Publications
2024
-
(2024) TrAC - Trends in Analytical Chemistry. 181, Part A, 118037. Abstract
Stable isotope labeling (SIL) is a powerful tool for probing cellular metabolism and has been increasingly employed for metabolite annotation in mass spectrometry-based metabolomics. Herein, we outline the principles and methods of designing and performing SIL-based experiments in metabolomics studies. Further, we summarize different SIL approaches and highlight recent examples of their use for metabolite annotation, including biological feature recognition, degenerate feature annotation, elemental composition determination and metabolite structure elucidation, across diverse biological systems. Throughout, the opportunities, open challenges, and potential pitfalls of each SIL workflow are discussed. Finally, we summarize and compare the recently developed software tools for the analysis of SIL-based metabolomics data.
-
(2024) Microbiological Research. 286, 127814. Abstract
Bacillus subtilis is a beneficial bacterium that supports plant growth and protects plants from bacterial, fungal, and viral infections. Using a simplified system of B. subtilis and Arabidopsis thaliana interactions, we studied the fitness and transcriptome of bacteria detached from the root over generations of growth in LB medium. We found that bacteria previously associated with the root or exposed to its secretions had greater stress tolerance and were more competitive in root colonization than bacteria not previously exposed to the root. Furthermore, our transcriptome results provide evidence that plant secretions induce a microbial stress response and fundamentally alter signaling by the cyclic nucleotide c-di-AMP, a signature maintained by their descendants. The changes in cellular physiology due to exposure to plant exudates were multigenerational, as they allowed not only the bacterial cells that colonized a new plant but also their descendants to have an advance over naive competitors of the same species, while the overall plasticity of gene expression and rapid adaptation were maintained. These changes were hereditary but not permanent. Our work demonstrates a bacterial memory manifested by multigenerational reversible adaptation to plant hosts in the form of activation of the stressosome, which confers an advantage to symbiotic bacteria during competition.
-
(2024) Nature Chemical Biology. Abstract
Steroidal glycoalkaloids (SGAs) are specialized metabolites produced by hundreds of Solanum species including food crops, such as tomato, potato and eggplant. Unlike true alkaloids, nitrogen is introduced at a late stage of SGA biosynthesis through an unknown transamination reaction. Here, we reveal the mechanism by which GLYCOALKALOID METABOLISM12 (GAME12) directs the biosynthesis of nitrogen-containing steroidal alkaloid aglycone in Solanum. We report that GAME12, a neofunctionalized γ-aminobutyric acid (GABA) transaminase, undergoes changes in both active site specificity and subcellular localization to switch from its renown and generic activity in core metabolism to function in a specialized metabolic pathway. Moreover, overexpression of GAME12 alone in engineered S. nigrum leaves is sufficient for de novo production of nitrogen-containing SGAs. Our results highlight how hijacking a core metabolism GABA shunt enzyme is crucial in numerous Solanum species for incorporating a nitrogen to a steroidal-specialized metabolite backbone and form defensive alkaloids. (Figure presented.)
-
(2024) Nature Communications. 15, 7212. Abstract
N-hydroxy pipecolic acid (NHP) plays an important role in plant immunity. In contrast to its biosynthesis, our current knowledge with respect to the transcriptional regulation of the NHP pathway is limited. This study commences with the engineering of Arabidopsis plants that constitutively produce high NHP levels and display enhanced immunity. Label-free proteomics reveals a NAC-type transcription factor (NAC90) that is strongly induced in these plants. We find that NAC90 is a target gene of SAR DEFICIENT 1 (SARD1) and induced by pathogen, salicylic acid (SA), and NHP. NAC90 knockout mutants exhibit constitutive immune activation, earlier senescence, higher levels of NHP and SA, as well as increased expression of NHP and SA biosynthetic genes. In contrast, NAC90 overexpression lines are compromised in disease resistance and accumulated reduced levels of NHP and SA. NAC90 could interact with NAC61 and NAC36 which are also induced by pathogen, SA, and NHP. We next discover that this protein triad directly represses expression of the NHP and SA biosynthetic genes AGD2-LIKE DEFENSE RESPONSE PROTEIN 1 (ALD1), FLAVIN MONOOXYGENASE 1 (FMO1), and ISOCHORISMATE SYNTHASE 1 (ICS1). Constitutive immune response in nac90 is abolished once blocking NHP biosynthesis in the fmo1 background, signifying that NAC90 negative regulation of immunity is mediated via NHP biosynthesis. Our findings expand the currently documented NHP regulatory network suggesting a model that together with NHP glycosylation, NAC repressors take part in a gas-and-brake transcriptional mechanism to control NHP production and the plant growth and defense trade-off.
-
(2024) Molecular Plant. 17, 7, p. 1129-1150 Abstract
Mescaline, among the earliest identified natural hallucinogens, holds great potential in psychotherapy treatment. Nonetheless, despite the existence of a postulated biosynthetic pathway for more than half a century, the specific enzymes involved in this process are yet to be identified. In this study, we investigated the cactus Lophophora williamsii (Peyote), the largest known natural producer of the phenethylamine mescaline. We employed a multi-faceted approach, combining de novo whole-genome and transcriptome sequencing with comprehensive chemical profiling, enzymatic assays, molecular modeling, and pathway engineering for pathway elucidation. We identified four groups of enzymes responsible for the six catalytic steps in the mescaline biosynthetic pathway, and an N-methyltransferase enzyme that N-methylates all phenethylamine intermediates, likely modulating mescaline levels in Peyote. Finally, we reconstructed the mescaline biosynthetic pathway in both Nicotiana benthamiana plants and yeast cells, providing novel insights into several challenges hindering complete heterologous mescaline production. Taken together, our study opens up avenues for exploration of sustainable production approaches and responsible utilization of mescaline, safeguarding this valuable natural resource for future generations.
-
(2024) Journal of Experimental Botany. 75, 7, p. 1997-2012 erad482. Abstract
In this study, a chilli pepper (Capsicum annuum) panel for post-harvest carotenoid retention was studied to elucidate underlying mechanisms associated with this commercial trait of interest. Following drying and storage, some lines within the panel had an increase in carotenoids approaching 50% compared with the initial content at the fresh fruit stage. Other lines displayed a 25% loss of carotenoids. The quantitative determination of carotenoid pigments with concurrent cellular analysis indicated that in most cases, pepper fruit with thicker (up to 4-fold) lipid exocarp layers and smooth surfaces exhibit improved carotenoid retention properties. Total cutin monomer content increased in medium/high carotenoid retention fruits and subepidermal cutin deposits were responsible for the difference in exocarp thickness. Cutin biosynthesis and cuticle precursor transport genes were differentially expressed between medium/high and low carotenoid retention genotypes, and this supports the hypothesis that the fruit cuticle can contribute to carotenoid retention. Enzymatic degradation of the cuticle and cell wall suggests that in Capsicum the carotenoids (capsanthin and its esters) are embedded in the lipidic exocarp layer. This was not the case in tomato. Collectively, the data suggest that the fruit cuticle could provide an exploitable resource for the enhancement of fruit quality.
-
(2024) Plant Cell And Environment. 47, 2, p. 664-681 Abstract
Despite decades of research resulting in a comprehensive understanding of epicuticular wax metabolism, the function of these almost ubiquitous metabolites in plantherbivore interactions remains unresolved. In this study, we examined the effects of CRISPR-induced knockout mutations in four Nicotiana glauca (tree tobacco) wax metabolism genes. These mutations cause a wide range of changes in epicuticular wax composition, leading to altered interactions with insects and snails. Three interaction classes were examined: chewing herbivory by seven caterpillars and one snail species, phloem feeding by Myzus persicae (green peach aphid) and oviposition by Bemisia tabaci (whitefly). Although total wax load and alkane abundance did not affect caterpillar growth, a correlation across species, showed that fatty alcohols, a minor component of N. glauca surface waxes, negatively affected the growth of both a generalist caterpillar (Spodoptera littoralis) and a tobacco-feeding specialist (Manduca sexta). This negative correlation was overshadowed by the stronger effect of anabasine, a nicotine isomer, and was apparent when fatty alcohols were added to an artificial lepidopteran diet. By contrast, snails fed more on waxy leaves. Aphid reproduction and feeding activity were unaffected by wax composition but were potentially affected by altered cutin composition. Wax crystal morphology could explain the preference of B. tabaci to lay eggs on waxy wild-type plants relative to both alkane and fatty alcohol-deficient mutants. Together, our results suggest that the varied responses among herbivore classes and species are likely to be a consequence of the co-evolution that shaped the specific effects of different surface wax components in plantherbivore interactions.
2023
-
-
(2023) Nature Communications. 14, 4540. Abstract
Tomato is the highest value fruit and vegetable crop worldwide, yet produces α-tomatine, a renowned toxic and bitter-tasting anti-nutritional steroidal glycoalkaloid (SGA) involved in plant defense. A suite of modifications during tomato fruit maturation and ripening converts α-tomatine to the non-bitter and less toxic Esculeoside A. This important metabolic shift prevents bitterness and toxicity in ripe tomato fruit. While the enzymes catalyzing glycosylation and hydroxylation reactions in the Esculeoside A pathway have been resolved, the proposed acetylating step remains, to date, elusive. Here, we discovered that GAME36 (GLYCOALKALOID METABOLISM36), a BAHD-type acyltransferase catalyzes SGA-acetylation in cultivated and wild tomatoes. This finding completes the elucidation of the core Esculeoside A biosynthetic pathway in ripe tomato, allowing reconstitution of Esculeoside A production in heterologous microbial and plant hosts. The involvement of GAME36 in bitter SGA detoxification pathway points to a key role in the evolution of sweet-tasting tomato as well as in the domestication and breeding of modern cultivated tomato fruit.
-
(2023) Plant Journal. 114, 5, p. 1115-1131 Abstract
Plants developed sophisticated mechanisms to receive environmental stimuli and generate appropriate signals to maintain optimal growth and stress responses. A fascinating strategy employed by plants is the use of long-distance mobile signals which can trigger local and distant responses across the entire plant. Some metabolites play a central role as long-distance mobile signals allowing plants to communicate across tissues and mount robust stress responses. In the review, we summarize the current state of knowledge regarding the various long-distance mobile metabolites and their function in stress response and signaling pathways. We also raise questions with respect to how can we identify new mobile metabolites and engineer them to improve plant health and resilience.
-
-
(2023) Nature Plants. 9, 5, p. 817-831 Abstract
Modulation of the endocannabinoid system is projected to have therapeutic potential in almost all human diseases. Accordingly, the high demand for novel cannabinoids stimulates the discovery of untapped sources and efficient manufacturing technologies. Here we explored Helichrysum umbraculigerum, an Asteraceae species unrelated to Cannabis sativa that produces Cannabis-type cannabinoids (for example, 4.3% cannabigerolic acid). In contrast to Cannabis, cannabinoids in H. umbraculigerum accumulate in leaves' glandular trichomes rather than in flowers. The integration of de novo whole-genome sequencing data with unambiguous chemical structure annotation, enzymatic assays and pathway reconstitution in Nicotiana benthamiana and in Saccharomyces cerevisiae has uncovered the molecular and chemical features of this plant. Apart from core biosynthetic enzymes, we reveal tailoring ones producing previously unknown cannabinoid metabolites. Orthology analyses demonstrate that cannabinoid synthesis evolved in parallel in H. umbraculigerum and Cannabis. Our discovery provides a currently unexploited source of cannabinoids and tools for engineering in heterologous hosts.
-
(2023) Nature Plants. 9, 5, p. 785-802 Abstract
The plant hormone gibberellin (GA) regulates multiple developmental processes. It accumulates in the root elongating endodermis, but how it moves into this cell file and the significance of this accumulation are unclear. Here we identify three NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER (NPF) transporters required for GA and abscisic acid (ABA) translocation. We demonstrate that NPF2.14 is a subcellular GA/ABA transporter, presumably the first to be identified in plants, facilitating GA and ABA accumulation in the root endodermis to regulate suberization. Further, NPF2.12 and NPF2.13, closely related proteins, are plasma membrane-localized GA and ABA importers that facilitate shoot-to-root GA12 translocation, regulating endodermal hormone accumulation. This work reveals that GA is required for root suberization and that GA and ABA can act non-antagonistically. We demonstrate how the clade of transporters mediates hormone flow with cell-file-specific vacuolar storage at the phloem unloading zone, and slow release of hormone to induce suberin formation in the maturation zone.
-
(2023) Proceedings of the National Academy of Sciences - PNAS. 120, 12, e221738312. Abstract
This year marks the 25th anniversary of the coinage of the term metabolome [S. G. Oliver et al., Trends Biotech. 16, 373378 (1998)]. As the field rapidly advances, it is important to take stock of the progress which has been made to best inform the disciplines future. While a medical-centric perspective on metabolomics has recently been published [M. Giera et al., Cell Metab. 34, 2134 (2022)], this largely ignores the pioneering contributions made by the plant and microbial science communities. In this perspective, we provide a contemporary overview of all fields in which metabolomics is employed with particular emphasis on both methodological and application breakthroughs made in plant and microbial sciences that have shaped this evolving research discipline from the very early days of its establishment. This will not cover all types of metabolomics assays currently employed but will focus mainly on those utilizing mass spectrometrybased measurements since they are currently by far the most prominent. Having established the historical context of metabolomics, we will address the key challenges currently facing metabolomics and offer potential approaches by which these can be faced. Most salient among these is the fact that the vast majority of mass features are as yet not annotated with high confidence; what we may refer to as definitive identification. We discuss the potential of both standard compound libraries and artificial intelligence technologies to address this challenge and the use of natural variancebased approaches such as genome-wide association studies in attempt to assign specific functions to the myriad of structurally similar and complex specialized metabolites. We conclude by stating our contention that as these challenges are epic and that they will need far greater cooperative efforts from biologists, chemists, and computer scientists with an interest in all kingdoms of life than have been made to date. Ultimately, a better linkage of metabolome and genome data will likely also be needed particularly considering the Earth BioGenome Project.
-
(2023) New Phytologist. 237, 5, p. 1574-1589 Abstract
Despite decades of extensive study, the role of cuticular lipids in sustaining plant fitness is far from being understood. We utilized genome-edited tree tobacco (Nicotiana glauca) to investigate the significance of different classes of epicuticular wax in abiotic stress such as cuticular water loss, drought, and light response. We generated mutants displaying a range of wax compositions. Four wax mutants and one cutin mutant were extensively investigated for alterations in their response to abiotic factors. Although the mutations led to elevated cuticular water loss, the wax mutants did not display elevated transpiration or reduced growth under nonstressed conditions. However, under drought, plants lacking alkanes were unable to reduce their transpiration, leading to leaf death, impaired recovery, and stem cracking. By contrast, plants deficient in fatty alcohols exhibited elevated drought tolerance, which was part of a larger trend of plant phenotypes not clustering by a glossy/glaucous appearance in the parameters examined in this study. We conclude that although alkanes have little effect on whole N. glauca transpiration and biomass gain under normal, nonstressed conditions, they are essential during drought responses, since they enable plants to seal their cuticle upon stomatal closure, thereby reducing leaf death and facilitating a speedy recovery.
-
(2023) Environmental and Experimental Botany. 206, 105140. Abstract
One of the oldest cereal crops, barley is thought to have been domesticated ∼ 8000 years ago, in the Fertile Crescent. In this study, we explored the overlooked contribution of cuticular lipid metabolism to barley domestication by comparatively characterizing wild and domesticated barley variants. We revealed substantial phenotypic variances in plants overall morphology and in vegetative and reproductive tissues. Multiple microscopic approaches combined with gas chromatography-mass spectrometry (GC-MS) metabolite profiling indicated that wild barley leaves are more densely covered with epicuticular waxes compared to domesticated leaves with distinct compositions, but both variants contain a similar cuticle ultrastructure. Gene expression assays corroborated these observations showing higher transcript expression of key epicuticular wax biosynthetic genes in wild barley leaves, but similar expression patterns of cutin biosynthetic genes in leaves of both cultivars. Wild barley leaves also transpired water at higher rates apparently due to higher stomata density and conductance. Previous evidence claimed that barley leaf epicuticular waxes shape the interactions with Blumeria graminis f.sp. hordei (Bgh), the causal agent of powdery mildew in barely. However, in-vivo and in-vitro inoculation assays inferred that the disparate wax content and composition in wild and domesticated leaves had no apparent effect on Bgh pre-penetration processes. Altogether, our data provide novel insight into the compositional variances in cuticular lipids of wild and domesticated barley leaves and their impact on plant-environment interactions.
-
(2023) The Plant journal : for cell and molecular biology. 113, 1, p. 23-25 Abstract
In a recent paper in Nature Edith Heard from the European Molecular Biology Laboratory (EMBL) suggested that molecular biologists should \u201creconnect with nature\u201d by diversifying sampling locations. Although this approach has its own benefits, we suggest that advanced methods should rather be used to take hypothesis-based experiments to nature, thereby supplying a much-needed context for experimentation under controlled conditions. Following the CRISPR revolution, this approach has become accessible to many research groups. For the past years we developed the groundwork and initiated such experimentation. This included assembly of a mobile lab on a 4-wheel drive truck and examining genome edited metabolic mutants in wild, tobacco grown in nature. Our findings included both targeted answers to focused questions, but also surprising results that could only be reached while working in natural settings.
-
(2023) Analytical Chemistry. 95, 2, p. 1652-1662 Abstract
In-source fragmentation (ISF) is a naturally occurring phenomenon in various ion sources including soft ionization techniques such as matrix-assisted laser desorption/ionization (MALDI). It has traditionally been minimized as it makes the dataset more complex and often leads to mis-annotation of metabolites. Here, we introduce an approach termed PICA (for pixel intensity correlation analysis) that takes advantage of ISF in MALDI imaging to increase confidence in metabolite identification. In PICA, the extraction and association of in-source fragments to their precursor ion results in \u201cpseudo-MS/MS spectra\u201d that can be used for identification. We examined PICA using three different datasets, two of which were published previously and included validated metabolites annotation. We show that highly colocalized ions possessing Pearson correlation coefficient (PCC) ≥ 0.9 for a given precursor ion are mainly its in-source fragments, natural isotopes, adduct ions, or multimers. These ions provide rich information for their precursor ion identification. In addition, our results show that moderately colocalized ions (PCC
2022
-
(2022) Frontiers in Molecular Biosciences. 9, 953189. Abstract
Brassica rapa (B. rapa) and its subspecies contain many bioactive metabolites that are important for plant defense and human health. This study aimed at investigating the metabolite composition and variation among a large collection of B. rapa genotypes, including subspecies and their accessions. Metabolite profiling of leaves of 102 B. rapa genotypes was performed using ultra-performance liquid chromatography coupled with a photodiode array detector and quadrupole time-of-flight mass spectrometry (UPLC-PDA-QTOF-MS/MS). In total, 346 metabolites belonging to different chemical classes were tentatively identified; 36 out of them were assigned with high confidence using authentic standards and 184 were those reported in B. rapa leaves for the first time. The accumulation and variation of metabolites among genotypes were characterized and compared to their phylogenetic distance. We found 47 metabolites, mostly representing anthocyanins, flavonols, and hydroxycinnamic acid derivatives that displayed a significant correlation to the phylogenetic relatedness and determined four major phylometabolic branches; 1) Chinese cabbage, 2) yellow sarson and rapid cycling, 3) the mizuna-komatsuna-turnip-caitai; and 4) a mixed cluster. These metabolites denote the selective pressure on the metabolic network during B. rapa breeding. We present a unique study that combines metabolite profiling data with phylogenetic analysis in a large collection of B. rapa subspecies. We showed how selective breeding utilizes the biochemical potential of wild B. rapa leading to highly diverse metabolic phenotypes. Our work provides the basis for further studies on B. rapa metabolism and nutritional traits improvement.
-
(2022) Current Opinion in Plant Biology. 69, 102288. Abstract
Plant response to pathogens attacks generally comes at the expense of growth. Defense priming is widely accepted as an efficient strategy used for augmenting resistance with reduced fitness in terms of growth and yield. Plant-derived small molecules, both primary as well as secondary metabolites, can function as activators to prime plant defense. Amino acids and their derivatives regulate numerous aspects of plant growth and development, and biotic and abiotic stress responses. In this review, we discuss the recent progress in understanding the roles of amino acids and related molecules in defense priming and their link with plant growth. We also highlight some of the outstanding questions and provide an outlook on the prospects of engineering the tradeoff between defense and growth in plants.
