special needs of the environmental analytical chemist in mind.
-
(2006) Biomaterials. 27, 4, p. 651-659 Abstract
The actual number of particles in formulations of nanoparticles (NP) is of importance for quality assurance, comprehensive physicochemical characterization, and pharmacodynamics. Some calculation methods that have been previously employed are limited because they rely on several assumptions and are not applicable for certain preparations. Currently there are no validated experimental methods for determining the particle number-concentration (N c) of liposomal and polymeric nanoparticulate preparations (
-
(2006) Atmospheric Chemistry and Physics. 6, 3, p. 729-753 Abstract
A class of organic molecules extracted atmospheric aerosol particles and isolated from fog and cloud water has been termed HUmic-LIke Substances (HULIS) due to a certain resemblance to terrestrial and aquatic humic and fulvic acids. In light of the interest that this class of atmospheric compounds currently attracts, we comprehensively review HULIS properties, as well as laboratory and field investigations concerning their formation and characterization in atmospheric samples. While sharing some important features such as polyacidic nature, accumulating evidence suggests that atmospheric HULIS differ substantially from terrestrial and aquatic humic substances. Major differences between HULIS and humic substances, including smaller average molecular weight, lower aromatic moiety content, greater surface activity, better droplet activation ability, as well as others, are highlighted. Several alternatives are proposed that may explain such differences: (1) the possibility that mono- and di-carboxylic acids and mineral acids abundant in the atmosphere prevent the formation of large humic "supramolecular associations"; (2) that large humic macromolecules are destroyed in the atmosphere by UV radiation, O3, and OH- radicals; 3) that "HULIS" actually consists of a complex, unresolved mixture of relatively small molecules rather than macromolecular entities; and (4) that HULIS formed via abiotic and short-lived oxidative reaction pathways differ substantially from humic substances formed over long time periods via biologically-mediated reactions. It should also be recalled that the vast majority of studies of HULIS relate to the water soluble fraction, which would include only the fulvic acid fraction of humic substances, and exclude the humic acid (base-soluble) and humin (insoluble) fractions of humic substances. A significant effort towards adopting standard extraction and characterization method is required to develop a better and meaningful comparison between different HULIS samples.
-
(2006) Atmospheric Chemistry and Physics. 6, 2, p. 375-402 Abstract
The chemical composition of carbonaceous aerosols collected during the LBA-SMOCC field experiment, conducted in Rondônia, Brazil, in 2002 during the transition from the dry to the wet season, was investigated by a suite of state-of-the-art analytical techniques. The period of most intense biomass burning was characterized by high concentrations of submicron particles rich in carbonaceous material and water-soluble organic compounds (WSOC). At the onset of the rainy period, submicron total carbon (TC) concentrations decreased by about 20 times. In contrast, the concentration of supermicron TC was fairly constant throughout the experiment, pointing to a constant emission of coarse particles from the natural background. About 6-8% of TC (9-11 % of WSOC) was speciated at the molecular level by GC-MS and liquid chromatography. Polyhydroxylated compounds, aliphatic and aromatic acids were the main classes of compounds accounted for by individual compound analysis. Functional group analysis by proton NMR and chromatographic separation on ion-exchange columns allowed characterization of ca. 50-90% of WSOC into broad chemical classes (neutral species/light acids/humic-like substances). In spite of the significant change in the chemical composition of tracer compounds from the dry to the wet period, the functional groups and the general chemical classes of WSOC changed only to a small extent. Model compounds representing size-resolved WSOC chemical composition for the different periods of the campaign are then proposed in this paper, based on the chemical characterization by both individual compound analysis and functional group analysis deployed during the LBA-SMOCC experiment. Model compounds reproduce quantitatively the average chemical structure of WSOC and can be used as best-guess surrogates in microphysical models involving organic aerosol particles over tropical areas affected by biomass burning.
-
(2006) Atmospheric Chemistry and Physics. 6, 9, p. 2465-2482 Abstract
Humic like substances (HULIS) have been identified as a major fraction of the organic component of atmospheric aerosols. These large multifunctional compounds of both primary and secondary sources are surface active and water soluble. Hence, it is expected that they could affect activation of organic aerosols into cloud droplets. We have compared the activation of aerosols containing atmospheric HULIS extracted from fresh, aged and pollution particles to activation of size fractionated fulvic acid from an aquatic source (Suwannee River Fulvic Acid), and correlated it to the estimated molecular weight and measured surface tension. A correlation was found between CCN-activation diameter of SRFA fractions and number average molecular weight of the fraction. The lower molecular weight fractions activated at lower critical diameters, which is explained by the greater number of solute species in the droplet with decreasing molecular weight. The three aerosol-extracted HULIS samples activated at lower diameters than any of the size-fractionated or bulk SRFA. The Köhler model was found to account for activation diameters, provided that accurate physico-chemical parameters are known.
-
(2006) Atmospheric Chemistry and Physics. 6, 12, p. 5213-5224 Abstract
Atmospheric aerosols play significant roles in climatic related phenomena. Size, density and shape of particles affect their fluid-dynamic parameters which in turn dictate their transport and lifecycle. Moreover, density and shape are also related to particles' optical properties, influencing their regional and global radiative effects. In the present study we have measured and compared the effective densities of humic like substances (HULIS) extracted from smoke and pollution aerosol particles to those of molecular weight-fractionated aquatic and terrestrial Humic Substances (HS). The effective density was measured by comparing the electro mobility and vacuum aerodynamic diameter of aerosol particles composed of these compounds. Characterization of chemical parameters such as molecular weight, aromaticity and elemental composition allow us to test how they affect the effective density of these important environmental macromolecules. It is suggested that atmospheric aging processes increase the effective density of HULIS due to oxidation, while packing due to the aromatic moieties plays important role in determining the density of the aquatic HS substances.
-
(2005) Proceedings of the National Academy of Sciences of the United States of America. 102, 32, p. 11207-11212 Abstract
Clouds developing in a polluted environment tend to have more numerous but smaller droplets. This property may lead to suppression of precipitation and longer cloud lifetime. Absorption of incoming solar radiation by aerosols, however, can reduce the cloud cover. The net aerosol effect on clouds is currently the largest uncertainty in evaluating climate forcing. Using large statistics of 1-km resolution MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data, we study the aerosol effect on shallow water clouds, separately in four regions of the Atlantic Ocean, for June through August 2002: marine aerosol (30°S-20°S), smoke (20°S-5°N), mineral dust (5°N-25°N), and pollution aerosols (30°N-60°N). All four aerosol types affect the cloud droplet size. We also find that the coverage of shallow clouds increases in all of the cases by 0.2-0.4 from clean to polluted, smoky, or dusty conditions. Covariability analysis with meteorological parameters associates most of this change to aerosol, for each of the four regions and 3 months studied. In our opinion, there is low probability that the net aerosol effect can be explained by coincidental, unresolved, changes in meteorological conditions that also accumulate aerosol, or errors in the data, although further in situ measurements and model developments are needed to fully understand the processes. The radiative effect at the top of the atmosphere incurred by the aerosol effect on the shallow clouds and solar radiation is -11 ± 3 W/m2 for the 3 months studied; 2/3 of it is due to the aerosol-induced cloud changes, and 1/3 is due to aerosol direct radiative effect.
-
(2005) Environmental Science and Technology. 39, 14, p. 5203-5208 Abstract
Prior to the massive use of new oxygenated solvents, data on their multiphase reactivity must be obtained to assess their environmental fate and impact on water and air quality. For this, the kinetics and mechanisms of the photochemical and photocatalytic degradation of selected oxygenated solvents by common tropospheric oxidants (such as OH and ozone) must be characterized. We studied the oxidation kinetics of new oxygenated solvents as pure organic liquids and in an aqueous medium by ozone and by the OH radical, respectively. The studied chemicals are all unsaturated compounds, having none, one, or two ether groups. The results indicate that the OH reaction proceeds at the diffusion limit by addition to the double bond. The reactive uptake coefficients associated with the reaction initiated by ozone are of the order of 10 -3. The reactions of compounds with two double bonds are very fast and probably occur at the surface. This kinetic information demonstrates that organic solvents in an organic medium or in an aqueous droplet will be oxidized rapidly by these oxidation reactions. These reactions, however, are not significant sinks for ozone and OH radicals.
-
(2005) Geophysical Research Letters. 32, 14, p. 1-4 Abstract
Clouds and precipitation play crucial roles in the Earth's energy balance, global atmospheric circulation and the availability of fresh water. Aerosols may modify cloud properties and precipitation formation by modifying the concentration and size of cloud droplets, and consequently the strength of cloud convection, and height of glaciation levels thus affecting precipitation patterns. Here we evaluate the aerosol effect on clouds, using large statistics of daily satellite data over the North Atlantic Ocean. We found a strong correlation between the presence of aerosols and the structural properties of convective clouds. These correlations suggest systematic invigoration of convective clouds by pollution, desert dust and biomass burning aerosols. On average increase in the aerosol concentration from a baseline to the average values is associated with a 0.05 ∓ 0.01 increase in the cloud fraction and a 40 ∓ 5mb decrease in the cloud top pressure.
-
(2005) Journal of Geophysical Research-Atmospheres. 110, D7, Abstract
Real-time measurements of ammonia, nitric acid, hydrochloric acid, sulfur dioxide and the water-soluble inorganic aerosol species, ammonium, nitrate, chloride, and sulfate were performed at a pasture site in the Amazon Basin (Rondonia, Brazil). The measurements were made during the late dry season (biomass burning), the transition period, and the onset of the wet season (clean conditions) using a wet-annular denuder (WAD) in combination with a Steam-Jet Aerosol Collector (SJAC). Measurements were conducted from 12 September to 14 November 2002 within the framework of LBA-SMOCC (Large-Scale Biosphere Atmosphere Experiment in Amazonia-Smoke Aerosols, Clouds, Rainfall, and Climate: Aerosols From Biomass Burning Perturb Global and Regional Climate). Real-time data were combined with measurements of sodium, potassium, calcium, magnesium, and low-molecular weight (LMW) polar organic acids determined on 12-, 24-, and 48-hours integrated filter samples. The contribution of inorganic species to the fine particulate mass (D-p 90%) fine-mode NH4NO3 and NH4Cl are predicted to be formed in the aqueous aerosol phase. Probably, Cl- was driven out of the aerosol phase largely by reaction of pyrogenic KCl with HNO3 and H2SO4. As shown by an updated version of the equilibrium simplified aerosol model (EQSAM(2)), which incorporates mineral aerosol species and lumped LMW polar organic acids, daytime aerosol NH4+ was mainly balanced by organ
-
(2005) Environmental Science and Technology. 39, 8, p. 2744-2752 Abstract
Biomass burning is an important source of smoke aerosol particles, which contain water-soluble inorganic and organic species, and thus have a great potential of affecting cloud formation, precipitation, and climate on global and regional scales. In this study, we have developed a new chromatographic method for the determination of levoglucosan (a specific tracer for biomass burning particles), related polyhydroxy compounds, and 2-methyl-erythritol (recently identified as isoprene oxidation product in fine aerosols in the Amazon) in smoke and in rainwater samples. The new method is based on water extraction and utilizes ion-exclusion high-performance liquid chromatography (IEC-HPLC) separation and spectroscopic detection at 194 nm. The new method allows the analysis of wet samples, such as rainwater samples. In addition, aliquots of the same extracts can be used for further analyses, such as ion chromatography. The overall method uncertainty for sample analysis is 15%. The method was applied to the analysis of high-volume and size-segregated smoke samples and to rainwater samples, all collected during and following the deforestation fires season in Rondônia, Brazil. From the analysis of size-segregated samples, it is evident that levoglucosan is a primary vegetation combustion product, emitted mostly in the 0.175-1 μm size bins. Levoglucosan concentrations decrease below the detection limit at the end of the deforestation fires period, implying that it is not present in significant amounts in background Amazon forest aerosols. The ratio of daytime levoglucosan concentration to particulate matter (PM) concentration was about half the nighttime ratio. This observation is rationalized by the prevalence of flaming combustion during day as opposed to smoldering combustion during night. This work broadens the speciation possibilities offered by simple HPLC and demonstrates the importance of multianalysis of several kinds of samples for a deeper understanding of biomass burning aerosols.
-
(2005) Atmospheric Chemistry and Physics. 5, 3, p. 781-797 Abstract
Particles from biomass burning and regional haze were sampled in Rondônia, Brazil, during dry, transition and wet periods from September to November 2002, as part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke, Aerosols, Clouds, Rainfall, and Climate) field campaign. Water soluble organic and inorganic compounds in bulk (High Volume and Stacked Filter Unit sampler) and size-resolved (Micro Orifice Uniform Deposit Impactor - MOUDI) smoke samples were determined by ion chromatography. It was found that low molecular weight polar organic acids account for a significant fraction of the water soluble organic carbon (WSOC) in biomass burning aerosols (C2-C6 dicarboxylic acids reached up to 3.7% and one-ring aromatic acids reached up to 2% of fine fraction WSOC during burning period). Short dicarboxylic (C2-C6) acids are dominated by oxalic acid followed by malonic and succinic acids. The largest ionic species is ammonium sulfate (60-70% of ionic mass). It was found that most of the ionic mass is concentrated in submicrometer-sized particles. Based on the size distribution and correlations with K+, a known biomass burning tracer, it is suggested that many of the organic acids are directly emitted by vegetation fires. Concentrations of dicarboxylic acids in the front and back filters of high volume sampler were determined. Based on these measurements, it was concluded that in the neutral or slightly basic smoke particles typical of this region, dicarboxylic acids are mostly confined to the particulate phase. Finally, it is shown that the distribution of water soluble species shifts to larger aerosols sizes as the aerosol population ages and mixes with other aerosol types in the atmosphere.
-
(2005) Faraday Discussions. 130, p. 453-468 Abstract
This study presents, for the first time, field evidence of complete, irreversible processing of solid calcium carbonate (calcite)-containing particles and quantitative formation of liquid calcium nitrate particles apparently as a result of heterogeneous reaction of calcium carbonate-containing mineral dust particles with gaseous nitric acid. Formation of nitrates from individual calcite and sea salt particles was followed as a function of time in aerosol samples collected at Shoresh, Israel. Morphology and compositional changes of individual particles were observed using conventional scanning electron microscopy with energy dispersive analysis of X-rays (SEM/EDX) and computer controlled SEM/EDX. Environmental scanning electron microscopy (ESEM) was utilized to determine and demonstrate the hygroscopic behavior of calcium nitrate particles found in some of the samples. Calcium nitrate particles are exceptionally hygroscopic and deliquesce even at very low relative humidity (RH) of 9-11% which is lower than typical atmospheric environments. Transformation of non-hygroscopic dry mineral dust particles into hygroscopic wet aerosol may have substantial impacts on light scattering properties, the ability to modify clouds and heterogeneous chemistry.
-
(2005) Atmospheric Chemistry and Physics. 5, 11, p. 3111-3126 Abstract
The aerosol in the Amazon basin is dominated throughout the year by organic matter, for the most part soluble in water. In this modeling study, we show how the knowledge of water-soluble organic compounds (WSOC) and the associated physical and chemical properties (e.g. solubility, surface tension, dissociation into ions) affect the hygroscopic growth and activation of the aerosol in this area. The study is based on data obtained during the SMOCC field experiment carried out in Rondônia, Brazil, over a period encompassing the dry (biomass burning) season to the onset of the wet season (September to mid-November, 2002). The comparison of predicted and measured cloud condensation nuclei (CCN) number concentration shows that the knowledge of aerosol WSOC composition in terms of classes of compounds and of their relative molecular weights and acidic properties may be sufficient to predict aerosol activation, without any information on solubility. Conversely, the lack of knowledge on WSOC solubility leads to a high overestimation of the observed diameter growth factors (DGF) by the theory. Moreover, the aerosol water soluble inorganic species fail to predict both DGFs and CCN number concentration. In fact, this study shows that a good reproduction of the measured DGF and CCN concentration is obtained if the chemical composition of aerosol, especially that of WSOC, is appropriately taken into account in the calculations. New parameterizations for the computed CCN spectra are also derived which take into account the variability caused by chemical effects (surface tension, molecular composition, solubility, degree of dissociation of WSOC).