-
-
(2022) Natural Product Reports. 39, 7, p. 1510-1530 Abstract
Covering: 2017 to 2022
Mass spectrometry imaging (MSI) has become a mature molecular imaging technique that is well-matched for natural product (NP) discovery. Here we present a brief overview of MSI, followed by a thorough discussion of different MSI applications in NP research. This review will mainly focus on the recent progress of MSI in plants and microorganisms as they are the main producers of NPs. Specifically, the opportunity and potential of combining MSI with other imaging modalities and stable isotope labeling are discussed. Throughout, we focus on both the strengths and weaknesses of MSI, with an eye on future improvements that are necessary for the progression of MSI toward routine NP studies. Finally, we discuss new areas of research, future perspectives, and the overall direction that the field may take in the years to come. -
(2022) Planta. 256, 2, 28. Abstract
R2R3MYB transcription factors play important roles in plant development; yet, the exact role of each of them remains to be resolved. Here we report that the Arabidopsis AtMYB31 is required for wax biosynthesis in epidermis of reproductive tissues, and is involved in seed development. AtMYB31 was ubiquitously expressed in both vegetative and reproductive tissues with higher expression levels in siliques and seeds, while AtMYB31 was localized to the nucleus and cytoplasm. Loss of function of AtMYB31 reduced wax accumulation in the epidermis of silique and flower tissues, disrupted seed coat epidermal wall development and mucilage production, altered seed proanthocyanidin and polyester content. AtMYB31 could direct activate expressions of several wax biosynthetic target genes. Altogether, AtMYB31, a R2R3MYB transcription factor, regulates seed development in Arabidopsis.
-
(2022) The Plant cell. 34, 9, p. 3168-3182 koac163. Abstract
Chemical exchange often serves as the first step in plant-microbe interactions and exchanges of various signals, nutrients, and metabolites continue throughout the interaction. Here, we highlight the role of metabolite exchanges and metabolic crosstalk in the microbiome-root-shoot-environment nexus. Roots secret a diverse set of metabolites; this assortment of root exudates, including secondary metabolites such as benzoxazinoids, coumarins, flavonoids, indolic compounds, and terpenes, shapes the rhizosphere microbiome. In turn, the rhizosphere microbiome affects plant growth and defense. These inter-kingdom chemical interactions are based on a metabolic circular economy, a seemingly wasteless system in which rhizosphere members exchange (i.e. consume, reuse, and redesign) metabolites. This review also describes the recently discovered phenomenon 'Systemically Induced Root Exudation of Metabolites' in which the rhizosphere microbiome governs plant metabolism by inducing systemic responses that shift the metabolic profiles of root exudates. Metabolic exchange in the rhizosphere is based on chemical gradients that form specific microhabitats for microbial colonization and we describe recently developed high-resolution methods to study chemical interactions in the rhizosphere. Finally, we propose an action plan to advance the metabolic circular economy in the rhizosphere for sustainable solutions to the cumulative degradation of soil health in agricultural lands.
-
(2022) The New Phytologist. 234, 4, p. 1394-1410 Abstract
Solanum steroidal glycoalkaloids (SGAs) are renowned defense metabolites exhibiting spectacular structural diversity. Genes and enzymes generating SGAs precursor pathway, SGAs scaffold and glycosylated forms have been largely identified. Yet, majority of downstream metabolic steps creating the vast repertoire of SGAs remain untapped. Here, we discovered that members of the 2-OXOGLUTARATE-DEPENDENT DIOXYGENASE (2-ODD) family play a prominent role in SGAs metabolism, carrying out three distinct backbone-modifying oxidative steps in addition to the three formerly reported pathway reactions. The GLYCOALKALOID METABOLISM34 (GAME34) enzyme catalyzes the conversion of core SGAs to habrochaitosides in wild tomato S. habrochaites. Cultivated tomato plants overexpressing GAME34 ectopically accumulates habrochaitosides. These habrochaitosides enriched plants extracts potently inhibits Puccinia spp. spore germination, a significant Solanaceae crops fungal pathogen. Another 2-ODD enzyme, GAME33, acts as a desaturase (via hydroxylation and E/F ring rearrangement) forming unique, yet unreported SGAs. Conversion of bitter α-tomatine to ripe fruit, non-bitter SGAs (e.g. esculeoside A) requires two hydroxylations; while the known GAME31 2-ODD enzyme catalyzes hydroxytomatine formation, we find that GAME40 catalyzes penultimate step in pathway and generates acetoxy-hydroxytomatine towards esculeosides accumulation. Our results highlight the significant contribution of 2-ODD enzymes to the remarkable structural diversity found in plant steroidal specialized metabolism.
-
(2022) The journal of Biological chemistry. 298, 5, 101806. Abstract
Grass pea (Lathyrus sativus L.) is a grain legume commonly grown in Asia and Africa for food and forage. It is a highly nutritious and robust crop, capable of surviving both droughts and floods. However, it produces a neurotoxic compound, β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP), which can cause a severe neurological disorder when consumed as a primary diet component. While the catalytic activity associated with β-ODAP formation was demonstrated more than 50 years ago, the enzyme responsible for this activity has not been identified. Here, we report on the identity, activity, 3D structure, and phylogenesis of this enzyme β-ODAP synthase (BOS). We show that BOS belongs to the BAHD superfamily of acyltransferases and is structurally similar to hydroxycinnamoyl transferases. Employing molecular docking, we propose a mechanism for its catalytic activity, and using heterologous expression in tobacco leaves (N. benthamiana), we demonstrate that expression of BOS in the presence of its substrates is sufficient for β-ODAP production in vivo. The identification of BOS may pave the way towards engineering β-ODAP-free grass pea cultivars, which are safe for human and animal consumption.
-
(2022) Plants (Basel). 11, 5, 700. Abstract
Nitrogen (N) fertilization is one of the main inputs to increase crop yield and food production. However, crops utilize only 3040% of N applied; the remainder is leached into the soil, causing environmental and health damage. In this scenario, the improvement of nitrogen-use efficiency (NUE) will be an essential strategy for sustainable agriculture. Here, we compared two pairs of NUE-contrasting eggplant (Solanum melongena L.) genotypes, employing GC-MS and UPLC-qTOF-MS-based technologies to determine the differential profiles of primary and secondary metabolites in root and shoot tissues, under N starvation as well as at short- and long-term N-limiting resupply. Firstly, differences in the primary metabolism pathways of shoots related to alanine, aspartate and glutamate; starch, sucrose and glycine; serine and threonine; and in secondary metabolites biosynthesis were detected. An integrated analysis between differentially accumulated metabolites and expressed transcripts highlighted a key role of glycine accumulation and the related glyA transcript in the N-use-efficient genotypes to cope with N-limiting stress. Interestingly, a correlation between both sucrose synthase (SUS)- and fructokinase (scrK)-transcript abundances, as well as D-glucose and D-fructose accumulation, appeared useful to distinguish the N-use-efficient genotypes. Furthermore, increased levels of L-aspartate and L-asparagine in the N-use-efficient genotypes at short-term low-N exposure were detected. Granule-bound starch synthase (WAXY) and endoglucanase (E3.2.1.4) downregulation at long-term N stress was observed. Therefore, genes and metabolites related to these pathways could be exploited to improve NUE in eggplant.(This article belongs to the Special Issue Improving Nitrogen Use Efficiency in Model and Crop Plants: From Lab to Field)
-
(2022) NEW PHYTOLOGIST. 233, 3, p. 1220-1237 Abstract
Steroidal glycoalkaloids (SGAs) are protective metabolites constitutively produced by Solanaceae species. Genes and enzymes generating the vast structural diversity of SGAs have been largely identified. Yet, mechanisms of hormone pathways coordinating defence (jasmonate; JA) and growth (gibberellin; GA) controlling SGAs metabolism remain unclear. We used tomato to decipher the hormonal regulation of SGAs metabolism during growth vs defence tradeoff. This was performed by genetic and biochemical characterisation of different JA and GA pathways components, coupled with in vitro experiments to elucidate the crosstalk between these hormone pathways mediating SGAs metabolism. We discovered that reduced active JA results in decreased SGA production, while low levels of GA or its receptor led to elevated SGA accumulation. We showed that MYC1 and MYC2 transcription factors mediate the JA/GA crosstalk by transcriptional activation of SGA biosynthesis and GA catabolism genes. Furthermore, MYC1 and MYC2 transcriptionally regulate the GA signalling suppressor DELLA that by itself interferes in JA-mediated SGA control by modulating MYC activity through proteinprotein interaction. Chemical and fungal pathogen treatments reinforced the concept of JA/GA crosstalk during SGA metabolism. These findings revealed the mechanism of JA/GA interplay in SGA biosynthesis to balance the cost of chemical defence with growth.
-
(2022) Horticulture Research. 9, uhac092. Abstract
Suberized and/or lignified (i.e. lignosuberized) periderm tissue appears often on surface of fleshy fruit skin by mechanical damage caused following environmental cues or developmental programs. The mechanisms underlying lignosuberization remain largely unknown to date. Here, we combined an assortment of microscopical techniques with an integrative multi-omics approach comprising proteomics, metabolomics and lipidomics to identify novel molecular components involved in fruit skin lignosuberization. We chose to investigate the corky Sikkim cucumber (Cucumis sativus var. sikkimensis) fruit. During development, the skin of this unique species undergoes massive cracking and is coated with a thick corky layer, making it an excellent model system for revealing fundamental cellular machineries involved in fruit skin lignosuberization. The large-scale data generated provides a significant source for the field of skin periderm tissue formation in fleshy fruit and suberin metabolism.
2021
-
(2021) The New Phytologist. 232, 5, p. 1985-1998 Abstract
Plants reduce transpiration to avoid dehydration during drought episodes by stomatal closure and inhibition of canopy growth. Previous studies have suggested that low gibberellin (GA) activity promotes these drought avoidance responses.Using genome editing, molecular, physiological and hormone analyses, we examined if drought regulates GA metabolism in tomato (Solanum lycopersicum) guard cells and leaves, and studied how this affects water loss.Water deficiency inhibited the expression of the GA biosynthesis genes GA20 oxidase1 (GA20ox1) and GA20ox2 and induced the GA deactivating gene GA2ox7 in guard cells and leaf tissue, resulting in reduced levels of bioactive GAs. These effects were mediated by abscisic aciddependent and abscisic acidindependent pathways, and by the transcription factor TINY1. The loss of GA2ox7 attenuated stomatal response to water deficiency and during soil dehydration, ga2ox7 plants closed their stomata later, and wilted faster than wildtype (WT) M82 cv. Mutations in GA20ox1 and GA20ox2, had no effect on stomatal closure, but reduced water loss due to the mutants smaller canopy areas.The results suggested that droughtinduced GA deactivation in guard cells, contributes to stomatal closure at the early stages of soil dehydration, whereas inhibition of GA synthesis in leaves suppresses canopy growth and restricts transpiration area.
-
(2021) Plant physiology (Bethesda). 187, 3, p. 1636-1652 Abstract
Abstract Plant MICRORNA164 (miR164) plays diverse regulatory functions by post-transcriptional repression of certain NAM/ATAF/CUC-domain transcription factors. However, the involvement of miR164 in fleshy fruit development and ripening remains poorly understood. Here, de novo prediction of tomato (Solanum lycopersicum) MIR164 genes identified four genes (SlMIR164a-d), of which SlMIR164d has an atypically long pre-miRNA. The roles of the fruit expressed SlMIR164a, b, and d were studied by analysis of their Clustered Regularly Interspaced Short Palindromic Repeats mutants. The slmir164bCR mutant plants exhibited shoot and flower abnormalities characteristic of ectopic boundary specification, whereas the shoot and flower development of slmir164aCR and slmir164dCR mutants were indistinguishable from wild-type. Strikingly, the knockout of SlMIR164a practically eliminated sly-miR164 from the developing and ripening fruit pericarp. The sly-miR164-deficient slmir164aCR fruits were smaller than the wild-type, due to reduced pericarp cell division and expansion, and displayed intense red color and matte, instead of glossy appearance, upon ripening. We found that the fruit skin phenotypes were associated with morphologically abnormal outer epidermis and thicker cuticle. Quantitation of sly-miR164 target transcripts in slmir164aCR ripening fruits demonstrated the upregulation of SlNAM3 and SlNAM2. Specific expression of their miR164-resistant versions in the pericarp resulted in the formation of extremely small fruits with abnormal epidermis, highlighting the importance of their negative regulation by sly-miR164a. Taken together, our results demonstrate that SlMIR164a and SlMIR164b play specialized roles in development: SlMIR164b is required for shoot and flower boundary specification, and SlMIR164a is required for fruit growth including the expansion of its outer epidermis, which determines the properties of the fruit skin.
-
(2021) Science advances. 7, 43, eabf6069. Abstract
The effects of abscisic acid (ABA) on plant growth, development, and response to the environment depend on local ABA concentrations. Here, we show that in Arabidopsis, ABA homeostasis is regulated by two previously unknown ABA transporters. Adenosine triphosphate-binding cassette subfamily G member 17 (ABCG17) and ABCG18 are localized to the plasma membranes of leaf mesophyll and cortex cells to redundantly promote ABA import, leading to conjugated inactive ABA sinks, thus restricting stomatal closure. ABCG17 and ABCG18 double knockdown revealed that the transporters encoded by these genes not only limit stomatal aperture size, conductance, and transpiration while increasing water use efficiency but also control ABA translocation from the shoot to the root to regulate lateral root emergence. Under abiotic stress conditions, ABCG17 and ABCG18 are transcriptionally repressed, promoting active ABA movement and response. The transport mechanism mediated by ABCG17 and ABCG18 allows plants to maintain ABA homeostasis under normal growth conditions.
-
(2021) Journal of Experimental Botany. 72, 17, p. 6027-6041 Abstract
Plants are unsurpassed biochemists that synthesize a plethora of molecules in response to an ever-changing environment. The majority of these molecules, considered as specialized metabolites, effectively protect the plant against pathogens and herbivores. However, this defense most probably comes at a great expense, leading to reduction of growth (known as the growthdefense trade-off). Plants employ several strategies to reduce the high metabolic costs associated with chemical defense. Production of specialized metabolites is tightly regulated by a network of transcription factors facilitating its fine-tuning in time and space. Multifunctionality of specialized metabolitestheir effective recycling system by re-using carbon, nitrogen, and sulfur, thus re-introducing them back to the primary metabolite poolallows further cost reduction. Spatial separation of biosynthetic enzymes and their substrates, and sequestration of potentially toxic substances and conversion to less toxic metabolite forms are the plants solutions to avoid the detrimental effects of metabolites they produce as well as to reduce production costs. Constant fitness pressure from herbivores, pathogens, and abiotic stressors leads to honing of specialized metabolite biosynthesis reactions to be timely, efficient, and metabolically cost-effective. In this review, we assess the costs of production of specialized metabolites for chemical defense and the different plant mechanisms to reduce the cost of such metabolic activity in terms of self-toxicity and growth.
-
(2021) Nature Methods. 18, 7, p. 747-756 Abstract
This Perspective, from a large group of metabolomics experts, provides best practices and simplified reporting guidelines for practitioners of liquid chromatography- and gas chromatography-mass spectrometry-based metabolomics. Mass spectrometry-based metabolomics approaches can enable detection and quantification of many thousands of metabolite features simultaneously. However, compound identification and reliable quantification are greatly complicated owing to the chemical complexity and dynamic range of the metabolome. Simultaneous quantification of many metabolites within complex mixtures can additionally be complicated by ion suppression, fragmentation and the presence of isomers. Here we present guidelines covering sample preparation, replication and randomization, quantification, recovery and recombination, ion suppression and peak misidentification, as a means to enable high-quality reporting of liquid chromatography- and gas chromatography-mass spectrometry-based metabolomics-derived data.
-
(2021) Nutrients. 13, 6, 1866. Abstract
Background: Polyphenols are secondary metabolites produced by plants to defend themselves from environmental stressors. We explored the effect of Wolffia globosa Mankai, a novel cultivated strain of a polyphenol-rich aquatic plant, on the metabolomic-gut clinical axis in vitro, in-vivo and in a clinical trial. Methods: We used mass-spectrometry-based metabolomics methods from three laboratories to detect Mankai phenolic metabolites and examined predicted functional pathways in a Mankai artificial-gut bioreactor. Plasma and urine polyphenols were assessed among the 294 DIRECT-PLUS 18-month trial participants, comparing the effect of a polyphenol-rich green-Mediterranean diet (+1240 mg/polyphenols/day, provided by Mankai, green tea and walnuts) to a walnuts-enriched (+440 mg/polyphenols/day) Mediterranean diet and a healthy controlled diet. Re-sults: Approximately 200 different phenolic compounds were specifically detected in the Mankai plant. The Mankai-supplemented bioreactor artificial gut displayed a significantly higher relative-abundance of 16S-rRNA bacterial gene sequences encoding for enzymes involved in phenolic com-pound degradation. In humans, several Mankai-related plasma and urine polyphenols were differ-entially elevated in the green Mediterranean group compared with the other groups (p
-
(2021) Phytochemistry (Oxford). 186, 112740. Abstract
Stable isotope labeling has emerged as a valuable tool for metabolite identification and quantification. In this study, we employed DLEMMA, a dual stable isotope labeling approach to identify and track phenylpropanoid pathway in Arabidopsis thaliana. Three forms of phenylalanine (Phe), including unlabeled, Phe13C6 and Phe13C62H5, were used as feeding precursors. The unique isotopic pattern obtained from MS spectra significantly simplified data processing and facilitated global mining of Phe-derived metabolites. Following this approach, we have identified 35 phenylalanine-derived metabolites with high confidence. We next compared phenylpropanoids contents between leaves of wild type (WT) and the dominant PRODUCTION OF ANTHOCYANIN PIGMENT 1 (pap1-D) Arabidopsis thaliana mutant using a combined sample matrices and label-swap approach. This approach was designed to correct any unequal matrix effects between the two divergent samples, and any possible uneven label incorporation efficiency between the two differently labeled Phe precursors. Thirty of the 35 identified metabolites were found differential between WT and pap1-D leaves. Our results shown that the ectopic PAP1 expression led to significant accumulation of cyanidin-type anthocyanins, quercetin-type flavonols and hydroxycinnamic acids and their glycosylated derivatives. While levels of kaempferol glycosides and a hydroxycinnamic acid amide were reduced in the pap1-D leaves.
-
(2021) Frontiers in Plant Science. 12, 663165. Abstract
The aerial surfaces of plants are covered by a protective barrier formed by the cutin polyester and waxes, collectively referred to as the cuticle. Plant cuticles prevent the loss of water, regulate transpiration, and facilitate the transport of gases and solutes. As the cuticle covers the outermost epidermal cell layer, it also acts as the first line of defense against environmental cues and biotic stresses triggered by a large array of pathogens and pests, such as fungi, bacteria, and insects. Numerous studies highlight the cuticle interface as the site of complex molecular interactions between plants and pathogens. Here, we outline the multidimensional roles of cuticle-derived components, namely, epicuticular waxes and cutin monomers, during plant interactions with pathogenic fungi. We describe how certain wax components affect various pre-penetration and infection processes of fungi with different lifestyles, and then shift our focus to the roles played by the cutin monomers that are released from the cuticle owing to the activity of fungal cutinases during the early stages of infection. We discuss how cutin monomers can activate fungal cutinases and initiate the formation of infection organs, the significant impacts of cuticle defects on the nature of plantfungal interactions, along with the possible mechanisms raised thus far in the debate on how host plants perceive cutin monomers and/or cuticle defects to elicit defense responses.
-
(2021) Journal of Experimental Botany. 72, 12, p. 4237-4253 Abstract
Nitrogen-use efficiency (NUE) is a complex trait of great interest in breeding programs because through its improvement, high crop yields can be maintained whilst N supply is reduced. In this study, we report a transcriptomic analysis of four NUE-contrasting eggplant (Solanum melongena) genotypes following short- and long-term exposure to low N, to identify key genes related to NUE in the roots and shoots. The differentially expressed genes in the high-NUE genotypes are involved in the light-harvesting complex and receptor, a ferredoxinNADP reductase, a catalase and WRKY33. These genes were then used as bait for a co-expression gene network analysis in order to identify genes with the same trends in expression. This showed that up-regulation of WRKY33 triggered higher expression of a cluster of 21 genes and also of other genes, many of which were related to N-metabolism, that were able to improve both nitrogen uptake efficiency and nitrogen utilization efficiency, the two components of NUE. We also conducted an independent de novo experiment to validate the significantly higher expression of WRKY33 and its gene cluster in the high-NUE genotypes. Finally, examination of an Arabidopsis transgenic 35S::AtWRKY33 overexpression line showed that it had a bigger root system and was more efficient at taking up N from the soil, confirming the pivotal role of WRKY33 for NUE improvement.