-
(2005) Atmospheric Chemistry and Physics. 5, 1, p. 275-291 Abstract
This paper introduces the capability to study simultaneously changes in the density, the chemical composition, the mobility diameter, the aerodynamic diameter, and the layer thickness of multi-layered aerosol particles as they are being altered by heterogeneous chemical reactions. A vaporization-condensation method is used to generate aerosol particles composed of oleic acid outer layers of 2 to 30 nm on 101-nm polystyrene latex cores. The layer density is modified by reaction of oleic acid with ozone for variable exposure times. For increasing ozone exposure, the mobility diameter decreases while the vacuum aerodynamic diameter increases, which, for spherical particles, implies that particle density increases. The aerosol particles are confirmed as spherical based upon the small divergence of the particle beam in the aerosol mass spectrometer. The particle and layer densities are calculated by two independent methods, namely one based on the measured aerodynamic and mobility diameters and the other based on the measured mobility diameter and particle mass. The uncertainty estimates for density calculated by the second method are two to three times greater than those of the first method. Both methods indicate that the layer density increases from 0.89 to 1.12 g·cm-3 with increasing ozone exposure. Aerosol mass spectrometry shows that, concomitant with the increase in the layer density, the oxygen content of the reacted layer increases. Even after all of the oleic acid has reacted, the layer density and the oxygen content continue to increase slowly with prolonged ozone exposure, a finding which indicates continued chemical reactions of the organic products either with ozone or with themselves. The results of this paper provide new insights into the complex changes occurring for atmospheric particles during the aging processes caused by gas-phase oxidants. European Geosciences Union
-
(2004) Aerosol Science and Technology. 38, 12, p. 1206-1222 Abstract
Composition, shape factor, size, and fractal dimension of soot aerosol particles generated in a propane/O2 flame were determined as a function of the fuel equivalence ratio (φ). Soot particles were first size-selected by a differential mobility analyzer (DMA) and then analyzed by an Aerodyne aerosol mass spectrometer (AMS). The DMA provides particles of known mobility diameter (dm). The AMS quantitatively measures the mass spectrum of the nonrefractory components of the particles and also provides the vacuum aerodynamic diameter (dva) corresponding to the particles of known mobility diameter. The measured dm,dva, and nonrefractory composition are used in a system of equations based on the formulation presented in the companion article to estimate the particle dynamic shape factor, total mass, and black carbon (BC) content. Fractal dimension was estimated based on the mass-mobility relationship. Two types of soot particles were observed depending on the fuel equivalence ratio. Type 1: for φ 2), dva was nearly constant and independent of dm. The value of dva increased with increasing φ. Analysis of the governing equations showed that these particles were highly irregular (likely fractal aggregates), with a dynamic shape factor that increased with dm and φ. The fractal dimension of these particles was approximately 1.7. These particles were composed mostly of BC, with the organic carbon content increasing as φ increased. At φ = 1.85, the particles were about 90% BC, 5% PAH, and 5% aliphatic hydrocarbon (particle density = 1.80 g/cm3). Type 2: for φ > 4 (high propane/O2), dva was linearly proportional to d m. Analysis of the governing equations showed that these particles were nearly spherical (likely compact aggregates), with a dynamic shape factor of 1.1 (versus 1 for a sphere) and a fractal dimension of 2.95 (3 for a sphere). These particles were composed of about 50% PAH, 45% BC, and 5% aliphatic hydrocarbons (particle density = 1.50 g/cm3). These results help interpret some measurements obtained in recent field studies.
-
(2004) Journal of Physical Chemistry A. 108, 43, p. 9375-9383 Abstract
The crystals formed at 293 K by aerosol particles composed of SO 42-, NO 3-, NH 4+, and H + are determined by aerosol flow tube infrared spectroscopy. An innovative experimental protocol is employed to restore water content to the aerosol particles and thus remove the ambiguity of their physical state after exposure to low relative humidity. The six crystals formed include (NH 4) 2SO 4, (NH 4) 3H(SO 4) 2, NH 4HSO 4, NH 4NO 3, 2NH 4NO 3·(NH 4) 2SO 4, and 3NH 4NO 3·(NH 4) 2SO 4. The dependence of which crystals form on aqueous chemical composition is reported. The infrared signatures of these crystals are determined. The infrared spectra of 2NH 4NO 3·(NH 4) 2SO 4, and 3NH 4NO 3·(NH 4) 2SO 4 and their formation in aerosol particles are reported for the first time. The formation of NH 4HSO 4 and NH 4NO 3 in initially homogeneous aerosol particles is also reported for the first time: crystallization occurs only after another crystal has already formed, indicating that heterogeneous nucleation is necessary for their formation. For some chemical compositions, in a fraction of the aerosol particles, metastable crystals that form at low relative humidity reconstruct to thermodynamically stable crystals at higher relative humidity. An externally mixed aerosol results. Contact ion pairs are apparent in the infrared spectra of aerosol particles that do not crystallize even at 1% relative humidity. Taken together, our findings suggest a more diverse array and more frequent occurrence of crystalline SO 42--NO 3--NH 4+-H + aerosol particles in the troposphere than currently considered in the literature.
-
(2004) Journal of Physical Chemistry A. 108, 32, p. 6686-6695 Abstract
Heterogeneous reactions of oleic acid aerosol particles with ozone are studied below 1% relative humidity. The particles have inert polystyrene latex cores (101-nm diameter) coated by oleic acid layers of 2 to 30 nm. The chemical content of the organic layer is monitored with increasing ozone exposure by using an aerosol mass spectrometer. The carbon-normalized percent yields of particle-phase reaction products are 20-35% 9-oxononanoic acid, 1-3% azelaic acid, 1-3% nonanoic acid, and 35-50% other organic molecules (designated as CHO T). There is approximately 25% evaporation, presumably as 1-nonanal. To explain the formation of CHO T molecules and the low yields of azelaic and nonanoic acids, we suggest a chemical mechanism in which the Criegee biradical precursors to azelaic acid and nonanoic acid are scavenged by oleic acid to form CHO T molecules. These chemical reactions increase the carbon-normalized oxygen content (z/x) of the C xH yO z layer from 0.1 for unreacted oleic acid to 0.25 after high ozone exposure. Under the assumption that oxygen content is a predictor of hygroscopicity, our results suggest an increased cloud condensation nuclei activity of atmospherically aged organic particles that initially have alkene functionalities.
-
(2004) Atmospheric Environment. 38, 11, p. 1593-1604 Abstract
Changes in aerosol composition associated with a cold front passage were examined during a field experiment in Tel Aviv, Israel (2-15 Dec, 2000). In addition to monitoring aerosol scattering and optical thickness, aerosol samples were collected for detailed chemical analyses. Data were compared to simultaneous measurements made at Sde Boker, a semi-remote site in the Negev Desert, to help determine what changes were due to local pollution as opposed to regional phenomena. During the pre-frontal period (2-7 Dec) both sites were influenced by air masses containing a relatively high content of sulphate and dust, originating from neighbouring regions of the Middle East. A steady build-up of local pollution was then observed in Tel Aviv due to vehicular emissions/industrial activities, as indicated by increasing concentrations of black carbon, organic carbon, V, Cu, Ni, Zn, Br, Pb, NO3- and PAHs. Identification of a number of organic biomass burning tracers (e.g., levoglucosan) indicates that smoke also contributed to the pollution build-up in Tel Aviv, while a range of sugars/sugar alcohols point to a microbial/bioaerosol component. Locally emitted pollutants tended to exhibit higher nighttime concentrations due to trapping of pollution under a nocturnal inversion. Fine aerosol iodine was the only element exhibiting higher daytime concentrations, hinting at a photochemical source. Post-frontal measurements (12-15 Dec) revealed a significant decrease in all pollutants due to dispersal of the haze by the cold front (8-9 Dec), with the air initially being dominated by marine aerosol. Concentrations of pollutants then began to increase, with backward trajectories indicating a possible contribution from Eastern Europe. Overall, the study identified a range of useful tracers for monitoring the contribution of different sources to the aerosol over Israel. Crown
-
(2004) Journal of Geophysical Research: Atmospheres. 109, 2, p. D02208 1-19 Abstract
The interaction of mineral dust particles from the Sahara with semivolatile organic compounds over an urban region in Israel's coastal plain was studied. Dust samples were collected during numerous dust storm events in 2000 and 2001, under varying meteorological conditions. Organic compounds adsorbed on collected mineral dust particles were analyzed using an integrated, multitechnique study that employed a scanning electron microscope equipped with an energy dispersion system (SEM-EDS) and bulk aerosol analysis by gas chromatography/mass spectrometry (GC/MS) and ion chromatography (IC). The SEM-EDS analysis exemplifies the coexistence of inorganic and organic species on individual mineral dust particles. Using the GC/MS and IC analysis, specific tracers for urban air pollution and photodegradation products of agriculture emissions have been identified, and their size distributions have been obtained. Redistribution of semivolatile organics such as polycyclic aromatic hydrocarbons (PAH) and pesticides from submicron to larger particle size fractions, governed by the mineral dust transport trajectory and size distributions, was observed. Nonvolatile species, such as anhydrous sugars and large PAH, do not redistribute between the phases because of their low vapor pressure. The concentrations of short chain carboxylic acids increased with higher ambient relative humidity, suggesting water-assisted uptake onto the mineral particles.
-
(2003) Chemical Reviews. 103, 12, p. 5097-5124 Abstract
The laboratory studies on the chemical processes of organic matter in aerosol properties were described. Well-defined model systems for organic aerosols were used by the studies. A set of a few model compounds were obtained using quantitative measurements of the organic carbon and the concentrations of the main functional groups composing the aerosol water soluble organic compounds (WSOC). The major functional groups of organic matter in collected particles were identified using infrared spectroscopy.
-
(2003) Journal of Geophysical Research-Atmospheres. 108, D22, Abstract
[1] We investigated nucleation scavenging of aerosols by cloud drops during the passage of a shallow cold front at a mountain station in northern Israel. The chemical composition and size of the aerosols were measured during and following the passage of the front. Analysis of the air mass trajectories show that, prior to the frontal passage, the air originated from the north, bringing with it pollution particles from sources in Eastern Europe. Following the frontal passage, the air originated from the east, bringing with it some mineral dust particles. The results show that sulfate, nitrate, and ammonium were the dominant compounds in the particles. Of the total sulfate-containing particles, 65% nucleated cloud drops. We found nucleation scavenging of aerosols to be correlated with the size of the aerosols. Aerosols smaller than 0.14 mum were not significantly affected by nucleation scavenging, while the number concentration of particles larger than 0.14 mm decreased in correspondence to the increase in droplet concentrations. During the time that the cloud covered the measuring site, 80% of the particles in the size range 0.3-1 mum were scavenged. The concentrations of the particles with diameter smaller than 1 mm returned to their original values after the cloud dissipated.
-
(2003) Geophysical Research Letters. 30, 21, p. ASC 6-1 - ASC 6-4 Abstract
Relative humidity (RH) history and chemical composition determine whether atmospheric particles are liquid or solid. Particle physical state affects many climatic and environmental phenomena such as radiative transfer, visibility, and heterogeneous chemistry. Here we report the crystallization RH (CRH) at 293 K of particles throughout the entire sulfate-nitrate-ammonium composition space, and the new laboratory data are expressed as an empirical polynomial. Particles with compositions close to ammonium sulfate crystallize near 30% RH. Such particles are common in the boundary layer, including the eastern USA and East Asia though not Europe. Our measurements show the formation of several solids within the same particle for compositions enriched in nitrate or somewhat acidic, although the CRH is under 30%. The CRH for homogeneous nucleation is 40 to 55% below the deliquescence RH (DRH) for most chemical compositions. Our new results provide essential data for the incorporation of particle physical state in global models of chemistry and climate.
-
(2003) Journal of Physical Chemistry A. 107, 39, p. 7809-7817 Abstract
Rate coefficients for the reaction of OH radical with eleven C3-C6 hydroxyalkyl nitrates and with two C4 hydroxy nitrates containing a double bond were determined at atmospheric pressure and 296 ± 2 K. The rate coefficients were measured in a photochemical reactor by the relative rate technique, employing solid-phase microextraction (SPME) coupled to gas chromatography (GC) for detection of the organic reactions. Hydroxyalkyl nitrates react faster than alkyl nitrates with the OH radical. The rate coefficients increase with increasing chain length and separation between the hydroxyl and the nitrooxy groups. By including different loss processes such as photolysis, gas-phase reactions, and solubility, the tropospheric lifetime of C3-C6 hydroxyalkyl nitrates is estimated to range between 0.5 and 4.5 days. Due to their higher reactivity and solubility, hydroxyalkyl nitrates have a shorter atmospheric lifetime than alkyl nitrates.
-
(2003) International Journal of Mass Spectrometry. 229, 1-2, p. 55-60 Abstract
We describe a new mass spectrometric technique that is based on the use of a linear electrostatic ion trap and a newly discovered self-bunching phenomenon. Ions are stored in the trap and their oscillation frequencies are determined by Fourier transform of their oscillation times. Using this system, we demonstrate that it is possible to simultaneously trap several masses and obtain their mass spectra with high resolution. The instrument is compared to time-of-flight mass, as well as to ion cyclotron resonance mass spectrometers.
-
(2003) Journal of Geophysical Research: Atmospheres. 108, 15, p. AAC 14-1 - AAC 14-8 Abstract
Applications of new retrieval methods to old satellite data allowed us to study the effects of smoke from the Kuwait oil fires in 1991 on clouds and precipitation. The properties of smoke-affected and smoke-free clouds were compared on the background of the dust-laden desert atmosphere. Several effects were observed: (1) clouds typically developed at the top of the smoke plume, probably because of solar heating and induced convection by the strongly absorbing aerosols; (2) large salt particles from the burning mix of oil and brines formed giant cloud condensation nuclei (CCN) close to the source, which initiated coalescence in the highly polluted clouds; (3) farther away from the smoke source, the giant CCN were deposited, and the extremely high concentrations of medium and small CCN dominated cloud development by strongly suppressing drop coalescence and growth with altitude; and (4) the smaller cloud droplets in the smoke-affected clouds froze at colder temperatures and suppressed both the water and ice precipitation forming processes. These observations imply that over land the smoke particles are not washed out efficiently and can be transported to long distances, extending the observed effects to large areas. The absorption of solar radiation by the smoke induces convection above the smoke plumes and consequently leads to formation of clouds with roots at the top of the smoke layer. This process dominates over the semidirect effect of cloud evaporation due to the smoke-induced enhanced solar heating, at least in the case of the Kuwait fires.
-
(2003) Physical Chemistry Chemical Physics. 5, 2, p. 351-356 Abstract
An expression for the reactive uptake coefficient (γ) of gas phase species due to surface reaction with particle-bound reactants via a Langmuir-Hinshelwood mechanism is derived from first principles. The new parameterization separates the processes of adsorption and chemical reaction, and it implies that γ for a surface reaction limited system will depend on the gas-phase concentration of the reacting species and decrease with reaction time, unless the particle-bound surface reactants are replenished. It also implies that γ will scale linearly with the concentration of the particle-bound reactants, in contrast to the square root dependence typical of diffusion-limited reactive uptake by liquids. The presented formulae enable calculation of γ from basic physico-chemical parameters for relevant atmospheric conditions, and they extend the existing resistor models of gas uptake by particles. The implications of this modified parameterisation are discussed by numerically integrating a reactive system with parameters of relevance to the atmosphere and by addressing a few recent laboratory studies.
-
(2002) Geophysical Research Letters. 29, 22, p. 17-1-17-4 Abstract
High concentrations of small atmospheric aerosols are known to reduce the size of cloud droplets, increase cloud albedo and suppress precipitation formation. In contrast, cloud simulations suggest that even low concentrations of large soluble aerosols should promote droplets' growth and rainfall. Until now, though, no observational evidence of such microphysical effects in natural circumstance over land has been presented. By using NOAA-AVHRR retrievals on cases where salt-dust from the Aral Sea interacts with clouds we show that large salt-containing dust particles increase cloud drops to sizes that promote precipitation. These findings are in line with the findings of the microphysical models and recent results from hygroscopic cloud seeding experiments for rain enhancement.