-
-
(2021) Current Biology. 31, 10, p. 2111-2123.e9 Abstract
The plant cuticle is deposited on the surface of primary plant organs, such as leaves, fruits, and floral organs, forming a diffusion barrier and protecting the plant against various abiotic and biotic stresses. Cutin, the structural polyester of the plant cuticle, is synthesized in the apoplast. Plasma-membrane-localized ATP-binding cassette (ABC) transporters of the G family have been hypothesized to export cutin precursors. Here, we characterize SlABCG42 of tomato representing an ortholog of AtABCG32 in Arabidopsis. SlABCG42 expression in Arabidopsis complements the cuticular deficiencies of the Arabidopsis pec1/abcg32 mutant. RNAi-dependent downregulation of both tomato genes encoding proteins highly homologous to AtABCG32 (SlABCG36 and SlABCG42) leads to reduced cutin deposition and formation of a thinner cuticle in tomato fruits. By using a tobacco (Nicotiana benthamiana) protoplast system, we show that AtABCG32 and SlABCG42 have an export activity for 10,16-dihydroxy hexadecanoyl-2-glycerol, a cutin precursor in vivo. Interestingly, also free ω-hydroxy hexadecanoic acid as well as hexadecanedioic acid were exported, furthering the research on the identification of cutin precursors in vivo and the respective mechanisms of their integration into the cutin polymer.
-
(2021) Journal of Agricultural and Food Chemistry. 69, 20, p. 5628-5637 Abstract
Fruits of nonastringent persimmon cultivars, as compared to astringent ones, were more resistant to infection despite having lower polyphenol content. Metabolic analysis from the pulp of nonastringent "Shinshu", as compared to the astringent "Triumph", revealed a higher concentration of salicylic, coumaric, quinic, 5--feruloyl quinic, ferulic acids, β-glucogallin, gallocatechin, catechin, and procyanidins. Selected compounds like salicylic, ferulic, and ρ-coumaric acids inhibited growth, and higher activity was demonstrated for methyl ferulic and methyl ρ-coumaric acids. These compounds also reduced growth and the black spot disease in stored fruits. On the other hand, methyl gallic acid was a predominant compound in the "Triumph" pulp, as compared to the "Shinshu" pulp, and it augmented growth and . Our results might explain the high sensitivity of the cultivar "Triumph" to . It also emphasizes that specific phenolic compounds, and not the total phenol, affect susceptibility to fungal infection.
-
(2021) Nature Plants. 7, p. 468-480 Abstract
Fruit taste is determined by sugars, acids and in some species, bitter chemicals. Attraction of seed-dispersing organisms in nature and breeding for consumer preferences requires reduced fruit bitterness. A key metabolic shift during ripening prevents tomato fruit bitterness by eliminating α-tomatine, a renowned defence-associated Solanum alkaloid. Here, we combined fine mapping with information from 150 resequenced genomes and genotyping a 650-tomato core collection to identify nine bitter-tasting accessions including the 'high tomatine' Peruvian landraces reported in the literature. These 'bitter' accessions contain a deletion in GORKY, a nitrate/peptide family transporter mediating α-tomatine subcellular localization during fruit ripening. GORKY exports α-tomatine and its derivatives from the vacuole to the cytosol and this facilitates the conversion of the entire α-tomatine pool to non-bitter forms, rendering the fruit palatable. Hence, GORKY activity was a notable innovation in the process of tomato fruit domestication and breeding.
-
(2021) Molecular Plant. 14, 3, p. 440-455 Abstract
N-hydroxy-pipecolic acid (NHP) activates plant systemic acquired resistance (SAR). Enhanced defense responses are typically accompanied by deficiency in plant development and reproduction. Despite of extensive studies on SAR induction, the effects of NHP metabolism on plant growth remain largely unclear. In this study, we discovered that NHP glycosylation is a critical factor that fine-tunes the tradeoff between SAR defense and plant growth. We demonstrated that a UDP-glycosyltransferase (UGT76B1) forming NHP glycoside (NHPG) controls the NHP to NHPG ratio. Consistently, the ugt76b1 mutant exhibits enhanced SAR response and an inhibitory effect on plant growth, while UGT76B1 overexpression attenuates SAR response, promotes growth, and delays senescence, indicating that NHP levels are dependent on UGT76B1 function in the course of SAR. Furthermore, our results suggested that, upon pathogen attack, UGT76B1-mediated NHP glycosylation forms a \u201chand brake\u201d on NHP accumulation by attenuating the positive regulation of NHP biosynthetic pathway genes, highlighting the complexity of SAR-associated networks. In addition, we showed that UGT76B1-mediated NHP glycosylation in the local site is important for fine-tuning SAR response. Our results implicate that engineering plant immunity through manipulating the NHP/NHPG ratio is a promising method to balance growth and defense response in crops.
-
(2021) Horticulture Research. 8, 1, 17. Abstract
Mango fruit exposed to sunlight develops red skin and are more resistant to biotic and abiotic stresses. Here we show that harvested red mango fruit that was exposed to sunlight at the orchard is more resistant than green fruit to Colletotrichum gloeosporioides. LCMS analysis showed high amounts of antifungal compounds, as glycosylated flavonols, glycosylated anthocyanins, and mangiferin in red vs. green mango skin, correlated with higher antioxidant and lower ROS. However, also the green side of red mango fruit that has low levels of flavonoids was resistant, indicated induced resistance. Transcriptomes of red and green fruit inoculated on their red and green sides with C. gloeosporioides were analyzed. Overall, in red fruit skin, 2,187 genes were upregulated in response to C. gloeosporioides. On the green side of red mango, upregulation of 22 transcription factors and 33 signaling-related transcripts indicated induced resistance. The RNA-Seq analysis suggests that resistance of the whole red fruit involved upregulation of ethylene, brassinosteroid, and phenylpropanoid pathways. To conclude, red fruit resistance to fungal pathogen was related to both flavonoid toxicity and primed resistance of fruit that was exposed to light at the orchard.
2020
-
(2020) New Phytologist. 228, 6, p. 1986-2002 Abstract
Understanding when and where metabolites accumulate provides important cues to the gene function. Mass spectrometry imaging (MSI) enablesin situtemporal and spatial measurement of a large assortment of metabolites, providing mapping information regarding their cellular distribution. To describe the current state and technical advances using MSI in plant sciences, we employed MSI to demonstrate its significant contribution to the study of plant specialised metabolism. We show that coupling MSI with: (1) RNA interference (RNAi), (2) virus induced gene silencing (VIGS), (3) agroinfiltration or (4) samples derived from plant natural variation provides great opportunities to understand the accurate gene-metabolite relationship and discover novel gene-associated metabolites. This was exemplified in three plant species (i.e. tomato, tobacco and wheat) by mapping the distribution of metabolites possessing a range of polarities. In particular, we demonstrated that MSI is able to spatially map an entire metabolic pathway, including intermediates and final products, in the intricate biosynthetic route to tomato fruit steroidal glycoalkaloids. We therefore envisage MSI as a key component of the metabolome analysis arsenal employed in plant gene discovery strategies.
-
(2020) Agronomy. 10, 11, 1669. Abstract
The physiology of fruit ripening is defined as either climacteric or non-climacteric. In climacteric fruit respiration during ripening increases until it reaches a peak, which is accompanied by an increase in autocatalytic ethylene production, whereas the respiration of non-climacteric fruit does not increase and they have no requirement for ethylene to complete their ripening. In an attempt to gain further insight into the involvement of autocatalytic ethylene production with the climacteric rise in respiration, tomato fruit were harvested at three defined stages of maturity prior to the climacteric peak (mature green, breaker, and early orange) and immediately exposed to the gaseous molecule 1-methylcyclopropene (1-MCP). The gene expression profile at each of these stages was monitored after 24 h, using an Affymetrix tomato microarray chip. This approach enabled us to identify ethylene responsive genes that are commonly regulated at early stages of ripening, as well as new candidate genes. In addition, 1-MCP treatment affected the levels of metabolites related to methionine biosynthesis. Methionine feeds climacteric ethylene production and we found that promotors of the genes of enzymes that catalyze the production of homoserine and homocysteine (aspartokinase/homoserine dehydrogenases and cystathionine beta lyase, respectively), precursors in the methionine pathway, contain the AtSR1 binding motif. This binding motif is recognized by ethylene activated transcription factors, hence indicating a role for ethylene in methionine synthesis during early ripening, explaining the autocatalytic ethylene production during subsequent ripening stages.
-
(2020) Nature Genetics. 52, p. 1111-1121 Abstract
Wild tomato species represent a rich gene pool for numerous desirable traits lost during domestication. Here, we exploited an introgression population representing wild desert-adapted species and a domesticated cultivar to establish the genetic basis of gene expression and chemical variation accompanying the transfer of wild-species-associated fruit traits. Transcriptome and metabolome analysis of 580 lines coupled to pathogen sensitivity assays resulted in the identification of genomic loci associated with levels of hundreds of transcripts and metabolites. These associations occurred in hotspots representing coordinated perturbation of metabolic pathways and ripening-related processes. Here, we identify components of the Solanum alkaloid pathway, as well as genes and metabolites involved in pathogen defense and linking fungal resistance with changes in the fruit ripening regulatory network. Our results outline a framework for understanding metabolism and pathogen resistance during tomato fruit ripening and provide insights into key fruit quality traits.
-
(2020) Plant Physiology and Biochemistry. 154, p. 451-462 Abstract
The development of genetic transformation methods is critical for enabling the thorough characterization of an organism and is a key step in exploiting any species as a platform for synthetic biology and metabolic engineering approaches. In this work we describe the development of an Agrobacterium rhizogenes-mediated hairy root transformation protocol for the crop and medicinal legume fenugreek (Trigonella foenum-graecum). Fenugreek has a rich and diverse content in bioactive specialised metabolites, notably diosgenin, which is a common precursor for synthetic human hormone production. This makes fenugreek a prime target for identification and engineering of specific biosynthetic pathways for the production of triterpene and steroidal saponins, phenolics, and galactomanans. Through this transformation protocol, we identified a suitable promoter for robust transgene expression in fenugreek. Finally, we establish the proof of principle for the utility of the fenugreek system for metabolic engineering programs, by heterologous expression of known triterpene saponin biosynthesis regulators from the related legume Medicago truncatula in fenugreek hairy roots.
-
(2020) Plant Journal. 104, 1, p. 241-251 Abstract
Suberin lamellae, which provide a hydrophobic protective barrier against biotic and abiotic stresses, are widely deposited in various cell types during plant development and in response to stress. However, it remains unclear how developmental programs interact with stress responses to direct the precise spatiotemporal pattern of suberin deposition. In this study, we found that SHORT-ROOT (SHR), together with its downstream factor MYB36, guided suberization specifically in the root endodermis. Despite a partial dependence on abscisic acid (ABA), the suberization mediated by SHR and MYB36 appeared to derive from a slow readout of developmental programs, which was in contrast to the rapid but transient suberization induced by ABA. Furthermore, we found the MYB39 transcription factor functioned as a common downstream hub of the SHR/MYB36 pathway and the ABA-triggered response. MYB39 could directly bind to theFAR5(alcohol-forming fatty acyl-coenzyme A reductase) promoter to activate its expression. In addition, overexpression of MYB39 dramatically increased the amount of suberization in Arabidopsis roots. Our results provide important insights into the interaction between developmental programs and environmental stimuli in root suberization in Arabidopsis.
-
(2020) Postharvest Biology and Technology. 166, 111219. Abstract
Climacteric ripening is related to a respiratory climax accompanied by an exponential increase in ethylene production. This association is not fully understood. Tomato fruit were exposed to the ethylene antagonist 1-methylcyclopropene (1-MCP) at different ripening stages and their transcriptome was monitored. ISOCITRATE DEHYDROGENASE 1 (ICDH, Solyc01g005560.2.1) was the only respiratory process related gene that was down regulated at all ripening stages including the mature green. Silencing SlICDH1using VIGS (virus indused gene silencing), to about 50 % of its native expression, in Micro-Tom tomatoes, reduced both respiration and ethylene production of the harvested fruit. Silenced SlICDH1 tomatoes also exhibited prolonged ripening and reduced susceptibility to the pathogen Botrytis cinerea. In addition, ethylene response factors binding sites were identified in the promotor and in the first intron of SlICDH1. These results suggest that regulation of SlICDH1 is a key step in the initiation of the climacteric rise of respiration via ethylene regulation.
-
(2020) Nature Chemical Biology. 16, p. 740-748 Abstract
Glycosylation is one of the most prevalent molecular modifications in nature. Single or multiple sugars can decorate a wide range of acceptors from proteins to lipids, cell wall glycans and small molecules, dramatically affecting their activity. Here, we discovered that by 'hijacking' an enzyme of the cellulose synthesis machinery involved in cell wall assembly, plants evolved cellulose synthase-like enzymes (Csls) and acquired the capacity to glucuronidate specialized metabolites, that is, triterpenoid saponins. Apparently, endoplasmic reticulum-membrane localization of Csls and of other pathway proteins was part of evolving a new glycosyltransferase function, as plant metabolite glycosyltransferases typically act in the cytosol. Discovery of glucuronic acid transferases across several plant orders uncovered the long-pursued enzymatic reaction in the production of a low-calorie sweetener from licorice roots. Our work opens the way for engineering potent saponins through microbial fermentation and plant-based systems.Evolution of a group of plant cellulose synthase-like enzymes into specialized glycosyltransferases in the endoplasmic reticulum membrane confers the ability to glucuronidate triterpenoid saponins and other specialized metabolites.
-
(2020) Plant Journal. 102, 5, p. 897-902 Abstract
Gene-editing techniques are currently revolutionizing biology, allowing far greater precision than previous mutagenic and transgenic approaches. They are becoming applicable to a wide range of plant species and biological processes. Gene editing can rapidly improve a range of crop traits, including disease resistance, abiotic stress tolerance, yield, nutritional quality and additional consumer traits. Unlike transgenic approaches, however, it is not facile to forensically detect gene-editing events at the molecular level, as no foreign DNA exists in the elite line. These limitations in molecular detection approaches are likely to focus more attention on the products generated from the technology than on the process in itself. Rapid advances in sequencing and genome assembly increasingly facilitate genome sequencing as a means of characterizing new varieties generated by gene-editing techniques. Nevertheless, subtle edits such as single base changes or small deletions may be difficult to distinguish from normal variation within a genotype. Given these emerging scenarios, downstream 'omics' technologies reflective of edited affects, such as metabolomics, need to be used in a more prominent manner to fully assess compositional changes in novel foodstuffs. To achieve this goal, metabolomics or 'non-targeted metabolite analysis' needs to make significant advances to deliver greater representation across the metabolome. With the emergence of new edited crop varieties, we advocate: (i) concerted efforts in the advancement of 'omics' technologies, such as metabolomics, and (ii) an effort to redress the use of the technology in the regulatory assessment for metabolically engineered biotech crops.
-
(2020) Current Opinion in Plant Biology. 55, p. 118-128 Abstract
Steroidal glycoalkaloids (SGAs) are defense specialized metabolites produced by thousands of Solanum species. These metabolites are remarkable in structural diversity formed following modifications in their core scaffold. In recent years, it became clear that a large portion of this chemical repertoire was acquired through various molecular mechanisms involving hijacking of core metabolism enzymes. This was typically accompanied by gene duplication and divergence and further neofunctionalization as well as modified subcellular localization and evolution of new substrate preferences. In this review, we highlight recent findings in the SGAs biosynthetic pathway and elaborate on similar occurrences in other chemical classes that enabled evolution of specialized metabolic pathways and its underlying structural diversity.
-
(2020) Plant Journal. 102, 3, p. 431-447 Abstract
Root endodermis, the innermost cortical layer surrounding the root vasculature, serves as the foremost barrier to water, solutes, and nutrients taken up from soil. Endodermis barrier functionality is achieved via its hydrophobic coating of lignified Casparian strips and the suberin lamellae; nonetheless the regulatory mechanisms underlying endodermis suberization are still elusive. Here, we discovered that the Arabidopsis SUBERMAN (SUB) transcription factor controls the establishment of the root suberin lamellae. Transient expression of SUB in Nicotiana benthamiana leaves resulted in the induction of heterologous suberin genes, the accumulation of suberin-type monomers, and consequent deposition of suberin-like lamellae. We demonstrate that SUB exerts its regulatory roles by transactivating promoters of suberin genes. In Arabidopsis, SUB is expressed in patchy and continuous suberization root endodermal cells, and thus roots with higher or lower expression of SUB display altered suberin polymer deposition patterns and modified composition. While these changes did not interfere with Casparian strip formation they had a substantial effect on root uptake capacity, resulting in varied root and leaf ionomic phenotypes. Gene expression profiling revealed that SUB function impacts transcriptional networks associated with suberin, phenylpropanoids, lignin, and cuticular lipid biosynthesis, as well as root transport activities, hormone signalling, and cell wall modification. Our findings highlight SUB as a regulator of root endodermis suberization during normal development, and its characterization is thus a key step towards dissecting the molecular mechanisms partaking in root endodermal barrier functionalities.
-
(2020) Metabolites. 10, 3, 121. Abstract
The broad variability of Cucumis melo (melon, Cucurbitaceae) presents a challenge to conventional classification and organization within the species. To shed further light on the infraspecific relationships within C. melo, we compared genotypic and metabolomic similarities among 44 accessions representative of most of the cultivar-groups. Genotyping-by-sequencing (GBS) provided over 20,000 single-nucleotide polymorphisms (SNPs). Metabolomics data of the mature fruit flesh and rind provided over 80,000 metabolomic and elemental features via an orchestra of six complementary metabolomic platforms. These technologies probed polar, semi-polar, and non-polar metabolite fractions as well as a set of mineral elements and included both flavor- and taste-relevant volatile and non-volatile metabolites. Together these results enabled an estimate of "metabolomic/elemental distance" and its correlation with the genetic GBS distance of melon accessions. This study indicates that extensive and non-targeted metabolomics/elemental characterization produced classifications that strongly, but not completely, reflect the current and extensive genetic classification. Certain melon Groups, such as Inodorous, clustered in parallel with the genetic classifications while other genome to metabolome/element associations proved less clear. We suggest that the combined genomic, metabolic, and element data reflect the extensive sexual compatibility among melon accessions and the breeding history that has, for example, targeted metabolic quality traits, such as taste and flavor.
-
(2020) Proceedings of the National Academy of Sciences of the United States of America. 117, 7, p. 3874-3883 Abstract
Microbial communities associated with roots confer specific functions to their hosts, thereby modulating plant growth, health, and productivity. Yet, seminal questions remain largely unaddressed including whether and how the rhizosphere microbiome modulates root metabolism and exudation and, consequently, how plants fine tune this complex belowground web of interactions. Here we show that, through a process termed systemically induced root exudation of metabolites (SIREM), different microbial communities induce specific systemic changes in tomato root exudation. For instance, systemic exudation of acylsugars secondary metabolites is triggered by local colonization of bacteria affiliated with the genus Bacillus. Moreover, both leaf and systemic root metabolomes and transcriptomes change according to the rhizosphere microbial community structure. Analysis of the systemic root metabolome points to glycosylated azelaic acid as a potential microbiome-induced signaling molecule that is subsequently exuded as free azelaic acid. Our results demonstrate that rhizosphere microbiome assembly drives the SIREM process at the molecular and chemical levels. It highlights a thus-far unexplored long-distance signaling phenomenon that may regulate soil conditioning.
-
(2020) Infectious Disease Modelling. 5, p. 502-509 Abstract
Several months into the ongoing novel coronavirus disease 2019 (COVID-19) pandemic, this work provides a simple and direct projection of the outbreak spreading potential and the pandemic cessation dates in Chinese mainland, Iran, the Philippines and Chinese Taiwan, using the generalized logistic model (GLM). The short-term predicted number of cumulative COVID-19 cases matched the confirmed reports of those who were infected across the four countries and regions, and the long-term forecasts were capable to accurately evaluate the spread of the pandemic in Chinese mainland and Chinese Taiwan, where control measures such as social distancing were fully implemented and sustained, suggesting GLM as a valuable tool for characterizing the transmission dynamics process and the trajectory of COVID-19 pandemic along with the impact of interventions.