-
(2002) Journal of Physical Chemistry A. 106, 27, p. 6469-6476 Abstract
The heterogeneous reaction between ozone and oleic and linoleic acids, prevalent components of both marine and urban organic aerosol, were studied in a flow reactor using electron impact and chemical ionization mass spectrometry. Liquids and frozen liquids were used as proxies for atmospheric aerosol. The reactive uptake coefficients, γ, were determined to be (8.3 ± 0.2) × 10-4 and (1.2 ± 0.2) × 10-3 for liquid oleic and linoleic acid respectively and (5.2 ± 0.1) × 10-5 and (1.4 ± 0.1) × 10-4 for frozen oleic and linoleic acid, respectively. Although, the reacto-diffusive length is estimated to be rather small in the liquid experiments,
-
(2002) Journal of Physical Chemistry A. 106, 24, p. 5902-5907 Abstract
Rate coefficients for the gas-phase reactions of chlorine atoms with a series of C3-C6 hydroxyalkyl nitrates of atmospheric interest have been determined at 296 ± 2 K and atmospheric pressure. The experiments were conducted using the relative rate technique combined with solid-phase microextraction (SPME) sampling followed by gas chromatography (GC) analysis with an electron capture detector (ECD). The experiments were performed in a collapsible 100 L PVF-film (Tedlar) reaction chamber. It is shown that the presence of the hydroxy group enhances the reactivity of the hydroxyalkyl nitrates toward the Cl atom as compared to the corresponding alkyl nitrates and alkyl dinitrates. The Cl atom reactivity toward the hydroxyalkyl nitrates increases with the length of the alkyl chain and with increasing separation between the hydroxy and the nitrooxy groups. Tropospheric lifetimes are calculated using the determined rate coefficients and the atmospheric implications are briefly discussed.
-
(2002) Journal of Geophysical Research Atmospheres. 107, 1-2, p. AAC 6-1 - AAC 6-9 Abstract
The reactive uptake of the NO3 radical by liquid and frozen organics was studied in a rotating wall flow tube coupled to a White cell. The organic liquids used included alkanes, alkenes, an alcohol, and carboxylic acids with conjugated and nonconjugated unsaturated bonds. The reactive uptake coefficients, γ, of NO3 on n-hexadecane, l-octadecene, l-hexadecene, cis + trans 7-tetradecene, n-octanoic acid, 2,2,4,4,6,8,8 heptamethyl nonane, l-octanol, cis, trans 9,11 and 10,12 octadecadienoic acid, cis-9, cis-12 octadecadienoic acid were determined. The reactive uptake coefficients measured with the organic liquids varied from 1.4 × 10-3 to 1.5 × 10-2. The uptake coefficients of NO3 by n-hexadecane and n-octanoic acid decreased by a factor of ∼5 upon freezing. This behavior is explained by reaction occurring in the bulk of the organic liquid as well as on the surface. For the rest of the compounds the change in values of γ upon freezing of the liquids was within the experimental uncertainty. This is attributed to predominant uptake of NO3 by the top few molecular surface layers of the organic substrate and continuous replenishment of the surface layer by evaporation and/or mobility of the surface. These conclusions are corroborated by estimation of the diffuso-reactive length and solubility constant of NO3 in these liquids. The reactivity of NO3 with the organic surfaces is shown to correlate well with the known gas-phase chemistry of NO3. The effect on the atmospheric chemistry of the NO3 radical due to its interaction with organic aerosols is studied using an atmospheric box model applying realistic atmospheric scenarios. The inclusion of NO3 uptake on organic aerosol can decrease the NO3 lifetime by 10% or more.
-
(2002) Physical review letters. 89, 28, Abstract
We demonstrate that the synchronization effect observed [Pedersen et al., Phys. Rev. Lett. 87, 055001 (2001)], when a bunch of ions oscillates between two mirrors in an electrostatic ion beam trap, can be explained as a negative mass instability. We derive simple necessary conditions for the existence of a regime in which this dispersionless behavior occurs and demonstrate that in this regime, the ion trap can be used as a high resolution mass spectrometer.
-
(2001) Geophysical Research Letters. 28, 21, p. 4083-4086 Abstract
The reactive uptake of Cl and Br atoms by closely packed organic thin films was studied in a flow reactor. For Cl, the reactive uptake coefficient, γ, was near collision rate for alkane and alkene surfaces. For Br, γ =(3±1) × 10-2 for alkane and γ=(5±2) × 10-2 for alkene surfaces. The processing of the surface was monitored using FTIR, XPS and contact angle measurements. Oxidized surface-bound products and a concurrent increase in hydrophilicity were observed. The probability of a reactive collision between Br, Cl, O(3P), O3 and NO3 and surface-bound organics is compared with that of comparable gasphase reactions, showing that reactions with a high activation energy in the gas-phase have an enhanced surface reaction probability. The uptake coefficients for these tropospheric oxidants are used to estimate the processing time for an organic coated aerosol.
-
(2001) Journal of Geophysical Research-Atmospheres. 106, D16, p. 18029-18036 2000JD9004. Abstract
Individual mineral dust particles collected in a dust storm over Israel were analyzed by a scanning electron microscopy and energy-dispersed system (SEM-EDS). The analysis shows that the particles were mostly aggregates of varying mineralogical composition rather than pure minerals. It is also shown that sulfur (not associated with gypsum) and, to a lesser extent, iron tended to reside on the particles' surface, while Ca, Mg, K, Al, and Si were all an integral part of the particles. The lack of NaCl and sulfuric acid aerosols in the sample indicates that the air mass did not interact with marine air or with clouds. This conclusion is further supported by back trajectory calculations. These findings suggest that the sulfur in the aerosols did not result from atmospheric processes but rather originated from processes in the source region. Black residue, surrounding some of the particles, suggests the possible existence of organic matter in the sample, probably originating from biological activity in the soil at the source of the particles. The method of individual particle analysis provides important information about the composition and morphology of the particles, information that otherwise cannot be obtained by bulk analysis methods.
-
(2001) Physical Review Letters. 87, 5, 055001. Abstract
The synchronized oscillations of a large number of ions forming a bunch in an electrostatic ion trap are described. It is shown that the coupling mechanism of these ions is the repulsive Coulomb interaction between them. The absence of dispersion, despite the finite energy spread of the ions, are exploited to transform the trap into a mass spectrometer with extremely high resolution.
-
(2001) Environmental Science and Technology. 35, 11, p. 2326-2333 Abstract
A technique for identifying trace amounts of semivolatile organic compounds in atmospheric aerosols and in the NIST Urban Dust standard (SRM1649a) is presented. The technique is based on direct sample introduction (DSI) of small samples followed by thermal desorption in a conventional GC injector. The method enables injection of both solid and liquid samples. Validation of the method, including quantitative determination of EPA-targeted polycyclic aromatic hydrocarbons (PAHs), as well as the reproducibility and recovery efficiency tests are presented. The advantages of using aluminum foil as sampling filter are also discussed. Determination of different classes of compounds such as quinolines, methylquinoline isomers, PAHs, and n-monocarboxylic acids in the ambient size-segregated aerosol sample is also performed. The method was directly applied to the determination of C6-C16 n-monocarboxylic acids, eliminating the need for a complex sample preparation procedure. The small quantities needed for the analysis as well as the lack of complicated sample preparation steps enable fast characterization of semivolatile organic species present in time-resolved or size-segregated aerosol samples. Thus, this method can potentially be employed for air quality monitoring and field measurements as well as for fast screening of the organic content of ambient particles.
-
(2001) Proceedings of the National Academy of Sciences of the United States of America. 98, 11, p. 5975-5980 Abstract
The effect of desert dust on cloud properties and precipitation has so far been studied solely by using theoretical models, which predict that rainfall would be enhanced. Here we present observations showing the contrary; the effect of dust on cloud properties is to inhibit precipitation. Using satellite and aircraft observations we show that clouds forming within desert dust contain small droplets and produce little precipitation by drop coalescence. Measurement of the size distribution and the chemical analysis of individual Saharan dust particles collected in such a dust storm suggest a possible mechanism for the diminished rainfall. The detrimental impact of dust on rainfall is smaller than that caused by smoke from biomass burning or anthropogenic air pollution, but the large abundance of desert dust in the atmosphere renders it important. The reduction of precipitation from clouds affected by desert dust can cause drier soil, which in turn raises more dust, thus providing a possible feedback loop to further decrease precipitation. Furthermore, anthropogenic changes of land use exposing the topsoil can initiate such a desertification feedback process.
-
(2001) Journal of Geophysical Research-Atmospheres. 106, D3, p. 3045-3056 2000JD9005. Abstract
Gas-phase and surface-bound products were determined for the reaction of ozone with self assembled monolayers of alkanes and terminal alkenes serving as proxies for atmospheric organic aerosols. The organic surfaces were characterized using infrared (IR) spectroscopy (direct absorption and attenuated total reflection) as well as contact angle measurements with water before and after the reaction with ozone. The contact angle of the organic surfaces was reduced by ∼20° owing to the reaction. Following the reaction, IR absorption due to the presence of carbonyls and carboxylic acids was observed on the surface. Gas-phase products were determined using infrared spectroscopy immediately above the reaction surface. Under dry conditions, gas-phase formaldehyde yields of 0.5±0.1 for organic monolayers of allyltrichlorosilane (C3=) and octenyltrichlorosilane (C8=) terminal alkenes were observed, in good agreement with the yields observed for gas phase ozonolysis of terminal alkenes. Surfaces of n-octane (C8) as well as processed alkene surfaces were nonreactive toward ozone. The reaction mechanism of ozone with the surface alkenes is discussed. Finally, the possible implications for the chemistry of organic aerosols are discussed and studied using a box model and realistic atmospheric scenarios.
-
(2001) Atmospheric Environment. 35, 33, p. 5843-5854 Abstract
Multifunctional organic compounds are thought to constitute a major component of the organic matter found in atmospheric particles. Their partitioning into the organic matter depends on their structure, their chemical properties and the properties of the absorbing matrix. It was recently shown that octanol is a suitable surrogate for organic particles and the octanol-air partition coefficient (KOA) was suggested as a useful tool for estimating the partitioning of organic compounds into atmospheric particles that contain high organic mass fractions. In this paper, we present a new and simple technique for the determination of KOA using solid phase microextraction (SPME) relative to a known Henry's law constant. We apply the technique for the determination of KOA of β-, γ- and δ-C3-C5 hydroxy alkyl nitrates. The temperature dependence of KOA for some of the compounds is also measured. It is shown that the solubility constants of these compounds are higher in octanol than in water and that the solubility in octanol increases with the length of the hydrophobic chain and with increasing distance between the hydroxy and the nitrooxy groups. Partition coefficients between the gas and particulate phase (Kp) are calculated using the determined KOA values and their atmospheric implications are discussed.
-
(2000) Analytical Chemistry. 72, 17, p. 4041-4046 Abstract
We report on the application of an electrostatic ion beam trap as a mass spectrometer. The instrument is analogous to an optical resonator; ions are trapped between focusing mirrors. The storage time is limited by the residual gas pressure and reaches up to several seconds, resulting in long ion flight paths. The oscillation of ion bunches between the mirrors is monitored by nondestructive image charge detection in a field-free region and mass spectra are obtained via Fourier transform. The principle of operation is demonstrated by measuring the mass spectrum of trapped Ar+ and Xe+ particles, produced by a standard electron impact ion source. Also, mass spectra of heavier PEGnNa+ and bradykinin ions from a pulsed MALDI ion source were obtained. The long ion flight path, combined with mass-independent charge detection, makes this system particularly interesting for the investigation of large molecules.
-
(2000) Journal of Geophysical Research Atmospheres. 105, D11, p. 14667-14676 Abstract
Uptake measurements of ozone were conducted with two types of proxies for atmospheric organic aerosols: organic liquids and self-assembled organic monolayers. Alkanes and terminal alkenes were used. The monolayer surface was characterized, prior to and after reaction, using IR spectroscopy. Uptake experiments were conducted using a flow tube reactor coupled to a chemical ionization mass spectrometer. The reactive uptake coefficient, γ, is shown to be due to reaction with the double bond. For the monolayers, γ is composed solely of a surface reactive component and is smaller by at least an order of magnitude than values obtained for a liquid of the same chain length. Uptake by the liquids is higher due to solubility and reaction in the bulk. The phase of the atmospheric organic aerosol will determine the appropriate use of a bulk or surface uptake probability in atmospheric models. Since the aerosol surface is processed and sites are consumed, γ is time variant. We define a parameter γ as the surface uptake probability per reactive site and determine its value as 9 × 10-19 cm2 molecule-1. This enables the modeling of surface reactions as surface site concentrations diminish following interaction with the gaseous species.
-
(2000) Journal of Physical Chemistry A. 104, 22, p. 5238-5245 Abstract
The interaction between water and organic substances is of extreme importance in physical, biological, and geological chemistries. Understanding the interactions between water and organic interfaces is one of the earliest chemical quandaries. In this research, self-assembled monolayers (SAMs) were used as a tool to investigate the interaction between water molecules and hydrophobic surfaces. Real-time adsorption and desorption kinetics of water on hydrophobic SAM surfaces was monitored using a new type of field effect transistor (FET)-like device called MOCSER (molecular controlled semiconductor resistor) coated with SAMs. A quartz crystal microbalance (QCM) was used as a complementary technique to give an estimate of total water mass adsorbed. It is shown that water adsorption depends on relative humidity and is reversible. The amount of adsorbed water increased with surface corrugation. The measurements suggest that adsorption takes place as small water clusters, originating on irregularities on the surface organic layer. Molecular dynamics simulations were carried out to study the interactions of water and hydrophobic surfaces as well. These simulations also suggest the formation of water microdroplets on hydrophobic surfaces, and indicate a strong correlation between increased surface corrugation and adsorption. This paper examines the possible consequences of these interactions on the properties of organic aerosols in the troposphere.
-
(2000) Journal of Geophysical Research Atmospheres. 105, D9, p. 11561-11572 2000JD9000. Abstract
The OH- and O3-initiated oxidation of five monoterpenes (myrcene, terpinolene, Δ3-carene, α-pinene, and β-pinene) has been studied in environmental chambers equipped with either a Fourier transform infrared spectrometer or a gas chromatography/flame ionization detector system. The OH-oxidation of myrcene and terpinolene is shown to lead to substantial yields of acetone (36 and 39%, respectively), while the acetone yield from the pinene compounds is quite small (4% and ∼2%, for α- and β-pinene, respectively). Formaldehyde has been identified as a major product (yields of 20-40%) in the OH-initiated oxidation of all five species. Formic acid was also observed in the OH-initiated oxidation of all five monoterpenes, with yields of 2% from β-pinene and 5-9% from the other species studied. The production of acetone from the reaction of monoterpenes with ozone in the presence of an OH scavenger was measured. The yields of acetone for the O3 reactions were α-pinene, 0.03 ± 0.01; β-pinene, 0.009 ± 0.009; Δ3-carene, 0.10 ± 0.015; myrcene, 0.25 ± 0.06; and terpinolene, 0.50 ± 0.06. The mechanism leading to the production of these compounds is discussed, as is the atmospheric relevance of the results. In particular, an estimate of the contribution of monoterpene oxidation to observed atmospheric levels of acetone and formic acid is made.
-
(2000) Environmental Science and Technology. 34, 7, p. 1197-1203 Abstract
Organic nitrates form via the photodegradation of hydrocarbons in the troposphere in the presence of NO and NO2. This process competes with the chemical cycle leading to ozone production since it sequesters both nitrogen oxides and organic radicals. Hydroxy nitrates form via the atmospheric reactions of alkanes and alkenes and are thought to be an important nitrogen oxides reservoir. In this study, new synthetic methods to produce β-, γ-, and δ-hydroxy nitrates of atmospheric interest were developed. NMR and IR spectroscopies were used to characterize these compounds. Henry's law coefficients of C4 and C5 hydroxy nitrates at 291 ± 2 K were measured using a dynamic equilibrium system. The solubility decreases with the organic chain length and increases with increasing distance between the nitrooxy and hydroxy groups. Due to their large Henry's law coefficients these species will partition into droplets in the presence of clouds and fogs. Measurements of the OH reaction and photolysis rate coefficients are needed for an accurate assessment of the atmospheric lifetimes of these compounds.
-
(2000) Rapid Communications in Mass Spectrometry. 14, 6, p. 515-519 Abstract
We present experimental matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) results comparing a liquid (glycerol/K4[Fe(CN)6]) and a solid matrix (2,5-dihydroxybenzoic acid, DHB) with respect to analyte signal stability and initial ion velocity. For applications requiring stable production of analyte ions over a long period of time, the liquid matrix is superior to the solid matrix. The stable analyte ion signal obtained from a liquid matrix allowed the measurement of collision cross sections of small poly(ethylene glycol) (PEG(n)) adduct ions in the flight tube with good resolution. The initial velocity of these adduct ions was measured. It was found that analyte molecules from the liquid matrix have initial ion velocities significantly smaller than those from the solid matrix. MALDI-TOF measurements for large molecules using a liquid matrix are therefore likely to result in smaller systematic errors in mass calibrations due to initial ion velocity. Copyright (C) 2000 John Wiley and Sons, Ltd.