-
(2020) Physiologia Plantarum. 168, 1, p. 133-147 Abstract
Organic acids are important components of overall fruit quality through flavor, taste, nutritional and medicinal values. Pollinated fig (Ficus carica L.) fruit quality is enhanced by increased acidity. We quantified the major organic acids and characterized the expression pattern of organic acid metabolic pathway-related genes in the reproductive part - inflorescence and non-reproductive part - receptacle of parthenocarpic and pollinated fig fruit during ripening. Essentially, pollinated fruit contains seeds in the inflorescence, as opposed to no seeds in the parthenocarpic inflorescence. The major organic acids - citrate and malate - were found in relatively high quantities in the inflorescence compared to the receptacle of both parthenocarpic and pollinated fig fruit. Notably, pollination increased citric acid content significantly in both inflorescence and receptacle. Genes related to the phosphoenolpyruvate carboxylase (PEPC) cycle, tricarboxylic acid cycle, citrate catabolism and glyoxylate cycle were identified in fig fruit. Expression levels of most of these genes were higher in inflorescences than in receptacles. In particular, FcPEPC and FcFUM (encoding fumarase) had significantly higher expression in the inflorescence of pollinated fruit. Most importantly, expression of the glyoxylate cycle genes FcMLS and FcICL (encoding malate synthase and isocitrate lyase, respectively) was induced to strikingly high levels in the inflorescence by pollination, and their expression level was highly positively correlated with the contents of all organic acids. Therefore, the glyoxylate cycle may be responsible for altering the accumulation of organic acids to upgrade the fruit taste during ripening, especially in the pollinated, seeded inflorescence.
2019
-
(2019) The New Phytologist. 224, 4, p. 1472-1478 Abstract
Betalains are nitrogenous red and yellow pigments found in a single order of plants, the Caryophyllales, and in some higher fungi. They are responsible for the colors observed in many ornamental plants, as well as in various food products, where they are used as natural colorants. Their nutritional properties and attractive colors make them an appealing target for metabolic engineering. This is further heightened by the limited availability of natural betalain sources, arising from their relative scarcity in the plant kingdom, particularly in edible plants. Recent progress in decoding their biosynthetic pathway has facilitated stable heterologous production of betalains in several plant and microbial systems. Here we provide a brief review of recent advances and discuss current approaches and possible future directions in betalain metabolic engineering, including expanding the chemical diversity of betalains and increasing their yield, exploring new host organisms for their heterologous production and engineering their secretion from the cell.
-
-
(2019) Nature Communications. 10, 5169. Abstract
The genus Solanum comprises three food crops (potato, tomato, and eggplant), which are consumed on daily basis worldwide and also producers of notorious anti-nutritional steroidal glycoalkaloids (SGAs). Hydroxylated SGAs (i.e. leptinines) serve as precursors for leptines that act as defenses against Colorado Potato Beetle (Leptinotarsa decemlineata Say), an important pest of potato worldwide. However, SGA hydroxylating enzymes remain unknown. Here, we discover that 2-OXOGLUTARATE-DEPENDENT-DIOXYGENASE (2-ODD) enzymes catalyze SGA-hydroxylation across various Solanum species. In contrast to cultivated potato, Solanum chacoense, a widespread wild potato species, has evolved a 2-ODD enzyme leading to the formation of leptinines. Furthermore, we find a related 2-ODD in tomato that catalyzes the hydroxylation of the bitter α-tomatine to hydroxytomatine, the first committed step in the chemical shift towards downstream ripening-associated non-bitter SGAs (e.g. esculeoside A). This 2-ODD enzyme prevents bitterness in ripe tomato fruit consumed today which otherwise would remain unpleasant in taste and more toxic.
-
(2019) Trends in Plant Science. 24, 10, p. 882-884 Abstract
A recent study by Gao et al., (Nat. Genet., 2019) presents a tomato pan-genome that was constructed using genome sequences of 725 phylogenetically and geographically representative accessions. The study revealed 4873 genes that are absent from the reference genome, including important genes associated with both disease resistance and flavor, thereby providing an important breeding resource.
-
(2019) Bioinformatics. 35, 18, p. 3524-3526 Abstract
Motivation: The use of stable isotope labeling is highly advantageous for structure elucidation in metabolomics studies. However, computational tools dealing with multiple-precursor-based labeling studies are still missing. Hence, we developed Miso, an R package providing automated and efficient data analysis workflow to detect the complete repertoire of labeled molecules from multiple-precursor- based labeling experiments.Results: The capability of Miso is demonstrated by the analysis of liquid chromatography-mass spectrometry data obtained from duckweed plants fed with one unlabeled and two differently labeled tyrosine (unlabeled tyrosine, tyrosine-H-2(4) and tyrosine-(C9N1)-C-13-N-15). The resulting data matrix generated by Miso contains sets of unlabeled and labeled ions with their retention time, m/z values and number of labeled atoms that can be directly utilized for database query and biological studies.
-
(2019) Pest Management Science. 75, 9, p. 2378-2384 Abstract
Crops are negatively affected by abiotic and biotic stresses, however, plant-microbe cooperation allows prompt buffering of these environmental changes. Microorganisms exhibit an extensive metabolic capability to assist plants in reducing these burdens. Interestingly, beneficial microbes may also trigger, at the host side, a sequence of events from signal perception to metabolic responses leading to stress tolerance or protection against biotic threats. Although plants are well known for their vast chemical diversity, plant-microbial interactions often stimulate the production of a rich and different repertoire of metabolites in plants. The targeted microbial-plant interactions reprogramming plant metabolism represent potential means to foster various pest managements. However, the molecular mechanisms of microbial modulation of plant metabolic plasticity are still poorly understood. Here, we review an increasing amount of reports providing evidence for alterations to plant metabolism caused by beneficial microbial colonization. In addition, we highlight the vital importance of these metabolic reprograms for plants under stress erratic conditions.
-
(2019) Scientific Reports. 9, 1, 11769. Abstract
With approximately 450 species, spiny Solanum species constitute the largest monophyletic group in the Solanaceae family, but a high-quality genome assembly from this group is presently missing. We obtained a chromosome-anchored genome assembly of eggplant (Solanum melongena), containing 34,916 genes, confirming that the diploid gene number in the Solanaceae is around 35,000. Comparative genomic studies with tomato (S. lycopersicum), potato (S. tuberosum) and pepper (Capsicum annuum) highlighted the rapid evolution of miRNA:mRNA regulatory pairs and R-type defense genes in the Solanaceae, and provided a genomic basis for the lack of steroidal glycoalkaloid compounds in the Capsicum genus. Using parsimony methods, we reconstructed the putative chromosomal complements of the key founders of the main Solanaceae clades and the rearrangements that led to the karyotypes of extant species and their ancestors. From 10% to 15% of the genes present in the four genomes were syntenic paralogs (ohnologs) generated by the pre-γ, γ and T paleopolyploidy events, and were enriched in transcription factors. Our data suggest that the basic gene network controlling fruit ripening is conserved in different Solanaceae clades, and that climacteric fruit ripening involves a differential regulation of relatively few components of this network, including CNR and ethylene biosynthetic genes.
-
(2019) Molecular Plant-Microbe Interactions. 32, 8, p. 1013-1025 Abstract
Biofilms formed by bacteria on plant roots play an important role in maintaining an optimal rhizosphere environment that supports plant growth and fitness. Bacillus subtilis is a potent plant growth promoter, forming biofilms that play a key role in protecting the host from fungal and bacterial infections. In this work, we demonstrate that the development of B. subtilis biofilms is antagonized by specific indole derivatives that accumulate during symbiotic interactions with plant hosts. Indole derivatives are more potent signals when the plant polysaccharide xylan serves as a carbon source, a mechanism to sustain beneficial biofilms at a biomass that can be supported by the plant. Moreover, B. subtilis biofilms formed by mutants resistant to indole derivatives become deleterious to the plants due to their capacity to consume and recycle plant polysaccharides. These results demonstrate how a dynamic metabolite - based dialogue can promote homeostasis between plant hosts and their beneficial biofilm communities.
-
(2019) Nature Microbiology. 4, 7, p. 1221-1230 Abstract
How does environmental complexity affect the evolution of single genes? Here, we measured the effects of a set of Bacillus subtilis glutamate dehydrogenase mutants across 19 different environments-from phenotypically homogeneous single-cell populations in liquid media to heterogeneous biofilms, plant roots and soil populations. The effects of individual gene mutations on organismal fitness were highly reproducible in liquid cultures. However, 84% of the tested alleles showed opposing fitness effects under different growth conditions (sign environmental pleiotropy). In colony biofilms and soil samples, different alleles dominated in parallel replica experiments. Accordingly, we found that in these heterogeneous cell populations the fate of mutations was dictated by a combination of selection and drift. The latter relates to programmed prophage excisions that occurred during biofilm development. Overall, for each condition, a wide range of glutamate dehydrogenase mutations persisted and sometimes fixated as a result of the combined action of selection, pleiotropy and chance. However, over longer periods and in multiple environments, nearly all of this diversity would be lost-across all the environments and conditions that we tested, the wild type was the fittest allele.
-
(2019) Plant Physiology. 180, 1, p. 87-108 Abstract
The pollen wall is a complex, durable structure essential for plant reproduction. A substantial portion of phenylpropanoids (e.g. flavonols) produced by pollen grain tapetal cells are deposited in the pollen wall. Transcriptional regulation of pollen wall formation has been studied extensively, and a specific regulatory mechanism for Arabidopsis (Arabidopsis thaliana) pollen flavonol biosynthesis has been postulated. Here, metabolome and transcriptome analyses of anthers from mutant and overexpression genotypes revealed that Arabidopsis MYB99, a putative ortholog of the petunia (Petunia hybrida) floral scent regulator ODORANT1 (ODO1), controls the exclusive production of tapetum diglycosylated flavonols and hydroxycinnamic acid amides. We discovered that MYB99 acts in a regulatory triad with MYB21 and MYB24, orthologs of emission of benzenoids I and II, which together with ODO1 coregulate petunia scent biosynthesis genes. Furthermore, promoter-activation assays showed that MYB99 directs precursor supply from the Calvin cycle and oxidative pentose-phosphate pathway in primary metabolism to phenylpropanoid biosynthesis by controlling TRANSKETOLASE2 expression. We provide a model depicting the relationship between the Arabidopsis MYB triad and structural genes from primary and phenylpropanoid metabolism and compare this mechanism with petunia scent control. The discovery of orthologous protein triads producing related secondary metabolites suggests that analogous regulatory modules exist in other plants and act to regulate various branches of the intricate phenylpropanoid pathway.
-
(2019) Plant Physiology. 180, 1, p. 185-197 Abstract
Thiamin pyrophosphate (TPP) is the active form of vitamin B-1 and works as an essential cofactor for enzymes in key metabolic pathways, such as the tricarboxylic acid (TCA) cycle and the pentose phosphate pathway. Although its action as a coenzyme has been well documented, the roles of TPP in plant metabolism are still not fully understood. Here, we investigated the functions of TPP in the regulation of the metabolic networks during photoperiod transition using previously described Arabidopsis (Arabidopsis thaliana) riboswitch mutant plants, which accumulate thiamin vitamers. The results show that photosynthetic and metabolic phenotypes of TPP riboswitch mutants are photoperiod dependent. Additionally, the mutants are more distinct from control plants when plants are transferred from a short-day to a long-day photoperiod, suggesting that TPP also plays a role in metabolic acclimation to the photoperiod. Control plants showed changes in the amplitude of diurnal oscillation in the levels of metabolites, including glycine, maltose, and fumarate, following the photoperiod transition. Interestingly, many of these changes are not present in TPP riboswitch mutant plants, demonstrating their lack of metabolic flexibility. Our results also indicate a close relationship between photorespiration and the TCA cycle, as TPP riboswitch mutants accumulate less photorespiratory intermediates. This study shows the potential role of vitamin B-1 in the diurnal regulation of central carbon metabolism in plants and the importance of maintaining appropriate cellular levels of thiamin vitamers for the plant's metabolic flexibility and ability to acclimate to an altered photoperiod.
-
(2019) Bio-Protocol. 9, 8, 3211. Abstract
Soil organisms are diverse taxonomically and functionally. This ecosystem experiences highly complex networks of interactions, but may also present functionally independent entities. Plant roots, a metabolically active hotspot in the soil, take an essential part in shaping the rhizosphere. Tracking the dynamics of root-microbe interactions at high spatial resolution is currently limited due to methodological intricacy. In this study, we developed a novel microfluidics-based device enabling direct imaging of root-bacteria interactions in real time.
-
(2019) Plant Physiology. 179, 4, p. 1486-1501 Abstract
The skin of fleshy fruit is typically covered by a thick cuticle. Some fruit species develop different forms of layers directly above their skin. Reticulation, for example, is a specialized suberin-based coating that ornaments some commercially important melon (Cucumis melo) fruit and is an important quality trait. Despite its importance, the structural, molecular, and biochemical features associated with reticulation are not fully understood. Here, we performed a multilevel investigation of structural attributes, chemical composition, and gene expression profiles on a set of reticulated and smooth skin melons. High-resolution microscopy, surface profiling, and histochemical staining assays show that reticulation comprises cells with heavily suberized walls accumulating large amounts of typical suberin monomers, as well as lignified cells localized underneath the specialized suberized cell layer. Reticulated skin was characterized by induced expression of biosynthetic genes acting in the core phenylpropanoid, suberin, lignin, and lignan pathways. Transcripts of genes associated with lipid polymer assembly, cell wall organization, and loosening were highly enriched in reticulated skin tissue. These signatures were exclusive to reticulated structures and absent in both the smooth surfaces observed in between reticulated regions and in the skin of smooth fruit. Our data provide important insights into the molecular and metabolic bases of reticulation and its tight association with skin ligno-suberization during melon fruit development. Moreover, these insights are likely to contribute to melon breeding programs aimed at improving postharvest qualities associated with fleshy fruit surface layer.
-
(2019) Plant, cell & environment. 42, 4, p. 1190-1204 Abstract
Sepals play important roles in protecting inner floral organs from various stresses and in guaranteeing timely flower opening. However, the exact role of sepals in coordinating interior and exterior signals remains elusive. In this study, we functionally characterized a heat shock protein gene, Arabidopsis HSP70-16, in flower opening and mild heat stress response, using combined genetics with anatomic, physiological, chemical, and molecular analyses. We showed that HSP70-16 is required for flower opening and mild heat response. Mutation of HSP70-16 led to a significant reduction in seed setting rate under 22 degrees C, which was more severe at 27 degrees C. Mutation of HSP70-16 also caused postgenital fusion at overlapping tips of two lateral sepals, leading to failed flower opening, abnormal floral organ formation, and impaired fertilization and seed setting. Chemical and anatomic analyses confirmed specific chemical and morphological changes of cuticle property in mutant lateral sepals, and qRT-PCR data indicated that expression levels of different sets of cuticle regulatory and biosynthetic genes were altered in mutants grown at both 22 degrees C and 27 degrees C temperatures. This study provides a link between thermal and developmental perception signals and expands the understanding of the roles of sepal in plant development and heat response.
-
(2019) Nature Microbiology. 4, p. 527-538 Abstract
Tapping into the metabolic crosstalk between a host and its virus can reveal unique strategies employed during infection. Viral infection is a dynamic process that generates an evolving metabolic landscape. Gaining a continuous view into the infection process is highly challenging and is limited by current metabolomics approaches, which typically measure the average of the entire population at various stages of infection. Here, we took an innovative approach to study the metabolic basis of host-virus interactions between the bloom-forming alga Emiliania huxleyi and its specific virus. We combined a classical method in virology, the plaque assay, with advanced mass spectrometry imaging (MSI), an approach we termed 'in plaque-MSI'. Taking advantage of the spatial characteristics of the plaque, we mapped the metabolic landscape induced during infection in a high spatiotemporal resolution, unfolding the infection process in a continuous manner. Further unsupervised spatially aware clustering, combined with known lipid biomarkers, revealed a systematic metabolic shift during infection towards lipids containing the odd-chain fatty acid pentadecanoic acid (C15:0). Applying 'in plaque-MSI' may facilitate the discovery of bioactive compounds that mediate the chemical arms race of host-virus interactions in diverse model systems.
-
(2019) Plant Journal. 97, 4, p. 796-796 Abstract
In the article \u201cThe TranSeq 3-end sequencing method for high-throughput transcriptomics and gene space refinement in plant genomes\u201d, the authors wish to apologize for the inclusion of an erroneous legend to Figure 2 in the above mentioned manuscript. The correct legend is reproduced below. Figure 2. Mapping and Transeq reads to the tomato reference genome (ITAG2.4). (A) Scheme representing the reads obtained from TruSeq (A) and Transeq (B) methods, mapped on a typical gene model. (CD) Examples of expected alignments of reads to the 3UTR of typical genes. (E) Example of reads, which were mapped to unexpected locations in gene models (i.e. to exons or introns, rather than to the 3UTR). (F) Examples of wrongly annotated 3UTR, depicted as broken Transeq reads. (G) Example of orphan reads, which were mapped to a genomic region where there is no gene predicted.
2018
-
(2018) Science Advances. 4, 10, eaau5716. Abstract
Emiliania huxleyi is a bloom-forming microalga that affects the global sulfur cycle by producing large amounts of dimethylsulfoniopropionate (DMSP) and its volatile metabolic product dimethyl sulfide. Top-down regulation of E. huxleyi blooms has been attributed to viruses and grazers; however, the possible involvement of algicidal bacteria in bloom demise has remained elusive. We demonstrate that a Roseobacter strain, Sulfitobacter D7, that we isolated from a North Atlantic E. huxleyi bloom, exhibited algicidal effects against E. huxleyi upon coculturing. Both the alga and the bacterium were found to co-occur during a natural E. huxleyi bloom, therefore establishing this host-pathogen system as an attractive, ecologically relevant model for studying algal-bacterial interactions in the oceans. During interaction, Sulfitobacter D7 consumed and metabolized algal DMSP to produce high amounts of methanethiol, an alternative product of DMSP catabolism. We revealed a unique strain-specific response, in which E. huxleyi strains that exuded higher amounts of DMSP were more susceptible to Sulfitobacter D7 infection. Intriguingly, exogenous application of DMSP enhanced bacterial virulence and induced susceptibility in an algal strain typically resistant to the bacterial pathogen. This enhanced virulence was highly specific to DMSP compared to addition of propionate and glycerol which had no effect on bacterial virulence. We propose a novel function for DMSP, in addition to its central role in mutualistic interactions among marine organisms, as a mediator of bacterial virulence that may regulate E. huxleyi blooms.
-
(2018) Plant Journal. 96, 1, p. 223-232 Abstract
High-throughput RNA sequencing has proven invaluable not only to explore gene expression but also for both gene prediction and genome annotation. However, RNA sequencing, carried out on tens or even hundreds of samples, requires easy and cost-effective sample preparation methods using minute RNA amounts. Here, we present TranSeq, a high-throughput 3'-end sequencing procedure that requires 10- to 20-fold fewer sequence reads than the current transcriptomics procedures. TranSeq significantly reduces costs and allows a greater increase in size of sample sets analyzed in a single experiment. Moreover, in comparison with other 3'-end sequencing methods reported to date, we demonstrate here the reliability and immediate applicability of TranSeq and show that it not only provides accurate transcriptome profiles but also produces precise expression measurements of specific gene family members possessing high sequence similarity. This is difficult to achieve in standard RNA-seq methods, in which sequence reads cover the entire transcript. Furthermore, mapping TranSeq reads to the reference tomato genome facilitated the annotation of new transcripts improving >45% of the existing gene models. Hence, we anticipate that using TranSeq will boost large-scale transcriptome assays and increase the spatial and temporal resolution of gene expression data, in both model and non-model plant species. Moreover, as already performed for tomato (ITAG3.0; www.solgenomics.net), we strongly advocate its integration into current and future genome annotations.
-
(2018) Analytical Chemistry. 90, 17, p. 10231-10238 Abstract
Regardless of major advances in mass spectrometry imaging (MSI), there are three intrinsic limitations associated with MSI, including intricate molecular identification, low molecular coverage, and incapability to obtain "true" spatial distribution due to isobaric and particularly isomeric ions interference. We developed a novel approach that integrates in vivo dual isotope labeling of precursor metabolites with MSI (DLEMMA-MS-Imaging) for identification of spatially localized metabolite and metabolic network map reconstruction. In a proof-of-concept study, we identified 59 and 6 novel metabolites in lemna and tomato fruit, respectively. Significantly, 20-30% of the identified metabolites were found to contain at least one structural isomer that displays a different distribution pattern. The notable feature of this approach is the ability to differentiate localization of structural isomers, hence, providing the "true" distribution of molecules of interest.