-
Reactive uptake of ozone by proxies for organic aerosols: Surface versus bulk processes(2000) Journal of Geophysical Research Atmospheres. 105, 11, p. 14,667-14,676 Abstract
Uptake measurements of ozone were conducted with two types of proxies for atmospheric organic aerosols: Organic liquids and self-assembled organic monolayers. Alkanes and terminal alkenes were used. The monolayer surface was characterized, prior to and after reaction, using IR spectroscopy. Uptake experiments were conducted using a flow tube reactor coupled to a chemical ionization mass spectrometer. The reactive uptake coefficient, γ, is shown to be due to reaction with the double bond. For the monolayers, γ is composed solely of a surface reactive component and is smaller by at least an order of magnitude than values obtained for a liquid of the same chain length. Uptake by the liquids is higher due to solubility and reaction in the bulk. The phase of the atmospheric organic aerosol will determine the appropriate use of a bulk or surface uptake probability in atmospheric models. Since the aerosol surface is processed and sites are consumed, γ is time variant. We define a parameter γ as the surface uptake probability per reactive site and determine its value as 9 x 10-19 cm2 molecule-1. This enables the modeling of surface reactions as surface site concentrations diminish following interaction with the gaseous species.
-
(1999) Geophysical Research Letters. 26, 18, p. 2857-2860 1999GL9004. Abstract
Laboratory studies have shown that bromine nitrate (BrNO3) reacts on sulfuric acid and on ice particles. Here we investigate the potential role of BrNO3 in the marine boundary layer (mbl) assuming that it reacts on sea-salt particles as well. Using the chemical box model MOCCA we find that heterogeneous reactions of BrNO3 on aerosol particles could affect the chemistry in four major ways: 1) They increase loss of NOx (=NO+NO2) from the gas phase; 2) They accelerate loss of bromide and chloride from sea-salt aerosols. This dehalogenation occurs without the consumption of aerosol acidity; 3) The resulting loss of NOx and the increase of gas-phase bromine species both lead to O3 destruction; 4) The resulting increase of reactive chlorine species affects gas-phase hydrocarbons as well as S (IV) oxidation by HOCl in sea-salt aerosols.
-
(1999) Journal of Physical Chemistry A. 103, 34, p. 6766-6771 Abstract
The rate coefficient of the CH3C(O)O2 + NO gas-phase reaction was measured over the temperature range of 218-370 K and total pressure of 2-5 Torr, using chemical ionization mass spectrometry detection of the CH3C(O)O2 radical. The temperature-dependent expression for the rate coefficient was determined to be k(T) = (6.0 ± 1.1) 10-12 exp{(320 ± 40)/T} cm3 molecule-1 s-1, and a 298 K rate constant k298 = (1.8 ± 0.3) 10-11 cm3 molecule-1 s-1 was found. These results quell some of the ambiguity presented by previous studies of this reaction and validate the recommended value to be used in tropospheric chemistry models.
-
(1999) Journal of Geophysical Research Atmospheres. 104, D13, p. 16053-16059 1999JD9001. Abstract
The adsorption of water on hydrophobic organized organic thin films, used as a proxy for atmospheric organic aerosols, was measured simultaneously with a molecularly controlled semiconductor resistor (MOCSER) and quartz crystal microbalance (QCM). Water adsorption was found to be reversible and dependent on relative humidity (RH). The MOCSER measurements show that the adsorption kinetics of the first water layer resembles Langmuir behavior. The QCM findings indicate that adsorption is proportional to the water vapor pressure and exceeds the amount equivalent to one monolayer. These results can be explained by the formation of small water clusters on imperfections or structural defects on the organic surface and that the water does not achieve complete surface coverage even at high relative humidity. This mechanism resembles previous observations of water adsorption to structural defects on inorganic crystals. It is also shown that water can penetrate through the organic surface and reach the inorganic surface, even with a closely packed organic coating. This paper presents applications of these findings to the properties of organic aerosols.
-
(1999) Analytical Chemistry. 71, 3, p. 648-651 Abstract
A simple low-vacuum mass spectrometer (LVMS) operating in the milliTorr pressure range was developed. The instrument resolves masses by time-of- flight measurements and employs a high-gain, fast-response detector that can operate at these pressures. This instrument allows simultaneous determination of mass and collision cross sections of the ions with the bath gas. Here we demonstrate the LVMS's abilities to determine total collision cross sections for the collisions of organic ions with three background gases, He, N2, and SF6. As a demonstration of the system capabilities, the unimolecular interconversion of photochemically produced C7H7+ to the tropylium ion structure is investigated.
-
(1998) Journal of Geophysical Research Atmospheres. 103, D13, p. 16133-16143 98JD01280. Abstract
The effect of NO3 uptake at night into marine aerosol and cloud droplets on (1) sulfur oxidation, (2) NO3 ambient concentrations, and (3) NO3 atmospheric lifetime is examined using a simple chemical kinetics model. It is shown that the atmospheric lifetime toward multiphase removal of NO3 is 2O2 (
-
-
(1997) PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES. 352, 1350, p. 171-182 Abstract
Results of laboratory experiments which address the course of the OH+DMS (dimethyl sulphide) reaction in the atmosphere are presented. It is shown that OH reacts via a complex sequence of reactions to produce CH3S and other products, and argued that NO3 is unlikely to be an important oxidizer of DMS in the marine boundary layer because it is very efficiently taken up by water droplets. A simplified mechanism for the oxidation of DMS in the troposphere is presented. This mechanism explains some of the field observations on the end products of DMS oxidation and their variations with temperature.
-
(1996) Chemical Physics Letters. 261, 4-5, p. 467-473 Abstract
Uptake of NO3 by KI solutions was measured at 273 ± 1 K using a wetted-wall flow tube to determine the rate coefficient for the NO3(aq) + I- reaction to be k = (4.6 ± 0.5) × 109 M-1 s-1. It is suggested that the reaction of NO3 with halide ions proceeds by electron transfer. Use of high concentration of KI enabled determination of the gas-phase diffusion coefficients of NO3 in H2O vapor, He, N2 and O2 to be, respectively, DNO3H2O = 120 ± 15, DNO3-He = 345 ± 25 DNO3-N2 = 80 ± 15 and DNO3-O2 = 80 ± 15 Torr cm2 s-1. These coefficients agree well with calculated values.
-
(1996) Proceedings of SPIE - The International Society for Optical Engineering. 2830, p. 364-368 Abstract
To measure trace concentrations of the atmospheric radical NO3 we are investigating the use of two amplitude stabilized diode lasers, one tuned to the center of the absorption profile, and the second tuned to a wavelength outside the absorption. This approach is taken because the absorption feature is much broader than the visible diode laser's tuning range and removing the sample concentration from the beam path to measure the baseline is difficult. This paper describes the preliminary system design, interferences expected from water, and electronics design.
-
(1996) Journal of Geophysical Research-Atmospheres. 101, D15, p. 21023-21031 Abstract
The reactive uptake coefficients (γ) of NO onto pure water and dilute solutions of NaCl, NaBr, and NaNO were measured using a wettedwall flowtube setup combined with a longpath absorption cell for the detection of NO. The measured γ values were in the range 1.5 × 10 6 × 10, depending on the salt concentration in the water. By measuring γ as a function of salt concentration, H for NO in water was determined to be (1.9 ± 0.4) × 10 atm cm s at 273 K, assuming that the rate coefficient for the reaction of NO with Cl is 2.76 × 10 s at 273 K. The Henry's law coefficient for NO in water is estimated to be 0.6 ± 0.3 atm, assuming that the diffusion coefficient of NO in water is = (1.0 ± 0.5) × 10 cm s. Uptake of NO on pure water is interpreted as due to reaction of NO with HO to produce HNO and OH in the liquid phase. Implications of these findings to the chemistry of NO in the troposphere are also discussed.