-
(2018) Plant Biotechnology Journal. 16, 8, p. 1502-1513 Abstract
Early blight (EB), caused by Alternaria solani, is a major threat to global tomato production. In comparison with cultivated tomato (Solanum lycopersicum), a wild relative, S. arcanum exhibits strong resistance against EB. However, molecular cascades operating during EB resistance in wild or cultivated tomato plants are largely obscure. Here, we provide novel insight into spatio-temporal molecular events in S. arcanum against A. solani. Transcriptome and co-expression analysis presented 33-WRKYs as promising candidates of which 12 SaWRKYs displayed differential expression patterns in resistant and susceptible accessions during EB disease progression. Among these, SaWRKY1 exhibited induced expression with significant modulation in xyloglucan endotrans hydrolase 5 (XTH5) and MYB2 expressions that correlated with the disease phenotypes. Electro-mobility shift assay confirmed physical interaction of recombinant SaWRKY1 to SaXTH5 and SaMYB2 promoters. Comparative WRKY1 promoter analysis between resistant and susceptible plants revealed the presence of crucial motifs for defence mechanism exclusively in resistant accession. Additionally, many defence-related genes displayed significant expression variations in both the accessions. Further, WRKY1 overexpressing transgenic plants exhibited higher levels of EB resistance while RNAi silencing lines had increased susceptibility to A. solani with altered expression of XTH5 and MYB2. Overall, these findings demonstrate the positive influence of WRKY1 in improving EB resistance in wild tomato and this could be further utilized as a potential target through genetic engineering to augment protection against A. solani in crop plants.
-
(2018) Cellulose. 25, p. 3827-3841 Abstract
The awn in stork's bill (Erodium gruinum) seed dispersal units coils as it dries. This hygroscopic movement promotes the dissemination and sowing of the seeds. Here we aimed to understand the movement rate, by correlating water dynamics within the awn to the spatial variation in the chemical composition of the awn's cell walls. We followed the hygroscopic movement visually and measured the kinetics of water adsorption-desorption in segments along the awn. We integrated data from white light, fluorescence, and Raman microscopy, and Matrix Assisted Laser Desorption Ionization imaging to characterize the micro chemical makeup of the awn. We hydrolyzed awns and followed the change in the cell walls' composition and the effect on the movement. We found that the coil's top segment is more sensitive to humidity changes than the coil's base. At the top part of the coil, we found high concentration of modified lignin. In comparison, the base part of the awn contained lower concentration of mostly unmodified lignin. Ferulic acid concentration increased along the awn, apparently cross-linking hemicellulose and strengthening cell-to-cell adhesion. We propose that the high concentration of modified lignin at the coil's top increased the hydrophobicity of the cell walls, allowed faster water molecules dynamics; thus inducing fast reaction to ambient humidity. Strong cell-to-cell adhesion in this region created a durable tissue required for the awn's repeated movement that is induced by the diurnal humidity cycles.
-
(2018) Plant Journal. 95, 1, p. 5-16 Abstract
Current breeding relies mostly on random mutagenesis and recombination to generate novel genetic variation. However, targeted genome editing is becoming an increasingly important tool for precise plant breeding. Using the CRISPR-Cas system combined with the bean yellow dwarf virus rolling circle replicon, we optimized a method for targeted mutagenesis and gene replacement in tomato. The carotenoid isomerase (CRTISO) and phytoene synthase 1 (PSY1) genes from the carotenoid biosynthesis pathway were chosen as targets due to their easily detectable change of phenotype. We took advantage of the geminiviral replicon amplification as a means to provide a large amount of donor template for the repair of a CRISPR-Cas-induced DNA double-strand break (DSB) in the target gene, via homologous recombination (HR). Mutagenesis experiments, performed in the Micro-Tom variety, achieved precise modification of the CRTISO and PSY1 loci at an efficiency of up to 90%. In the gene targeting (GT) experiments, our target was a fast-neutron-induced crtiso allele that contained a 281-bp deletion. This deletion was repaired with the wild-type sequence through HR between the CRISPR-Cas-induced DSB in the crtiso target and the amplified donor in 25% of the plants transformed. This shows that efficient GT can be achieved in the absence of selection markers or reporters using a single and modular construct that is adaptable to other tomato targets and other crops.
-
(2018) Molecules. 23, 7, 1817. Abstract
Tea plants produce extremely diverse and abundant specialized metabolites, the types and levels of which are developmentally and environmentally regulated. However, little is known about how developmental cues affect the synthesis of many of these molecules. In this study, we conducted a comparative profiling of specialized metabolites from six different tissues in a premium oolong tea cultivar, Tieguanyin, which is gaining worldwide popularity due to its uniquely rich flavors and health benefits. UPLC-QTOF MS combined with multivariate analyses tentatively identified 68 metabolites belonging to 11 metabolite classes, which exhibited sharp variations among tissues. Several metabolite classes, such as flavonoids, alkaloids, and hydroxycinnamic acid amides were detected predominantly in certain plant tissues. In particular, tricoumaroyl spermidine and dicoumaroyl putrescine were discovered as unique tea flower metabolites. This study offers novel insights into tissue-specific specialized metabolism in Tieguanyin, which provides a good reference point to explore gene-metabolite relationships in this cultivar.
-
(2018) Nature Communications. 9, 2168. Abstract
Oxygenic photosynthetic organisms perform solar energy conversion of water and CO2 to O-2 and sugar at a broad range of wavelengths and light intensities. These cells also metabolize sugars using a respiratory system that functionally overlaps the photosynthetic apparatus. In this study, we describe the harvesting of photocurrent used for hydrogen production from live cyanobacteria. A non-harmful gentle physical treatment of the cyanobacterial cells enables light-driven electron transfer by an endogenous mediator to a graphite electrode in a bio-photoelectrochemical cell, without the addition of sacrificial electron donors or acceptors. We show that the photocurrent is derived from photosystem I and that the electrons originate from carbohydrates digested by the respiratory system. Finally, the current is utilized for hydrogen evolution on the cathode at a bias of 0.65 V. Taken together, we present a bio-photoelectrochemical system where live cyanobacteria produce stable photocurrent that can generate hydrogen.
-
(2018) Proceedings of the National Academy of Sciences of the United States of America. 115, 23, p. E5419-E5428 Abstract
Thousands of specialized, steroidal metabolites are found in a wide spectrum of plants. These include the steroidal glycoalkaloids (SGAs), produced primarily by most species of the genus Solanum, and metabolites belonging to the steroidal saponins class that are widespread throughout the plant kingdom. SGAs play a protective role in plants and have potent activity in mammals, including antinutritional effects in humans. The presence or absence of the double bond at the C-5,6 position (unsaturated and saturated, respectively) creates vast structural diversity within this metabolite class and determines the degree of SGA toxicity. For many years, the elimination of the double bond from unsaturated SGAs was presumed to occur through a single hydrogenation step. In contrast to this prior assumption, here, we show that the tomato GLYCOALKALOID METABOLISM25 (GAME25), a short-chain dehydrogenase/reductase, catalyzes the first of three prospective reactions required to reduce the C-5,6 double bond in dehydrotomatidine to form tomatidine. The recombinant GAME25 enzyme displayed 3β-hydroxysteroid dehydrogenase/ Δ
5,4 isomerase activity not only on diverse steroidal alkaloid aglycone substrates but also on steroidal saponin aglycones. Notably, GAME25 down-regulation rerouted the entire tomato SGA repertoire toward the dehydro-SGAs branch rather than forming the typically abundant saturated α-tomatine derivatives. Overexpress-ing the tomato GAME25 in the tomato plant resulted in significant accumulation of α-tomatine in ripe fruit, while heterologous expression in cultivated eggplant generated saturated SGAs and atypical saturated steroidal saponin glycosides. This study demonstrates how a single scaffold modification of steroidal metabolites in plants results in extensive structural diversity and modulation of product toxicity. -
(2018) Plant Metabolomics. António C.(eds.). p. 297-310 (trueMethods in Molecular Biology). Abstract
In the last decade, plant genome-scale modeling has developed rapidly and modeling efforts have advanced from representing metabolic behavior of plant heterotrophic cell suspensions to studying the complex interplay of cell types, tissues, and organs. A crucial driving force for such developments is the availability and integration of \u201comics\u201d data (e.g., transcriptomics, proteomics, and metabolomics) which enable the reconstruction, extraction, and application of context-specific metabolic networks. In this chapter, we demonstrate a workflow to integrate gas chromatography coupled to mass spectrometry (GC-MS)-based metabolomics data of tomato fruit pericarp (flesh) tissue, at five developmental stages, with a genome-scale reconstruction of tomato metabolism. This method allows for the extraction of context-specific networks reflecting changing activities of metabolic pathways throughout fruit development and maturation.
-
(2018) Plant Metabolomics. António C.(eds.). New York, NY: . p. 193-206 (trueMethods in Molecular Biology). Abstract
Databases containing mass spectrometry (MS) spectral data (i.e., MS reference libraries) are currently the most reliable and widely accepted approach to annotate unknown features in MS-based metabolomics. While for gas chromatography (GC)-MS data, a strategy for collecting, storing, and comparing to raw data has been established, this is not the case for liquid chromatography (LC)-MS data. Here, we present our approach for high-throughput data collection and automated MS reference library generation, as applied recently in the WEIZMASS library of plant metabolites. Methodologies to experimentally generate pools of chemical standards and computationally convert them into a unique source of reference data are detailed.
-
(2018) ACS Chemical Biology. 13, 1, p. 247-252 Abstract
The bacterial plant pathogen Agrobacterium tumefaciens uses quorum sensing (QS) in order to regulate the transfer of DNA into the host plant genome, and this results in the induction of crown gall tumors. The deleterious results of these infections are widespread and affect many species of fruit and crops. In order to further our understanding, of this process and to provide potential solutions, we evaluated a library of 3800 natural products from plant sources and identified potent compounds that are able to strongly modulate plant-bacterial interactions.
-
(2018) Molecular Plant. 11, 1, p. 7-22 Abstract
Betalains are tyrosine-derived red-violet and yellow pigments found exclusively in plants of the Caryophyllales order, which have drawn both scientific and economic interest. Nevertheless, research into betalain chemistry, biochemistry, and function has been limited as comparison with other major classes of plant pigments such as anthocyanins and carotenoids. The core biosynthetic pathway of this pigment class has only been fully elucidated in the past few years, opening up the possibility for betalain pigment engineering in plants and microbes. In this review, we discuss betalain metabolism in light of recent advances in the field, with a current survey of characterized genes and enzymes that take part in betalain biosynthesis, catabolism, and transcriptional regulation, and an outlook of what is yet to be discovered. A broad view of currently used and potential new sources for betalains, including utilization of natural sources or metabolic engineering, is provided together with a summary of potential applications of betalains in research and commercial use.
-
(2018) Molecular Plant. 11, 1, p. 189-204 Abstract
Betalains are tyrosine-derived pigments that occur solely in one plant order, the Caryophyllales, where they largely replace the anthocyanins in a mutually exclusive manner. In this study, we conducted multi-species transcriptome and metabolic profiling in Mirabilis jalapa and additional betalain-producing species to identify candidate genes possibly involved in betalain biosynthesis. Among the candidates identified, betalain-related cytochrome P450 and glucosyltransferase-type genes, which catalyze tyrosine hydroxylation or (hydroxy) cinnamoyl-glucose formation, respectively, were further functionally characterized. We detected the expression of genes in the flavonoid/anthocyanin biosynthetic pathways as well as their metabolite intermediates in betalain-accumulating M. jalapa flowers, and found that the anthocyanin-related gene ANTHOCYANIDIN SYNTHASE (MjANS) is highly expressed in the betalain-accumulating petals. However, it appears that MjANS contains a significant deletion in a region spanning the corresponding enzyme active site. These findings provide novel insights into betalain biosynthesis and a possible explanation for how anthocyanins have been lost in this plant species. Our study also implies a complex, non-uniform history for the loss of anthocyanin production across betalain producers, previously assumed to be strictly due to diminished expression of anthocyanin-related genes.
2017
-
(2017) Plant Cell. 29, 12, p. 3186-3197 Abstract
Plants employ stomatal closure and reduced growth to avoid water deficiency damage. Reduced levels of the growth-promoting hormone gibberellin (GA) lead to increased tolerance to water deficit, but the underlying mechanism is unknown. Here, we show that the tomato (Solanumlycopersicum) DELLA protein PROCERA (PRO), a negative regulator of GA signaling, acts in guard cells to promote stomatal closure and reduce water loss in response to water deficiency by increasing abscisic acid (ABA) sensitivity. The loss-of-function pro mutant exhibited increased stomatal conductance and rapid wilting under water deficit stress. Transgenic tomato overexpressing constitutively active stable DELLA proteins (S-della) displayed the opposite phenotype. The effects of S-della on stomatal aperture and water loss were strongly suppressed in the ABA-deficient mutant sitiens, indicating that these effects of S-della are ABA dependent. While DELLA had no effect on ABA levels, guard cell ABA responsiveness was increased in S-della and reduced in pro plants compared with the wild type. Expressing S-della under the control of a guard-cell-specific promoter was sufficient to increase stomatal sensitivity to ABA and to reduce water loss under water deficit stress but had no effect on leaf size. This result indicates that DELLA promotes stomatal closure independently of its effect on growth.
-
(2017) Plant Molecular Biology. 95, p. 411-423 Abstract
Key message: Exploration with high throughput leaf metabolomics along with functional genomics in wild tomato unreveal potential role of steroidal glyco-alkaloids and phenylpropanoids during early blight resistance. Abstract: Alternaria solani severely affects tomato (Solanum lycopersicum L.) yield causing early blight (EB) disease in tropical environment. Wild relative, Solanum arcanum Peralta could be a potential source of EB resistance; however, its underlying molecular mechanism largely remains unexplored. Hence, non-targeted metabolomics was applied on resistant and susceptible S. arcanum accessions upon A. solani inoculation to unravel metabolic dynamics during different stages of disease progression. Total 2047 potential metabolite peaks (mass signals) were detected of which 681 and 684 metabolites revealed significant modulation and clear differentiation in resistant and susceptible accessions, respectively. Majority of the EB-triggered metabolic changes were active from steroidal glycol-alkaloid (SGA), lignin and flavonoid biosynthetic pathways. Further, biochemical and gene expression analyses of key enzymes from these pathways positively correlated with phenotypic variation in the S. arcanum accessions indicating their potential role in EB. Additionally, transcription factors regulating lignin biosynthesis were also up-regulated in resistant plants and electrophoretic mobility shift assay revealed sequence-specific binding of rSaWRKY1 with MYB20 promoter. Moreover, transcript accumulation of key genes from phenylpropanoid and SGA pathways along with WRKY and MYB in WRKY1 transgenic tomato lines supported above findings. Overall, this study highlights vital roles of SGAs as phytoalexins and phenylpropanoids along with lignin accumulation unrevealing possible mechanistic basis of EB resistance in wild tomato.
-
(2017) Journal of Experimental Botany. 68, 19, p. 5389-5400 Abstract
The assembly of the lipophilic cuticle layer and suberin lamellae, approximately 450 million years ago, was a major evolutionary development that enabled plants to colonize terrestrial habitats. The cuticle layer is composed of cutin polyester and embedded cuticular waxes, whereas the suberin lamellae consist of very long chain fatty acid derivatives, glycerol, and phenolics cross-linked with alkyl ferulate-embedded waxes. Due to their substantial biological roles in plant life, the mechanisms underlying the assembly of these structures have been extensively investigated. In the last decade, the introduction of `omics' approaches, including genomics, transcriptomics, proteomics, and metabolomics, have been key in the identification of novel genetic and chemical elements involved in the formation and function of the cuticle layer and suberin lamellae. This review summarizes contemporary studies that utilized various large-scale, `omics' strategies in combination with novel technologies to unravel how building blocks and polymers of these lipophilic barriers are made, and moreover linking structure to function along developmental programs and stress responses. We anticipate that the studies discussed here will inspire scientists studying lipophilic barriers to integrate complementary `omics' approaches in their efforts to tackle as yet unresolved questions and engage the main challenges of the field to date.
-
(2017) Molecular Plant-Microbe Interactions. 30, 11, p. 876-885 Abstract
Steroidal glycoalkaloids (SGAs) are major secondary metabolites constitutively produced in cultivated potato Solanum tuberosum, and alpha-solanine and alpha-chaconine are the most abundant SGAs. SGAs are toxic to humans at high levels but their role in plant protection against pests and pathogens is yet to be established. In this study, levels of SGAs in potato were reduced by RNA interference (RNAi)-mediated silencing of GLYCOALKALOID METABOLISM 4 (GAME4)-a gene encoding cytochrome P450, involved in an oxidation step in the conversion of cholesterol to SGA aglycones. Two GAME4 RNAi lines, T8 and T9, were used to investigate the effects of manipulation of the SGA biosynthetic pathway in potato. Growth and development of an insect pest, Colorado potato beetle (CPB), were affected in these lines. While no effect on CPB leaf consumption or weight gain was observed, early instar larval death and accelerated development of the insect was found while feeding on leaves of GAME4 RNAi lines. Modulation of SGA biosynthetic pathway in GAME4 RNAi plants was associated with a larger alteration to the metabolite profile, including increased levels of one or both the steroidal saponins or phytoecdysteroids, which could affect insect mortality as well as development time. Colonization by Verticillium dahliae on GAME4 RNAi plants was also tested. There were increased pathogen levels in the T8 GAME4 RNAi line but not in the T9. Metabolite differences between T8 and T9 were found and may have contributed to differences in V. dahliae infection. Drought responses created by osmotic stress were not affected by modulation of SGA biosynthetic pathway in potato.
-
(2017) Journal of Integrative Plant Biology. 59, 9, p. 612-628 Abstract
Lipid and phenolic metabolism are important for pollen exine formation. In Arabidopsis, polyketide synthases (PKSs) are essential for both sporopollenin biosynthesis and exine formation. Here, we characterized the role of a polyketide synthase (OsPKS2) in male reproduction of rice (Oryza sativa). Recombinant OsPKS2 catalyzed the condensation of fatty acyl-CoA with malonyl-CoA to generate triketide and tetraketide α-pyrones, the main components of pollen exine. Indeed, the ospks2 mutant had defective exine patterning and was male sterile. However, the mutant showed no significant reduction in sporopollenin accumulation. Compared with the WT (wild type), ospks2 displayed unconfined and amorphous tectum and nexine layers in the exine, and less organized Ubisch bodies. Like the pksb/lap5 mutant of the Arabidopsis ortholog, ospks2 showed broad alterations in the profiles of anther-related phenolic compounds. However, unlike pksb/lap5, in which most detected phenolics were substantially decreased, ospks2 accumulated higher levels of phenolics. Based on these results and our observation that OsPKS2 is unable to fully restore the exine defects in the pksb/lap5, we propose that PKS proteins have functionally diversified during evolution. Collectively, our results suggest that PKSs represent a conserved and diversified biochemical pathway for anther and pollen development in higher plants.
-
(2017) Current Biology. 27, 16, p. 2559-2567 Abstract
The factors rate-limiting growth of photosynthetic organisms under optimal conditions are controversial [18]. Adaptation to extreme environments is usually accompanied by reduced performance under optimal conditions [9, 10]. However, the green alga Chlorella ohadii, isolated from a harsh desert biological soil crust [1117], does not obey this rule. In addition to resistance to photodamage [17, 18], it performs the fastest growth ever reported for photosynthetic eukaryotes. A multiphasic growth pattern (very fast growth [phase I], followed by growth retardation [phase II] and additional fast growth [phase III]) observed under constant illumination and temperature indicates synchronization of the algal population. Large physiological changes at transitions between growth phases suggest metabolic shifts. Indeed, metabolome analyses at points along the growth phases revealed large changes in the levels of many metabolites during growth with an overall rise during phase I and decline in phase II. Multivariate analysis of the metabolome data highlighted growth phase as the main factor contributing to observed metabolite variance. The analyses identified putrescine as the strongest predictive metabolite for growth phase and a putative growth regulator. Indeed, extracellular additions of polyamines strongly affected the growth rate in phase I and the growth arrest in phase II, with a marked effect on O2 exchange. Our data implicate polyamines as the signals harmonizing metabolic shifts and suggest that metabolic flexibility enables the immense growth capabilities of C. ohadii. The data provide a new dimension to current models focusing on growth-limiting processes in photosynthetic organisms where the anabolic and catabolic metabolisms must be strictly regulated.
-
(2017) Proceedings of the National Academy of Sciences of the United States of America. 114, 34, p. 9062-9067 Abstract
Betalains are tyrosine-derived red-violet and yellow plant pigments known for their antioxidant activity, health-promoting properties, and wide use as food colorants and dietary supplements. By coexpressing three genes of the recently elucidated betalain biosynthetic pathway, we demonstrate the heterologous production of these pigments in a variety of plants, including three major food crops: tomato, potato, and eggplant, and the economically important ornamental petunia. Combinatorial expression of betalain-related genes also allowed the engineering of tobacco plants and cell cultures to produce a palette of unique colors. Furthermore, betalain-producing tobacco plants exhibited significantly increased resistance toward gray mold (Botrytis cinerea), a pathogen responsible for major losses in agricultural produce. Heterologous production of betalains is thus anticipated to enable biofortification of essential foods, development of new ornamental varieties, and innovative sources for commercial betalain production, as well as utilization of these pigments in crop protection.
-
(2017) Plant Physiology. 174, p. 1322-1333 Abstract
S-Methylmethionine (SMM) was suggested previously to participate in the metabolism of methionine (Met) in seeds. To further reveal its roles, we had previously produced transgenic Arabidopsis (Arabidopsis thaliana) RNA interference (RNAi) seeds with lower transcript expression of CYSTATHIONINE g-SYNTHASE (AtCGS), Mets main regulatory enzyme. Unexpectedly, these seeds accumulated significantly higher levels of Met compared with control seeds through an as yet unknown mechanism. Here, transcript and metabolic analyses coupled with isotope-labeled [13 C]SMM and [13 C]Met feeding experiments enabled us to reveal that SMM that was synthesized in rosette leaves of RNAi plants significantly contributed to the accumulation of Met in their seeds at late stages of development. Seed-specific repression of AtCGS in RNAi seeds triggered the induction of genes operating in the SMM cycle of rosette leaves, leading to elevated transport of SMM toward the seeds, where higher reconversion rates of SMM to Met were detected. The metabolic rearrangements in RNAi seeds resulted in an altered sulfur-associated metabolism, such as lower amounts of Cys and glutathione, as well as a differential composition of glucosinolates. Together, the data propose a novel cross talk existing between seeds and rosette leaves along with mutual effects between the Asp family and SMM pathways operating in these tissues. They also shed light on the effects of higher Met levels on seed physiology and behavior.
-
(2017) Nucleic Acids Research. 45, 12, p. 7049-7063 Abstract
The existence of Metabolic Gene Clusters (MGCs) in plant genomes has recently raised increased interest. Thus far, MGCs were commonly identified for pathways of specialized metabolism, mostly those associated with terpene type products. For efficient identification of novel MGCs, computational approaches are essential. Here, we present Phyto- Clust; a tool for the detection of candidate MGCs in plant genomes. The algorithm employs a collection of enzyme families related to plant specialized metabolism, translated into hidden Markov models, to mine given genome sequences for physically colocalized metabolic enzymes. Our tool accurately identifies previously characterized plant MGCs. An exhaustive search of 31 plant genomes detected 1232 and 5531 putative gene cluster types and candidates, respectively. Clustering analysis of putative MGCs types by species reflected plant taxonomy. Furthermore, enrichment analysis revealed taxa- And species-specific enrichment of certain enzyme families in MGCs. When operating through our webinterface, PhytoClust users can mine a genome either based on a list of known cluster types or by defining new cluster rules. Moreover, for selected plant species, the output can be complemented by coexpression analysis. Altogether, we envisage Phyto-Clust to enhance novel MGCs discovery which will in turn impact the exploration of plant metabolism.
-
(2017) Plant Cell And Environment. 40, 7, p. 1189-1196 Abstract
Silicate minerals are dominant soil components. Thus, plant roots are constantly exposed to silicic acid. High silicon intake, enabled by root silicon transporters, correlates with increased tolerance to many biotic and abiotic stresses. However, the underlying protection mechanisms are largely unknown. Here, we tested the hypothesis that silicon interacts with the plant hormones, and specifically, that silicic acid intake increases cytokinin biosynthesis. The reaction of sorghum (Sorghum bicolor) and Arabidopsis plants, modified to absorb high versus low amounts of silicon, to dark-induced senescence was monitored, by quantifying expression levels of genes along the senescence pathway and measuring tissue cytokinin levels. In both species, detached leaves with high silicon content senesced more slowly than leaves that were not exposed to silicic acid. Expression levels of genes along the senescence pathway suggested increased cytokinin biosynthesis with silicon exposure. Mass spectrometry measurements of cytokinin suggested a positive correlation between silicon exposure and active cytokinin concentrations. Our results indicate a similar reaction to silicon treatment in distantly related plants, proposing a general function of silicon as a stress reliever, acting via increased cytokinin biosynthesis.
-
-
(2017) Plant Journal. 90, 4, p. 788-807 Abstract
Soil communities are diverse taxonomically and functionally. This ecosystem experiences highly complex networks of interactions, but may also present functionally independent entities. Plant roots, a metabolically active hotspot in the soil, take an essential part in below-ground interactions. While plants are known to release an extremely high portion of the fixated carbon to the soil, less information is known about the composition and role of C-containing compounds in the rhizosphere, in particular those involved in chemical communication. Specialized metabolites (or secondary metabolites) produced by plants and their associated microbes have a critical role in various biological activities that modulate the behavior of neighboring organisms. Thus, elucidating the chemical composition and function of specialized metabolites in the rhizosphere is a key element in understanding interactions in this below-ground environment. Here, we review key classes of specialized metabolites that occur as mostly non-volatile compounds in root exudates or are emitted as volatile organic compounds (VOCs). The role of these metabolites in below-ground interactions and response to nutrient deficiency, as well as their tissue and cell type-specific biosynthesis and release are discussed in detail.
-
(2017) Journal of Experimental Botany. 68, 11, p. 2703-2716 Abstract
The cuticle is a specialized cell wall layer that covers the outermost surface of the epidermal cells and has important implications for fruit permeability and pathogen susceptibility. In order to decipher the genetic control of tomato fruit cuticle composition, an introgression line (IL) population derived from a biparental cross between Solanum pennellii (LA0716) and the Solanum lycopersicum cultivar M82 was used to build a first map of associated quantitative trait loci (QTLs). A total of 24 cuticular waxes and 26 cutin monomers were determined. They showed changes associated with 18 genomic regions distributed in nine chromosomes affecting 19 ILs. Out of the five main fruit cuticular components described for the wild species S. pennellii, three of them were associated with IL3.4, IL12.1, and IL7.4.1, causing an increase in n-alkanes (≥C 30), a decrease in amyrin content, and a decrease in cuticle thickness of ∼50%, respectively. Moreover, we also found a QTL associated with increased levels of amyrins in IL3.4. In addition, we propose some candidate genes on the basis of their differential gene expression and single nucleotide polymorphism variability between the introgressed and the recurrent alleles, which will be the subjects of further investigation.
-
(2017) Proceedings of the National Academy of Sciences of the United States of America. 114, 17, p. 4549-4554 Abstract
Plant roots play a dominant role in shaping the rhizosphere, the environment in which interaction with diverse microorganisms occurs. Tracking the dynamics of root-microbe interactions at high spatial resolution is currently limited because of methodological intricacy. Here, we describe a microfluidics-based approach enabling direct imaging of root-bacteria interactions in real time. The microfluidic device, which we termed tracking root interactions system (TRIS), consists of nine independent chambers that can be monitored in parallel. The principal assay reported here monitors behavior of fluorescently labeled Bacillus subtilis as it colonizes the root of Arabidopsis thaliana within the TRIS device. Our results show a distinct chemotactic behavior of B. subtilis toward a particular root segment, which we identify as the root elongation zone, followed by rapid colonization of that same segment over the first 6 h of root-bacteria interaction. Using dual inoculation experiments, we further show active exclusion of Escherichia coli cells from the root surface after B. subtilis colonization, suggesting a possible protection mechanism against root pathogens. Furthermore, we assembled a double-channel TRIS device that allows simultaneous tracking of two root systems in one chamber and performed real-time monitoring of bacterial preference between WT and mutant root genotypes. Thus, the TRIS microfluidics device provides unique insights into the microscale microbial ecology of the complex root microenvironment and is, therefore, likely to enhance the current rate of discoveries in this momentous field of research.
-
(2017) Plant Journal. 90, 2, p. 396-417 Abstract
Current innovations in mass-spectrometry-based technologies allow deep coverage of protein expression. Despite its immense value and in contrast to transcriptomics, only a handful of studies in crop plants engaged with global proteome assays. Here, we present large-scale shotgun proteomics profiling of tomato fruit across two key tissues and five developmental stages. A total of 7738 individual protein groups were identified and reliably measured at least in one of the analyzed tissues or stages. The depth of our assay enabled identification of 61 differentially expressed transcription factors, including renowned ripening-related regulators and elements of ethylene signaling. Significantly, we measured proteins involved in 83% of all predicted enzymatic reactions in the tomato metabolic network. Hence, proteins representing almost the complete set of reactions in major metabolic pathways were identified, including the cytosolic and plastidic isoprenoid and the phenylpropanoid pathways. Furthermore, the data allowed us to discern between protein isoforms according to expression patterns, which is most significant in light of the weak transcript-protein expression correspondence. Finally, visualization of changes in protein abundance associated with a particular process provided us with a unique view of skin and flesh tissues in developing fruit. This study adds a new dimension to the existing genomic, transcriptomic and metabolomic resources. It is therefore likely to promote translational and post-translational research in tomato and additional species, which is presently focused on transcription.
-
(2017) Nature Communications. 8, 14153. Abstract
Triterpenoids are widespread bioactive plant defence compounds with potential use as pharmaceuticals, pesticides and other high-value products. Enzymes belonging to the cytochrome P450 family have an essential role in creating the immense structural diversity of triterpenoids across the plant kingdom. However, for many triterpenoid oxidation reactions, the corresponding enzyme remains unknown. Here we characterize CYP716 enzymes from different medicinal plant species by heterologous expression in engineered yeasts and report ten hitherto unreported triterpenoid oxidation activities, including a cyclization reaction, leading to a triterpenoid lactone. Kingdom-wide phylogenetic analysis of over 400 CYP716s from over 200 plant species reveals details of their evolution and suggests that in eudicots the CYP716s evolved specifically towards triterpenoid biosynthesis. Our findings underscore the great potential of CYP716s as a source for generating triterpenoid structural diversity and expand the toolbox available for synthetic biology programmes for sustainable production of bioactive plant triterpenoids.
-
(2017) Nature Plants. 3, 16205. Abstract
The amount of cholesterol made by many plants is not negligible. Whereas cholesterogenesis in animals was elucidated decades ago, the plant pathway has remained enigmatic. Among other roles, cholesterol is a key precursor for thousands of bioactive plant metabolites, including the well-known Solanum steroidal glycoalkaloids. Integrating tomato transcript and protein co-expression data revealed candidate genes putatively associated with cholesterol biosynthesis. A combination of functional assays including gene silencing, examination of recombinant enzyme activity and yeast mutant complementation suggests the cholesterol pathway comprises 12 enzymes acting in 10 steps. It appears that half of the cholesterogenesis-specific enzymes evolved through gene duplication and divergence from phytosterol biosynthetic enzymes, whereas others act reciprocally in both cholesterol and phytosterol metabolism. Our findings provide a unique example of nature's capacity to exploit existing protein folds and catalytic machineries from primary metabolism to assemble a new, multi-step metabolic pathway. Finally, the engineering of a 'high-cholesterol' model plant underscores the future value of our gene toolbox to produce high-value steroidal compounds via synthetic biology.
2016
-
(2016) Plant Biotechnology Journal. 14, 12, p. 2300-2309 Abstract
Targeted manipulation of phenylalanine (Phe) synthesis is a potentially powerful strategy to boost biologically and economically important metabolites, including phenylpropanoids, aromatic volatiles and other specialized plant metabolites. Here, we use two transgenes to significantly increase the levels of aromatic amino acids, tomato flavour-associated volatiles and antioxidant phenylpropanoids. Overexpression of the petunia MYB transcript factor, ODORANT1 (ODO1), combined with expression of a feedback-insensitive E.coli 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (AroG), altered the levels of multiple primary and secondary metabolites in tomato fruit, boosting levels of multiple secondary metabolites. Our results indicate that coexpression of AroG and ODO1 has a dual effect on Phe and related biosynthetic pathways: (i) positively impacting tyrosine (Tyr) and antioxidant related metabolites, including ones derived from coumaric acid and ferulic acid; (ii) negatively impacting other downstream secondary metabolites of the Phe pathway, including kaempferol-, naringenin- and quercetin-derived metabolites, as well as aromatic volatiles. The metabolite profiles were distinct from those obtained with either single transgene. In addition to providing fruits that are increased in flavour and nutritional chemicals, coexpression of the two genes provides insights into regulation of branches of phenylpropanoid metabolic pathways.
-
(2016) Planta Medica. 82, Abstract
Betalains are tyrosine-derived red-violet and yellow pigments found in plants only of the Caryophyllales order, which hold both scientific and economic values. Their pH in-dependence and high stability make them a natural pigment of choice for food industries. Their strong antioxidant activities have prompted research into their potential health-promoting properties and led to commercialization of a variety of betalain-based dietary supplements. While the biosynthetic process of many natural colorants is well understood, many questions remain open with regards to biosynthesis of betalains. Transcriptome analysis of the betalain-producing plants red beet (Beta vulgaris) and four o'clocks (Mirabilis jalapa) led us to the identification of a novel betalain-related cytochrome P450-type gene, CYP76AD6, which catalyzes the first step in the betalain biosynthetic pathway, namely the 3-hydroxylation of tyrosine to form l-3,4-dihydroxyphenylalanine (L-DOPA) [1]. L-DOPA formation in red beet was found to be redundantly catalyzed by CYP76AD6 together with a known betalain-related enzyme, CYP76AD1. Gene silencing assays and recombinant expression in Nicotiana benthamiana and yeast cells revealed that while CYP76AD1 catalyzes both L-DOPA formation and its subsequent conversion to cyclo-DOPA, CYP76AD6 uniquely exhibits only tyrosine hydroxylase activity. The new findings enabled us to engineer stable betalain production through heterologous expression of three genes taking part in the fully decoded betalain biosynthetic pathway, namely CYP76AD1 and DOPA 4, 5-dioxygenase (BvDODA1) from red beet, and cyclo-DOPA-5-O-glucosyltransferase from four o'clocks (cDOPA5GT). High-quantity betalain production was achieved in a number of plant species, including tobacco (135 mg/kg fresh weight, leaf tissue) tomato (200 mg/kg, fruit) and eggplant (120 mg/kg, fruit). These betalain-producing transgenic plants offer an exceptional opportunity to study for example the health-promoting properties of betalains.
-
(2016) Nature. 540, 7634, p. 544-551 Abstract
In tackling the obesity pandemic, considerable efforts are devoted to the development of effective weight reduction strategies, yet many dieting individuals fail to maintain a long-term weight reduction, and instead undergo excessive weight regain cycles. The mechanisms driving recurrent post-dieting obesity remain largely elusive. Here we identify an intestinal microbiome signature that persists after successful dieting of obese mice and contributes to faster weight regain and metabolic aberrations upon re-exposure to obesity-promoting conditions. Faecal transfer experiments show that the accelerated weight regain phenotype can be transmitted to germ-free mice. We develop a machine-learning algorithm that enables personalized microbiome-based prediction of the extent of post-dieting weight regain. Additionally, we find that the microbiome contributes to diminished post-dieting flavonoid levels and reduced energy expenditure, and demonstrate that flavonoid-based â post-biotic' intervention ameliorates excessive secondary weight gain. Together, our data highlight a possible microbiome contribution to accelerated post-dieting weight regain, and suggest that microbiome-targeting approaches may help to diagnose and treat this common disorder.
-
(2016) Phytochemistry. 130, p. 182-192 Abstract
The work herein presents comprehensive analyses of the cuticular wax mixtures covering the flag leaf blade and peduncle of bread wheat (Triticum aestivum) cv. Bethlehem. Overall, Gas Chromatography Mass Spectrometry and Flame Ionization Detection revealed a wax coverage of flag leaf blades (16 mu g/cm(2)) a third that of peduncles (49 mu g/cm(2)). Flag leaf blade wax was dominated by 1-alkanols, while peduncle wax contained primarily beta-diketone and hydroxy-beta-diketones, thus suggesting differential regulation of the acyl reduction and beta-diketone biosynthetic pathways in the two analyzed organs. The characteristic chain length distributions of the various wax compound classes are discussed in light of their individual biosynthetic pathways and biosynthetic relationships between classes. Along with previously reported wheat wax compound classes (fatty acids, 1-alkanols, 1-alkanol esters, aldehydes, alkanes, beta-diketone, hydroxy-beta-diketones, alkylresorcinols and methyl alkylresorcinols), esters of 2-alkanols and three types of aromatic esters (benzyl, phenethyl and p-hydroxyphenethyl) are also reported. In particular, 2-heptanol esters were identified. Detailed analyses of the isomer distributions within 1-alkanol and 2-alkanol ester homologs revealed distinct patterns of esterified acids and alcohols, suggesting several wax ester synthases with very different substrate preferences in both wheat organs. Terpenoids, including two terpenoid esters, were present only in peduncle wax.
-
(2016) Plant Cell. 28, 9, p. 2097-2116 Abstract
Suberin, a polymer composed of both aliphatic and aromatic domains, is deposited as a rough matrix upon plant surface damage and during normal growth in the root endodermis, bark, specialized organs (e.g., potato [Solanum tuberosum] tubers), and seed coats. To identify genes associated with the developmental control of suberin deposition, we investigated the chemical composition and transcriptomes of suberized tomato (Solanum lycopersicum) and russet apple (Malus x domestica) fruit surfaces. Consequently, a gene expression signature for suberin polymer assembly was revealed that is highly conserved in angiosperms. Seed permeability assays of knockout mutants corresponding to signature genes revealed regulatory proteins (i.e., AtMYB9 and AtMYB107) required for suberin assembly in the Arabidopsis thaliana seed coat. Seeds of myb107 and myb9 Arabidopsis mutants displayed a significant reduction in suberin monomers and altered levels of other seed coat-associated metabolites. They also exhibited increased permeability, and lower germination capacities under osmotic and salt stress. AtMYB9 and AtMYB107 appear to synchronize the transcriptional induction of aliphatic and aromatic monomer biosynthesis and transport and suberin polymerization in the seed outer integument layer. Collectively, our findings establish a regulatory system controlling developmentally deposited suberin, which likely differs from the one of stress-induced polymer assembly recognized to date.
-
(2016) Trends in Plant Science. 21, 8, p. 686-698 Abstract
Attaining high-resolution spatial information is a recurrent challenge in biological research, particularly in the case of small-molecule distribution. Mass spectrometry imaging (MSI) is an innovative molecular histology technique that could provide such information. It allows in situ and label-free measurement of both the abundance and distribution of a variety of molecules at the tissue or single cell level. The application of MSI in plant research has received considerable attention; thus, in this review, we describe the current state of MSI in plants. In particular, we present an overview of MSI approaches, highlight the recent technical and methodological developments, and discuss a range of applications contributing to the field of plant science.
-
(2016) Nature Communications. 7, 12423. Abstract
Annotation of metabolites is an essential, yet problematic, aspect of mass spectrometry (MS)-based metabolomics assays. The current repertoire of definitive annotations of metabolite spectra in public MS databases is limited and suffers from lack of chemical and taxonomic diversity. Furthermore, the heterogeneity of the data prevents the development of universally applicable metabolite annotation tools. Here we present a combined experimental and computational platform to advance this key issue in metabolomics. WEIZMASS is a unique reference metabolite spectral library developed from high-resolution MS data acquired from a structurally diverse set of 3,540 plant metabolites. We also present MatchWeiz, a multi-module strategy using a probabilistic approach to match library and experimental data. This strategy allows efficient and high-confidence identification of dozens of metabolites in model and exotic plants, including metabolites not previously reported in plants or found in few plant species to date.
-
(2016) Plant Journal. 87, 2, p. 151-160 Abstract
We present a resource for fine mapping of traits derived from the wild tomato species Solanum pennellii (LA0716). The population of backcross inbred lines (BILs) is composed of 446 lines derived after a few generations of backcrosses of the wild species with cultivated tomato (cultivar M82; LA3475), followed by more than seven generations of self-pollination. The BILs were genotyped using the 10K SOL-CAP single nucleotide polymorphism (SNP) -Chip, and 3700 polymorphic markers were used to map recombination break points relative to the physical map of Solanum lycopersicum. The BILs carry, on average, 2.7 introgressions per line, with a mean introgression length of 11.7 Mbp. Whereas the classic 76 introgression lines (ILs) partitioned the genome into 106 mapping bins, the BILs generated 633 bins, thereby enhancing the mapping resolution of traits derived from the wild species. We demonstrate the power of the BILs for rapid fine mapping of simple and complex traits derived from the wild tomato species.