-
(1996) Journal of Physical Chemistry. 100, 33, p. 14005-14015 Abstract
The rate coefficients for the reactions of O(3P) with CF3I (1) and CH3I (2) were measured between 213 and 364 K to be: k1(T) ) (7.9 ( 0.8) x 10-12 exp[-(175 ( 40)/T] and k2(T) ) (1.0 ( 0.2) x 10-11 exp[(160 (50)/T] cm3 molecule-1 s-1. The rate coefficients for the reaction of O(3P) with CD3I, (CH3)2CHCH2I, (CH3)2-CHI, CF3CH2I, CF3CHFI, and CF3CF2I at 298 K were also measured. The yields of the IO and CF3O products in reaction 1 at 298 K were found to be 0.83 ( 0.09 and
-
(1996) JOURNAL OF PHYSICAL CHEMISTRY. 100, 13, p. 5374-5381 Abstract
The rate coefficients for the reactions of NO3 with 2-methyl-3-butene-2-ol (methyl butenol, MBO, k1), 1-butene (k2), trans-2-butene (k3), methacrolein (MACR, k4), and methyl vinyl ketone (MVK, k5) were measured directly using a flow tube coupled to a diode laser absorption system where NO3 was measured. The measured values of the rate coefficients are k1 = 4.6 × 10-14 exp(-400/T) cm3 molecule-1 s-1, k2 = 5.2 × 10-13 exp(-1070/T) cm3 molecule-1 s-1, k3(298 K) = (4.06 ± 0.36) × 10-13 cm3 molecule-1 s-1, k4(298 K) ≤ 8 × 10-15 cm3 molecule-1 s-1, and k5(298 K) ≤ 1.2 × 10-16 cm3 molecule-1 s-1. The observed reactivity trends are correlated in terms of the presence of electron-withdrawing substituents, which reduces the reactivity of alkenes toward NO3 addition to the double bond. The contribution of NO3 reactions to determining the tropospheric lifetimes of these compounds are also calculated.
-
(1996) JOURNAL OF PHYSICAL CHEMISTRY. 100, 8, p. 3037-3043 Abstract
The rate coefficients for the reactions of hydroxyl radical (OH) with H2 (k1), HD (k2), and D2 (k3) were measured between ∼230 and ∼420 K to be k1 = 7.21 × 10-20T2.69 exp(-1150/T), k2 = 5.57 × 10-20T2.7 exp(-1258/7), and k3 = 5.7 × 10-20T2.73 exp(-1580/T) cm3 molecule-1 s-1 using pulsed photolysis to generate OH and laser-induced fluorescence to detect it. Using the same method, the rate coefficients for the reactions of OD with H2 and D2 were measured to be equal to k1 and k3, respectively. In reaction 2, the yield of H was measured to be 0.17 ± 0.03 and 0.26 ± 0.05 at 250 and 298 K, respectively, by detecting it using CW Lyman-α resonance fluorescence. k2 was found to be half the sum of k1 and k3 over the entire temperature range of this study. The quoted uncertainties are at the 95% confidence level and include estimated systematic errors. On the basis of these findings it is suggested that most, if not all, of the reaction in the range of temperatures studied here may be occurring via tunneling of H/D atoms through the barrier.
-
(1995) JOURNAL OF PHYSICAL CHEMISTRY. 99, 32, p. 12188-12194 Abstract
The tropospheric fate of 2-methyl-3-buten-2-ol (methylbutenol, MBO), a recently identified emission by vegetation, was investigated by measuring its UV absorption cross sections (210-300 nm) and the rate coefficient for its reaction with hydroxyl free radicals. UV absorption cross sections were found to be too small for photolysis to be an important removal pathway for MBO in the troposphere. The rate constant applicable under tropospheric conditions for the reaction of OH with MBO was determined to be k = (8.2 ± 1.2) × 10-12 e((610±50)/T) cm3 molecule-1 s-1. The OH reaction proceeds mainly via addition of the OH to the double bond in MBO. In the absence of O2, about 15-20% of the adducts eliminate the alcohol-OH group. However, O2 can scavenge the adduct before it decomposes at T 18OH and determining the rate coefficient for the OH reaction in the presence of 7-13 Torr of O2 and in SF6 buffer gas. The elimination of the alcohol-OH group was substantiated by observing OH production in the reactions of 18OH and OD. The obtained OH reaction rate coefficient suggests that the primary daytime loss of MBO in the troposphere is via its reaction with OH.
-
(1994) Ultrafast Reaction Dynamics And Solvent Effects. 298, 1, p. 551-561 Abstract
The reactions of oxygen atoms in their triple and singlet states with hydrocarbon clusters were investigated. The results indicate that some liquidtype effects can be demonstrated already in the reactions of small clusters. Two examples are discussed: (1) The reaction of O( 3 P ) with cyclohexane in which a single solvent molecule is enough to reproduce the products of the liquid reaction. (2) The reactions of O( 1 D ) with methane clusters for which the translational, vibrational, rotational, spinorbit, and Λdoubling state populations were analyzed, onstatistical distributions are observed even for the reaction of large methane clusters. The results of these studies are discussed in terms of nonadiabatic effects induced by the long lived collision complex.
-
(1994) Laser Techniques For State-Selected And State-To-State Chemistry Ii. 2124, p. 16-27 Abstract
Keywords: Chemistry, Physical; Optics; Physics, Atomic, Molecular & Chemical; Spectroscopy
-
(1994) Israel Journal of Chemistry. 34, 1, p. 59-66 Abstract
Reactions of O(1D) with water and propane monomers and clusters were investigated via a crossed molecular beam experiment and by dissociation of ozone in a water-ozone complex, applying laser-induced fluorescence for the detection of the OH product. The rotational and spin-orbit state populations were analyzed. A strong preference for the 2PI3/2 spin-orbit state of the OH product is observed. The new results presented here demonstrate the effect of the initial rotational temperature of propane on the spin-orbit states distribution in the product OH. The preference for the low 2PI3/2 state is attributed to conservation of electronic angular momentum. It is conserved through the curve crossing which occurs in the entrance channel and during the lifetime of the long-lived collision complexes. A quantitative model is presented which rationalizes all the experimental observations.
-
(1993) Chemical Physics Letters. 215, 6, p. 674-680 Abstract
In reactions of O(1D) with CH4 clusters, CD4 and propane, monomers and clusters, preference for the 2Π 3 2 spin-orbit state of the OH product is observed. New results on the effect of the initial rotational temperature of propane on the spin-orbit state distribution are presented. The preference for the 2Π 3 2 state and the rotational energy effect are attributed to conservation of electronic angular momentum during curve crossing in the entrance channel and to conservation of the projection of the electronic angular momentum on the internuclear axis through the reaction. A quantitative model rationalizes all the experimental observations.
-
(1993) Journal of Chemical Physics. 98, 4, p. 2941-2946 Abstract
The reaction between an O(3P) atom and a hydrocarbon molecule weakly bound to an argon atom was studied by classical trajectory simulations. The results are compared to those obtained for the reaction of a free hydrocarbon. A simplistic model system was constructed in which the hydrocarbon was represented as a pseudodiatomic molecule. Although simple, the model reproduced correctly the internal energy distribution in the OH produced in the reaction of the free species. It was found that the OH, produced from the reaction of the van der Waals complex, emerges with less internal energy and less translational energy than the OH from the monomeric process. In the case of the complexed reagents, the collision complex lifetime is longer and the oxygen explores portions of the potential energy surface that are not available in the monomeric reaction.
-
(1993) The Journal of chemical physics. 99, 6, p. 4500-4508 Abstract
Reactions of O(1D) with hydrocarbon monomers and clusters were investigated via a cross molecular beam experiment applying laser induced fluorescence for the detection of the OH product. The translational, vibrational, rotational, spin-orbit, and Λ-doubling state populations were analyzed. Based on this information the mechanisms for the reactions of O(1D) with methane, propane, and their clusters were established. Nonstatistical distributions are observed even for the reaction of large clusters and are discussed in terms of nonadiabatic effects induced by the long lived collision complex.
-
(1993) Journal of Chemical Physics. 98, 4, p. 2936-2940 Abstract
The effect of cluster formation on the reactivity of cyclohexane was investigated. When single molecules react with O(3P) the products are the OH radical and cyclohexyl radical. In contrast, we found that when small clusters react with O(3P), the OH product is suppressed; furthermore, the "liquid"-like product, cyclohexanol, is observed, although the yield is unknown. It is proposed that blocking of the abstraction reaction occurs in the reaction when clusters are involved. In addition, an efficient insertion process can take place. These results provide a new explanation for the process in the liquid phase.
-
-
(1992) The Journal of chemical physics. 96, 6, p. 4423-4428 Abstract
The rotational relaxation of HCl in a free jet expansion was studied in a pump-and-probe experiment using infrared laser excitation and resonant multiphoton ionization detection. Rate constants were determined for various J to J energy transfer processes in the vibrationally excited molecule. There is a strong indication that the rotational energy transfer occurs via a near-resonant dipole-dipole interaction between vibrationally excited and vibrationally cold HCl molecules.
-