-
(2016) Plant Physiology. 171, 3, p. 1821-1836 Abstract
The identification and characterization of new tomato (Solanum lycopersicum) mutants affected in fruit pigmentation and nutritional content can provide valuable insights into the underlying biology, as well as a source of new alleles for breeding programs. To date, all characterized pink-pigmented tomato fruit mutants appear to result from low SlMYB12 transcript levels in the fruit skin. Two new mutant lines displaying a pink fruit phenotype (pf1 and pf2) were characterized in this study. In the pf mutants, SlMYB12 transcripts accumulated to wild-type levels but exhibited the same truncation, which resulted in the absence of the essential MYB activation domain coding region. Allelism and complementation tests revealed that both pf mutants were allelic to the y locus and showed the same recessive null allele in homozygosis: Δy. A set of molecular and metabolic effects, reminiscent of those observed in the Arabidopsis (Arabidopsis thaliana) myb11 myb12 myb111 triple mutant, were found in the tomato Δy mutants. To our knowledge, these have not been described previously, and our data support the idea of their being null mutants, in contrast to previously described transcriptional hypomorphic pink fruit lines. We detected a reduction in the expression of several flavonol glycosides and some associated glycosyl transferases. Transcriptome analysis further revealed that the effects of the pf mutations extended beyond the flavonoid pathway into the interface between primary and secondary metabolism. Finally, screening for Myb-binding sites in the candidate gene promoter sequences revealed that 141 of the 152 co-down-regulated genes may be direct targets of SlMYB12 regulation.
-
(2016) Plant Cell. 28, 6, p. 1440-1460 Abstract
The glaucous appearance of wheat (Triticum aestivum) and barley (Hordeum vulgare) plants, that is the light bluish-gray look of flag leaf, stem, and spike surfaces, results from deposition of cuticular β-diketone wax on their surfaces; this phenotype is associated with high yield, especially under drought conditions. Despite extensive genetic and biochemical characterization, the molecular genetic basis underlying the biosynthesis of β-diketones remains unclear. Here, we discovered that the wheat W1 locus contains a metabolic gene cluster mediating β-diketone biosynthesis. The cluster comprises genes encoding proteins of several families including type-III polyketide synthases, hydrolases, and cytochrome P450s related to known fatty acid hydroxylases. The cluster region was identified in both genetic and physical maps of glaucous and glossy tetraploid wheat, demonstrating entirely different haplotypes in these accessions. Complementary evidence obtained through gene silencing in planta and heterologous expression in bacteria supports a model for a β-diketone biosynthesis pathway involving members of these three protein families. Mutations in homologous genes were identified in the barley eceriferum mutants defective in β-diketone biosynthesis, demonstrating a gene cluster also in the β-diketone biosynthesis Cer-cqu locus in barley. Hence, our findings open new opportunities to breed major cereal crops for surface features that impact yield and stress response.
-
(2016) New Phytologist. 210, 1, p. 88-96 Abstract
Viruses that infect marine photosynthetic microorganisms are major ecological and evolutionary drivers of microbial food webs, estimated to turn over more than a quarter of the total photosynthetically fixed carbon. Viral infection of the bloom-forming microalga Emiliania huxleyi induces the rapid remodeling of host primary metabolism, targeted towards fatty acid metabolism.We applied a liquid chromatography-mass spectrometry (LC-MS)-based lipidomics approach combined with imaging flow cytometry and gene expression profiling to explore the impact of viral-induced metabolic reprogramming on lipid composition.Lytic viral infection led to remodeling of the cellular lipidome, by predominantly inducing the biosynthesis of highly saturated triacylglycerols (TAGs), coupled with a significant accumulation of neutral lipids within lipid droplets. Furthermore, TAGs were found to be a major component (77%) of the lipidome of isolated virions. Interestingly, viral-induced TAGs were significantly more saturated than TAGs produced under nitrogen starvation.This study highlights TAGs as major products of the viral-induced metabolic reprogramming during the host-virus interaction and indicates a selectivemodeofmembrane recruitment during viral assembly, possibly by budding of the virus from specialized subcellular compartments. These findings provide novel insights into the role of viruses infecting microalgae in regulating metabolism and energy transfer in the marine environment and suggest their possible biotechnological application in biofuel production.
-
(2016) NEW PHYTOLOGIST. 210, 1, p. 269-283 Abstract
Betalains are tyrosine-derived red-violet and yellow pigments, found in plants only of the Caryophyllales order. Although much progress has been made in recent years in the understanding of the betalain biosynthetic process, many questions remain open with regards to several of the proposed steps in the pathway. Most conspicuous by its absence is the characterization of the first committed step in the pathway, namely the 3-hydroxylation of tyrosine to form l-3,4-dihydroxyphenylalanine (l-DOPA). We used transcriptome analysis of the betalain-producing plants red beet (Beta vulgaris) and four o'clocks (Mirabilis jalapa) to identify a novel, betalain-related cytochrome P450-type gene, CYP76AD6, and carried out gene silencing and recombinant expression assays in Nicotiana benthamiana and yeast cells to examine its functionality. l-DOPA formation in red beet was found to be redundantly catalyzed by CYP76AD6 together with a known betalain-related enzyme, CYP76AD1, which was previously thought to only catalyze a succeeding step in the pathway. While CYP76AD1 catalyzes both l-DOPA formation and its subsequent conversion to cyclo-DOPA, CYP76AD6 uniquely exhibits only tyrosine hydroxylase activity. The new findings enabled us to metabolically engineer entirely red-pigmented tobacco plants through heterologous expression of three genes taking part in the fully decoded betalain biosynthetic pathway.
-
(2016) Proceedings of the National Academy of Sciences of the United States of America. 113, 13, p. E1907-E1916 Abstract
Marine viruses are the most abundant biological entities in the oceans shaping community structure and nutrient cycling. The interaction between the bloom-forming alga Emiliania huxleyi and its specific large dsDNA virus (EhV) is a major factor determining the fate of carbon in the ocean, thus serving as a key host-pathogen model system. The EhV genome encodes for a set of genes involved in the de novo sphingolipid biosynthesis, not reported in any viral genome to date. We combined detailed lipidomic and biochemical analyses to characterize the functional role of this virus-encoded pathway during lytic viral infection. We identified a major metabolic shift, mediated by differential substrate specificity of virus-encoded serine palmitoyltransferase, a key enzyme of sphingolipid biosynthesis. Consequently, unique viral glycosphingolipids, composed of unusual hydroxylated C17 sphingoid bases (t17:0) were highly enriched in the infected cells, and their synthesis was found to be essential for viral assembly. These findings uncover the biochemical bases of the virus-induced metabolic rewiring of the host sphingolipid biosynthesis during the chemical "arms race" in the ocean.
-
(2016) PLoS Genetics. 12, 3, 1005903. Abstract
The involvement of ethylene in fruit ripening is well documented, though knowledge regarding the crosstalk between ethylene and other hormones in ripening is lacking. We discovered that AUXIN RESPONSE FACTOR 2A (ARF2A), a recognized auxin signaling component, functions in the control of ripening. ARF2A expression is ripening regulated and reduced in the rin, nor and nr ripening mutants. It is also responsive to exogenous application of ethylene, auxin and abscisic acid (ABA). Over-expressing ARF2A in tomato resulted in blotchy ripening in which certain fruit regions turn red and possess accelerated ripening. ARF2A over-expressing fruit displayed early ethylene emission and ethylene signaling inhibition delayed their ripening phenotype, suggesting ethylene dependency. Both green and red fruit regions showed the induction of ethylene signaling components and master regulators of ripening. Comprehensive hormone profiling revealed that altered ARF2A expression in fruit significantly modified abscisates, cytokinins and salicylic acid while gibberellic acid and auxin metabolites were unaffected. Silencing of ARF2A further validated these observations as reducing ARF2A expression let to retarded fruit ripening, parthenocarpy and a disturbed hormonal profile. Finally, we show that ARF2A both homodimerizes and interacts with the ABA STRESS RIPENING (ASR1) protein, suggesting that ASR1 might be linking ABA and ethylene-dependent ripening. These results revealed that ARF2A interconnects signals of ethylene and additional hormones to co-ordinate the capacity of fruit tissue to initiate the complex ripening process.
-
(2016) Metabolomics. 12, 73. Abstract
Introduction: Most aerial plant organs are covered by a cuticle, which largely consists of cutin and wax. Cuticular waxes are mixtures of dozens of compounds, mostly very-long-chain aliphatics that are easily extracted by solvents. Over the last four decades, diverse cuticular wax analysis protocols have been developed, most of which are complex and time-consuming, and need to be adapted for each plant species or organ. Plant genomics and breeding programs often require mid-throughput metabolic phenotyping approaches to screen large numbers of individuals and obtain relevant biological information. Objectives: To generate a fast, simple and user-friendly methodology able to capture most wax complexity independently of the plant, cultivar and organ. Methods: Here we present a simple GCMS method for screening relatively small wax amounts, sampled by short extraction with a versatile, uniform solvent. The method will be tested and validated in leaves and fruits from three different crop species: tomato (Solanum lycopersicum), apple (Malus domestica) and hybrid aspen (Populus tremula × tremuloides). Results: Consistent results were obtained in tomato cultivar M82 across three consecutive years (20102012), two organs (leaf and fruit), and also in two different tomato (M82 and MicroTom) and apple (Golden Delicious and Granny Smith) cultivars. Our results on tomato wax composition match those reported previously, while our apple and hybrid aspen analyses provide the first comprehensive cuticular wax profile of these species. Conclusion: This protocol allows standardized identification and quantification of most cuticular wax components in a range of species.
-
(2016) Nature Communications. 7, 10654. Abstract
Steroidal glycoalkaloids (SGAs) are cholesterol-derived molecules produced by solanaceous species. They contribute to pathogen defence but are toxic to humans and considered as anti-nutritional compounds. Here we show that GLYCOALKALOID METABOLISM 9 (GAME9), an APETALA2/Ethylene Response Factor, related to regulators of alkaloid production in tobacco and Catharanthus roseus, controls SGA biosynthesis. GAME9 knockdown and overexpression in tomato and potato alters expression of SGAs and upstream mevalonate pathway genes including the cholesterol biosynthesis gene STEROL SIDE CHAIN REDUCTASE 2 (SSR2). Levels of SGAs, C24-alkylsterols and the upstream mevalonate and cholesterol pathways intermediates are modified in these plants. Δ(7)-STEROL-C5(6)-DESATURASE (C5-SD) in the hitherto unresolved cholesterol pathway is a direct target of GAME9. Transactivation and promoter-binding assays show that GAME9 exerts its activity either directly or cooperatively with the SlMYC2 transcription factor as in the case of the C5-SD gene promoter. Our findings provide insight into the regulation of SGA biosynthesis and means for manipulating these metabolites in crops.
-
(2016) Frontiers in Plant Science. 7, FEB2016, 60. Abstract
Mass spectrometry imaging (MSI) is a mass spectrometry based molecular ion imaging technique. It provides the means for ascertaining the spatial distribution of a large variety of analytes directly on tissue sample surfaces without any labeling or staining agents. These advantages make it an attractive molecular histology tool in medical, pharmaceutical, and biological research. Likewise, MSI has started gaining popularity in plant sciences; yet, information regarding sample preparation methods for plant tissues is still limited. Sample preparation is a crucial step that is directly associated with the quality and authenticity of the imaging results, it therefore demands in-depth studies based on the characteristics of plant samples. In this review, a sample preparation pipeline is discussed in detail and illustrated through selected practical examples. In particular, special concerns regarding sample preparation for plant imaging are critically evaluated. Finally, the applications of MSI techniques in plants are reviewed according to different classes of plant metabolites.
-
(2016) Frontiers in Plant Science. 6, JAN2016, 1194. Abstract
Motivation: Comparative transcriptomics is a common approach in functional gene discovery efforts. It allows for finding conserved co-expression patterns between orthologous genes in closely related plant species, suggesting that these genes potentially share similar function and regulation. Several efficient co-expression-based tools have been commonly used in plant research but most of these pipelines are limited to data from model systems, which greatly limit their utility. Moreover, in addition, none of the existing pipelines allow plant researchers to make use of their own unpublished gene expression data for performing a comparative co-expression analysis and generate multi-species co-expression networks. Results: We introduce CoExpNetViz, a computational tool that uses a set of query or "bait" genes as an input (chosen by the user) and a minimum of one pre-processed gene expression dataset. The CoExpNetViz algorithm proceeds in three main steps; (i) for every bait gene submitted, co-expression values are calculated using mutual information and Pearson correlation coefficients, (ii) non-bait (or target) genes are grouped based on cross-species orthology, and (iii) output files are generated and results can be visualized as network graphs in Cytoscape. Availability: The CoExpNetViz tool is freely available both as a PHP web server (link: http://bioinformatics.psb.ugent.be/webtools/coexpr/) (implemented in C++) and as a Cytoscape plugin (implemented in Java). Both versions of the CoExpNetViz tool support LINUX and Windows platforms.
2015
-
(2015) Plant Physiology. 169, 4, p. 2553-2571 Abstract
The epidermis of aerial plant organs is the primary source of building blocks forming the outer surface cuticular layer. To examine the relationship between epidermal cell development and cuticle assembly in the context of fruit surface, we investigated the tomato (Solanum lycopersicum) MIXTA-like gene. MIXTA/MIXTA-like proteins, initially described in snapdragon (Antirrhinum majus) petals, are known regulators of epidermal cell differentiation. Fruit of transgenically silenced SlMIXTA-like tomato plants displayed defects in patterning of conical epidermal cells. They also showed altered postharvest water loss and resistance to pathogens. Transcriptome and cuticular lipids profiling coupled with comprehensive microscopy revealed significant modifications to cuticle assembly and suggested SlMIXTA-like to regulate cutin biosynthesis. Candidate genes likely acting downstream of SlMIXTA-like included cytochrome P450s (CYPs) of the CYP77A and CYP86A subfamilies, LONG-CHAIN ACYL-COA SYNTHETASE2, GLYCEROL-3-PHOSPHATE SN-2-ACYLTRANSFERASE4, and the ATP-BINDING CASSETTE11 cuticular lipids transporter. As part of a larger regulatory network of epidermal cell patterning and L1-layer identity, we found that SlMIXTA-like acts downstream of SlSHINE3 and possibly cooperates with homeodomain Leu zipper IV transcription factors. Hence, SlMIXTA-like is a positive regulator of both cuticle and conical epidermal cell formation in tomato fruit, acting as a mediator of the tight association between fruit cutin polymer formation, cuticle assembly, and epidermal cell patterning.
-
(2015) PLoS Genetics. 11, 12, 1005649. Abstract
Ethylene is the main regulator of climacteric fruit ripening, by contrast the putative role of other phytohormones in this process remains poorly understood. The present study brings auxin signaling components into the mechanism regulating tomato fruit ripening through the functional characterization of Auxin Response Factor2 (SlARF2) which encodes a downstream component of auxin signaling. Two paralogs, SlARF2A and SlARF2B, are found in the tomato genome, both displaying a marked ripening-associated expression but distinct responsiveness to ethylene and auxin. Down-regulation of either SlARF2A or SlARF2B resulted in ripening defects while simultaneous silencing of both genes led to severe ripening inhibition suggesting a functional redundancy among the two ARFs. Tomato fruits under-expressing SlARF2 produced less climacteric ethylene and exhibited a dramatic down-regulation of the key ripening regulators RIN, CNR, NOR and TAGL1. Ethylene treatment failed to reverse the non-ripening phenotype and the expression of ethylene signaling and biosynthesis genes was strongly altered in SlARF2 down-regulated fruits. Although both SlARF proteins are transcriptional repressors the data indicate they work as positive regulators of tomato fruit ripening. Altogether, the study defines SlARF2 as a new component of the regulatory network controlling the ripening process in tomato.
-
(2015) Journal of Experimental Botany. 66, 21, p. 65796589 Abstract
The outer epidermal layer of apple fruit is covered by a protective cuticle. Composed of a polymerized cutin matrix embedded with waxes, the cuticle is a natural waterproof barrier and protects against several abiotic and biotic stresses. In terms of apple production, the cuticle is essential to maintain long post-harvest storage, while severe failure of the cuticle can result in the formation of a disorder known as russet. Apple russet results from micro-cracking of the cuticle and the formation of a corky suberized layer. This is typically an undesirable consumer trait, and negatively impacts the post-harvest storage of apples. In order to identify genetic factors controlling cuticle biosynthesis (and thus preventing russet) in apple, a quantitative trait locus (QTL) mapping survey was performed on a full-sib population. Two genomic regions located on chromosomes 2 and 15 that could be associated with russeting were identified. Apples with compromised cuticles were identified through a novel and high-throughput tensile analysis of the skin, while histological analysis confirmed cuticle failure in a subset of the progeny. Additional genomic investigation of the determined QTL regions identified a set of underlying genes involved in cuticle biosynthesis. Candidate gene expression profiling by quantitative real-time PCR on a subset of the progeny highlighted the specific expression pattern of a SHN1/WIN1 transcription factor gene (termed MdSHN3) on chromosome 15. Orthologues of SHN1/WIN1 have been previously shown to regulate cuticle formation in Arabidopsis, tomato, and barley. The MdSHN3 transcription factor gene displayed extremely low expression in lines with improper cuticle formation, suggesting it to be a fundamental regulator of cuticle biosynthesis in apple fruit.
-
(2015) Cell Metabolism. 22, 5, p. 874-885 Abstract
Polyamines are essential polycations present in all living cells. Polyamine levels are maintained from the diet and de novo synthesis, and their decline with age is associated with various pathologies. Here we show that polyamine levels oscillate in a daily manner. Both clock- and feeding-dependent mechanisms regulate the daily accumulation of key enzymes in polyamine biosynthesis through rhythmic binding of BMAL1:CLOCK to conserved DNA elements. In turn, polyamines control the circadian period in cultured cells and animals by regulating the interaction between the core clock repressors PER2 and CRY1. Importantly, we found that the decline in polyamine levels with age in mice is associated with a longer circadian period that can be reversed upon polyamine supplementation in the diet. Our findings suggest a crosstalk between circadian clocks and polyamine biosynthesis and open new possibilities for nutritional interventions against the decay in clock's function with age.
-
(2015) AIMS bioengineering. 2, 2, p. 75-92 Abstract
The tomato (Solanum lycopersicum) fruit is an excellent source of antioxidants, dietary fibers, minerals and vitamins and therefore has been referred to as a "functional food". Ripe tomato fruits produce a large number of specialized metabolites including volatile organic compounds. These volatiles serve as key components of the tomato fruit flavor, participate in plant pathogen and herbivore defense, and are used to attract seed dispersers. A major class of specialized metabolites is derived from the shikimate pathway followed by aromatic amino acid biosynthesis of phenylalanine, tyrosine and tryptophan. We attempted to modify tomato fruit flavor by overexpressing key regulatory genes in the shikimate pathway. Bacterial genes encoding feedback-insensitive variants of 3-Deoxy-D-Arabino-Heptulosonate 7-Phosphate Synthase (DAHPS; AroG(209-9)) and bi-functional Chorismate Mutase/Prephenate Dehydratase (CM/PDT; PheA(12)) were expressed under the control of a fruit-specific promoter. We crossed these transgenes to generate tomato plants expressing both the AroG(209) and PheA(12) genes. Overexpression of the AroG(209-9) gene had a dramatic effect on the overall metabolic profile of the fruit, including enhanced levels of multiple volatile and non-volatile metabolites. In contrast, the PheA(12) overexpression line exhibited minor metabolic effects compared to the wild type fruit. Co-expression of both the AroG(209-9) and PheA(12) genes in tomato resulted overall in a similar metabolic effect to that of expressing only the AroG(209-9) gene. However, the aroma ranking attributes of the tomato fruits from PheA(12)//AroG(209-9) were unique and different from those of the lines expressing a single gene, suggesting a contribution of the PheA(12) gene to the overall metabolic profile. We suggest that expression of bacterial genes encoding feedback-insensitive enzymes of the shikimate pathway in tomato fruits provides a useful metabolic engineering tool for the modification of fruits aroma and the generation of new combinations of tomato flavors.
-
(2015) Plant Cell. 27, 6, p. 1579-1594 Abstract
Gibberellin (GA) regulates plant development primarily by triggering the degradation/deactivation of the DELLA proteins. However, it remains unclear whether all GA responses are regulated by DELLAs. Tomato (Solanum lycopersicum) has a single DELLA gene named PROCERA (PRO), and its recessivepro allele exhibits constitutive GA activity but retains responsiveness to externalGA. In the loss-of-function mutant proΔGRAS, all examined GA developmental responses were considerably enhanced relative to pro and a defect in seed desiccation tolerance was uncovered. As pro, but not proΔGRAS, elongation was promoted by GA treatment, pro may retain residual DELLA activity. In agreement with homeostatic feedback regulation of the GA biosynthetic pathway, we found that GA20oxidase1 expression was suppressed in proΔGRAS and was not affected by exogenous GA3. In contrast, expression of GA2oxidase4 was not affected by the elevated GA signaling in proΔGRAS but was strongly induced by exogenous GA3. Since a similar response was found in Arabidopsis thaliana plants with impaired activity of all five DELLA genes, we suggest that homeostatic GAresponses are regulated by both DELLA-dependent and -independent pathways. Transcriptome analysis of GA-treated proΔGRAS leaves suggests that 5% of allGA-regulated genes in tomato are DELLA independent.
-
(2015) Phytochemistry. 113, p. 24-32 Abstract
Steroidal alkaloids (SAs) and their glycosylated forms (SGAs) are toxic compounds largely produced by members of the Solanaceae and Liliaceae plant families. This class of specialized metabolites serves as a chemical barrier against a broad range of pest and pathogens. In humans and animals, SAs are considered anti-nutritional factors because they affect the digestion and absorption of nutrients from food and might even cause poisoning. In spite of the first report on SAs nearly 200 years ago, much of the molecular basis of their biosynthesis and regulation remains unknown. Aspects concerning chemical structures and biological activities of SAs have been reviewed extensively elsewhere; therefore, in this review the latest insights to the elucidation of the SAs biosynthetic pathway are highlighted. Recently, co-expression analysis combined with metabolic profiling revealed metabolic gene clusters in tomato and potato that contain core genes required for production of the prominent SGAs in these two species. Elaborating the knowledge regarding the SAs biosynthetic pathway, the subcellular transport of these molecules, as well as the identification of regulatory and signaling factors associated with SA metabolism will likely advance understanding of chemical defense mechanisms in Solanaceae and Liliaceae plants. It will also provide the means to develop, through classical breeding or genetic engineering, crops with modified levels of anti-nutritional SAs.
-
(2015) PLoS Genetics. 11, 3, 1005143. Abstract
Lipid remodeling is crucial for hypoxic tolerance in animals, whilst little is known about the hypoxia-induced lipid dynamics in plants. Here we performed a mass spectrometry-based analysis to survey the lipid profiles of Arabidopsis rosettes under various hypoxic conditions. We observed that hypoxia caused a significant increase in total amounts of phosphatidylserine, phosphatidic acid and oxidized lipids, but a decrease in phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Particularly, significant gains in the polyunsaturated species of PC, PE and phosphatidylinositol, and losses in their saturated and mono-unsaturated species were evident during hypoxia. Moreover, hypoxia led to a remarkable elevation of ceramides and hydroxyceramides. Disruption of ceramide synthases LOH1, LOH2 and LOH3 enhanced plant sensitivity to dark submergence, but displayed more resistance to submergence under light than wild type. Consistently, levels of unsaturated very-long-chain (VLC) ceramide species (22:1, 24:1 and 26:1) predominantly declined in the loh1, loh2 and loh3 mutants under dark submergence. In contrast, significant reduction of VLC ceramides in the loh1-1 loh3-1 knockdown double mutant and lacking of VLC unsaturated ceramides in the ads2 mutants impaired plant tolerance to both dark and light submergences. Evidence that C24:1-ceramide interacted with recombinant CTR1 protein and inhibited its kinase activity in vitro, enhanced ER-to-nucleus translocation of EIN2-GFP and stabilization of EIN3-GFP in vivo, suggests a role of ceramides in modulating CTR1-mediated ethylene signaling. The dark submergence-sensitive phenotypes of loh mutants were rescued by a ctr1-1 mutation. Thus, our findings demonstrate that unsaturation of VLC ceramides is a protective strategy for hypoxic tolerance in Arabidopsis.
-
(2015) Plant Biology. 17, s1, p. 115-119 Abstract
Significant inter- and intraspecific genetic variation exists in duckweed, thus the potential for genome plasticity and manipulation is high. Polyploidy is recognised as a major mechanism of adaptation and speciation in plants. We produced several genome-duplicated lines of Landoltia punctata (Spirodela oligorrhiza) from both whole plants and regenerating explants using a colchicine-based cocktail. These lines stably maintained an enlarged frond and root morphology. DNA ploidy levels determined by florescence-activated cell sorting indicated genome duplication. Line A4 was analysed after 75 biomass doublings. Frond area, fresh and dry weights, rhizoid number and length were significantly increased versus wild type, while the growth rate was unchanged. This resulted in accumulation of biomass 17-20% faster in the A4 plants. We sought to determine if specific differences in gene products are found in the genome duplicated lines. Non-targeted ultra performance LC-quadrupole time of flight mass spectrometry was employed to compare some of the lines and the wild type to seek identification of up-regulated metabolites. We putatively identified differential metabolites in Line A65 as caffeoyl hexoses. The combination of directed genome duplication and metabolic profiling might offer a path for producing stable gene expression, leading to altered production of secondary metabolites.
2014
-
(2014) PLoS Genetics. 10, 12, Abstract
The role of secondary metabolites in the determination of cell identity has been an area of particular interest over recent years, and studies strongly indicate a connection between cell fate and the regulation of enzymes involved in secondary metabolism. In Arabidopsis thaliana, the maternally derived seed coat plays pivotal roles in both the protection of the developing embryo and the first steps of germination. In this regard, a characteristic feature of seed coat development is the accumulation of proanthocyanidins (PAs - a class of phenylpropanoid metabolites) in the innermost layer of the seed coat. Our genome-wide transcriptomic analysis suggests that the ovule identity factor SEEDSTICK (STK) is involved in the regulation of several metabolic processes, providing a strong basis for a connection between cell fate determination, development and metabolism. Using phenotypic, genetic, biochemical and transcriptomic approaches, we have focused specifically on the role of STK in PA biosynthesis. Our results indicate that STK exerts its effect by direct regulation of the gene encoding BANYULS/ANTHOCYANIDIN REDUCTASE (BAN/ANR), which converts anthocyanidins into their corresponding 2,3-cis-flavan-3-ols. Our study also demonstrates that the levels of H3K9ac chromatin modification directly correlate with the active state of BAN in an STK-dependent way. This is consistent with the idea that MADS-domain proteins control the expression of their target genes through the modification of chromatin states. STK might thus recruit or regulate histone modifying factors to control their activity. In addition, we show that STK is able to regulate other BAN regulators. Our study demonstrates for the first time how a floral homeotic gene controls tissue identity through the regulation of a wide range of processes including the accumulation of secondary metabolites.
-
(2014) Plant Journal. 80, 4, p. 695-708 Abstract
Anthocyanins contribute to the appearance of fruit by conferring to them a red, blue or purple colour. In a food context, they have also been suggested to promote consumer health. In purple tomato tissues, such as hypocotyls, stems and purple fruits, various anthocyanins accumulate. These molecules have characteristic patterns of modification, including hydroxylations, methylations, glycosylations and acylations. The genetic basis for many of these modifications has not been fully elucidated, and nor has their role in the functioning of anthocyanins. In this paper, AnthOMT, an O-methyltransferase (OMT) mediating the methylation of anthocyanins, has been identified and functionally characterized using a combined metabolomics and transcriptomics approach. Gene candidates were selected from the draft tomato genome, and their expression was subsequently monitored in a tomato seedling system comprising three tissues and involving several time points. In addition, we also followed gene expression in wild-type red and purple transgenic tomato fruits expressing Rosea 1 and Delila transcription factors. Of the 57 candidates identified, only a single OMT gene showed patterns strongly correlating with both accumulation of anthocyanins and expression of anthocyanin biosynthesis genes. This candidate (AnthOMT) was compared to a closely related caffeoyl CoA OMT by recombinant expression in Escherichia coli, and then tested for substrate specificity. AnthOMT showed a strong affinity for glycosylated anthocyanins, while other flavonoid glycosides and aglycones were much less preferred. Gene silencing experiments with AnthOMT resulted in reduced levels of the predominant methylated anthocyanins. This confirms the role of this enzyme in the diversification of tomato anthocyanins.
-
(2014) Plant Journal. 79, 4, p. 693-703 Abstract
Riboswitches are RNA elements that bind small molecules and in turn regulate gene expression. This mechanism allows the cell to sense the intracellular concentration of these small molecules. A particular riboswitch typically regulates its adjacent gene by altering the transcription, the translation or the splicing of this gene. Recently, a riboswitch that binds thiamin pyrophosphate (TPP) was characterized and found to regulate thiamin biosynthesis in plants and algae. Furthermore, it appears that this element is an essential regulator of primary metabolism in plants. Manipulation of endogenous riboswitch activity resulted in metabolic phenotypes that underlined the role of these elements and their ligands in preserving metabolic homeostasis. This situation supports the hypothesis that riboswitches could be remnants of the most ancient metabolic regulators. Here, we review the mode of action of the plant and algal TPP riboswitch and its relevance to the metabolic network. We also discuss the potential engineering of riboswitches as metabolite sensors in plants and platforms for gene control. Whether additional such RNA-based mechanisms exist in plants and in algae is still an open question, yet, the importance of these elements to metabolic regulation is beyond doubt.
-
(2014) Journal of Experimental Botany. 65, 16, p. 4653-4664 Abstract
The hydrophobic cuticular membrane of land plants performs a number of important roles during fruit development, including protection from a range of abiotic and biotic stresses. The components of the fleshy fruit cuticle are synthesized and secreted from the epidermal cells. While the biosynthetic and transport pathways of the cuticle have been thoroughly investigated for a number of decades, the regulatory mechanisms allowing fine tuning of cuticle deposition are only now beginning to be elucidated. Transcription factors belonging to the APETALA2, homeodomain-leucine zipper IV, and MYB families have been shown to be important regulators of both cuticle biosynthesis and epidermal cell differentiation, highlighting the connection between these processes. The involvement of MADS-box transcription factors demonstrates the link between fruit ripening and cuticle deposition. Epigenetic and post-transcriptional regulatory mechanisms also play a role in the control of cuticle biosynthesis, in addition to phytohormones, such as abscisic acid, that have been shown to stimulate cuticle deposition. These various levels of genetic regulation allow the plant constantly to maintain and adjust the cuticle in response to environmental and developmental cues.
-
-
Making the surface of fleshy fruit: Biosynthesis, assembly and role of the cuticular layer(2014) Fruit Ripening. p. 81-98 Abstract
This chapter describes the structure and assembly of the cuticle, focusing on the genes and enzymes implicated in constructing the cuticle of fleshy fruit and its role in this organ. It is worth noting that, in the majority of studies, the 'peel' or 'skin' of the fruit is discussed. This is not a scientific term and describes in general the fruit outer layer including the pericarp and epidermal cells as well as the cuticle.
-
(2014) Plant Cell. 26, 6, p. 2689-2707 Abstract
Marine viruses are major ecological and evolutionary drivers of microbial food webs regulating the fate of carbon in the ocean. We combined transcriptomic and metabolomic analyses to explore the cellular pathways mediating the interaction between the bloom-forming coccolithophore Emiliania huxleyi and its specific coccolithoviruses (E. huxleyi virus [EhV]). We show that EhV induces profound transcriptome remodeling targeted toward fatty acid synthesis to support viral assembly. A metabolic shift toward production of viral-derived sphingolipids was detected during infection and coincided with downregulation of host de novo sphingolipid genes and induction of the viral-encoded homologous pathway. The depletion of host-specific sterols during lytic infection and their detection in purified virions revealed their novel role in viral life cycle. We identify an essential function of the mevalonate-isoprenoid branch of sterol biosynthesis during infection and propose its downregulation as an antiviral mechanism. We demonstrate how viral replication depends on the hijacking of host lipid metabolism during the chemical "arms race" in the ocean.
-
(2014) Nature Communications. 5, 4026. Abstract
Taste has been the subject of human selection in the evolution of agricultural crops, and acidity is one of the three major components of fleshy fruit taste, together with sugars and volatile flavour compounds. We identify a family of plant-specific genes with a major effect on fruit acidity by map-based cloning of C. melo PH gene (CmPH) from melon, Cucumis melo taking advantage of the novel natural genetic variation for both high and low fruit acidity in this species. Functional silencing of orthologous PH genes in two distantly related plant families, cucumber and tomato, produced low-acid, bland tasting fruit, showing that PH genes control fruit acidity across plant families. A four amino-acid duplication in CmPH distinguishes between primitive acidic varieties and modern dessert melons. This fortuitous mutation served as a preadaptive antecedent to the development of sweet melon cultigens in Central Asia over 1,000 years ago.
-
(2014) Plant Isoprenoids. p. 171-185 (trueMethods in Molecular Biology). Abstract
Plants of the Solanaceae family are renowned for the production of cholesterol-derived steroidal glycosides, including the nitrogen containing glycoalkaloids and steroidal saponins. In this chapter we describe the use of UPLC (Ultra Performance Liquid Chromatography) coupled with qTOF (Quadrupole Time-of-Flight) mass spectrometry for profiling of these two large classes of semipolar metabolites. The presented method includes an optimized sample preparation protocol, a procedure for high resolution chromatographic separation and metabolite detection using the TOF mass spectrometer which provides high resolution and mass accuracy. A detailed description for non-targeted data analysis and a strategy for putative identification of steroidal glycosides from complex extracts based on interpretation of mass fragmentation patterns is also provided. The described methodology allows profiling and putative identification of multiple steroidal glycoside compounds from the assortment of Solanaceae species producing these molecules.
-
(2014) Proceedings of the National Academy of Sciences of the United States of America. 111, 7, p. 2740-2745 Abstract
Diatoms are ubiquitous marine photosynthetic eukaryotes responsible for approximately 20% of global photosynthesis. Little is known about the redox-based mechanisms that mediate diatom sensing and acclimation to environmental stress. Here we used a quantitative mass spectrometry-based approach to elucidate the redox-sensitive signaling network (redoxome) mediating the response of diatoms to oxidative stress. We quantified the degree of oxidation of 3,845 cysteines in the Phaeodactylum tricornutum proteome and identified approximately 300 redox-sensitive proteins. Intriguingly, we found redox-sensitive thiols in numerous enzymes composing the nitrogen assimilation pathway and the recently discovered diatom urea cycle. In agreement with this finding, the flux from nitrate into glutamine and glutamate, measured by the incorporation of 15N, was strongly inhibited under oxidative stress conditions. Furthermore, by targeting the redox-sensitive GFP sensor to various subcellular localizations, we mapped organellespecific oxidation patterns in response to variations in nitrogen quota and quality. We propose that redox regulation of nitrogen metabolism allows rapid metabolic plasticity to ensure cellular homeostasis, and thus is essential for the ecological success of diatoms in the marine ecosystem.
-
(2014) Plant Molecular Biology. 84, 1-2, p. 37-47 Abstract
The cuticle plays an important role in plant interactions with pathogens and with their surroundings. The cuticle acts as both a physical barrier against physical stresses and pathogens and a chemical deterrent and activator of the plant defense response. Cuticle production in tomato plants is regulated by several transcription factors, including SlSHINE3, an ortholog of the Arabidopsis WIN/SHN3. Here we used a SlSHINE3-overexpressing (SlSHN3-OE) and silenced (Slshn3-RNAi) lines and a mutant in SlCYP86A69 (Slcyp86A69)-a direct target of SlSHN3-to analyze the roles of the leaf cuticle and cutin content and composition in the tomato plant's defense response to the necrotrophic foliar pathogen Botrytis cinerea and the biotrophic bacterial pathogen Xanthomonas campestris pv. vesicatoria. We showed that SlSHN3, which is predominantly expressed in tomato fruit epidermis, also affects tomato leaf cuticle, as morphological alterations in the SlSHN3-OE leaf tissue resulted in shiny, stunted and permeable leaves. SlSHN3-OE leaves accumulated 38 % more cutin monomers than wild-type leaves, while Slshn3-RNAi and Slcyp86A69 plants showed a 40 and 70 % decrease in leaf cutin monomers, respectively. Overexpression of SlSHN3 resulted in resistance to B. cinerea infection and to X. campestris pv. vesicatoria, correlated with cuticle permeability and elevated expression of pathogenesis-related genes PR1a and AOS. Further analysis revealed that B. cinerea-infected Slshn3-RNAi plants are more sensitive to B. cinerea and produce more hydrogen peroxide than wild-type plants. Cutin monomer content and composition differed between SlSHN3-OE, Slcyp86A69, Slshn3-RNAi and wild-type plants, and cutin monomer extracted from SlSHN3-OE plants altered the expression of pathogenesis-related genes in wild-type plants.
2013
-
(2013) Journal of Chemical Ecology. 39, 11-12, p. 1361-1372 Abstract
Generalist insects show reduced selectivity when subjected to similar, but not identical, host plant chemical signatures. Here, we produced transgenic Arabidopsis thaliana plants that over-express genes regulating the aliphatic- and indolyl- glucosinolates biosynthetic pathways with either a constitutive (CaMV 35S) or a phloem-specific promoter (AtSUC2). This allowed us to examine how exposure to high levels of aliphatic- or indolyl-glucosinolates in homogenous habitats (leaf cage apparatus containing two wild-type or two transgenic leaves) and heterogeneous habitats (leaf cage apparatus containing one wild-type and one transgenic leaf) affects host selection and performance of Bemsia tabaci, a generalist phloem-feeding insect. Data from homogenous habitats indicated that exposure to A. thaliana plants accumulating high levels of aliphatic- or indolyl-glucosinolates negatively affected the performance of both adult females and nymphs of B. tabaci. Data from heterogeneous habitats indicated that B. tabaci adult females selected for oviposition plants on which their offspring perform better (preference-performance relationship). However, the combinations of wild-type and transgenic plants in heterogeneous habitats increased the period of time until the first choice was made and led to increased movement rate on transgenic plants, and reduced fecundity on wild-type plants. Overall, our findings are consistent with the view that both performance and selectivity of B. tabaci decrease in heterogeneous habitats that contain plants with closely-related chemical signatures.
-
(2013) Journal of Experimental Botany. 64, 14, p. 4441-4452 Abstract
Tomato (Solanum lycopersicum) fruit contains significant amounts of bioactive compounds, particularly multiple classes of specialized metabolites. Enhancing the synthesis and accumulation of these substances, specifically in fruits, are central for improving tomato fruit quality (e.g. favour and aroma) and could aid in elucidate pathways of specialized metabolism. To promote the production of specialized metabolites in tomato fruit, this work expressed under a fruit ripening-specific promoter, E8, a bacterial AroG gene encoding a 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS), which is feedback-insensitive to phenylalanine inhibition. DAHPS, the first enzyme of the shikimate pathway, links between the primary and specialized metabolism derived from aromatic amino acids. AroG expression influenced the levels of number of primary metabolites, such as shikimic acid and aromatic amino acids, as well as multiple volatile and non-volatile phenylpropanoids specialized metabolites and carotenoids. An organoleptic test, performed by trained panellists, suggested that the ripe AroG-expressing tomato fruits had a preferred floral aroma compare with fruits of the wild-type line. These results imply that fruit-specific manipulation of the conversion of primary to specialized metabolism is an attractive approach for improving fruit aroma and favour qualities as well as discovering novel fruit-specialized metabolites.
-
(2013) PLoS ONE. 8, 7, e70146. Abstract
The plant cell cuticle serves as the first barrier protecting plants from mechanical injury and invading pathogens. The cuticle can be breached by cutinase-producing pathogens and the degradation products may activate pathogenesis signals in the invading pathogens. Cuticle degradation products may also trigger the plant's defense responses. Botrytis cinerea is an important plant pathogen, capable of attacking and causing disease in a wide range of plant species. Arabidopsis thaliana shn1-1D is a gain-of-function mutant, which has a modified cuticular lipid composition. We used this mutant to examine the effect of altering the whole-cuticle metabolic pathway on plant responses to B. cinerea attack. Following infection with B. cinerea, the shn1-1D mutant discolored more quickly, accumulated more H2O2, and showed accelerated cell death relative to wild-type (WT) plants. Whole transcriptome analysis of B. cinerea-inoculated shn1-1D vs. WT plants revealed marked upregulation of genes associated with senescence, oxidative stress and defense responses on the one hand, and genes involved in the magnitude of defense-response control on the other. We propose that altered cutin monomer content and composition of shn1-1D plants triggers excessive reactive oxygen species accumulation and release which leads to a strong, unique and uncontrollable defense response, resulting in plant sensitivity and death.
-
(2013) Current Opinion in Biotechnology. 24, 2, p. 239-246 Abstract
The complex metabolic networks in plants are highly compartmentalized and biochemical steps of a single pathway can take place in multiple subcellular locations. Our knowledge regarding reactions and precursor compounds in the various cellular compartments has increased in recent years due to innovations in tracking the spatial distribution of proteins and metabolites. Nevertheless, to date only few studies have integrated subcellular localization criteria in metabolic engineering attempts. Here, we highlight the crucial factors for subcellular-localization-based strategies in plant metabolic engineering including substrate availability, enzyme targeting, the role of transporters, and multigene transfer approaches. The availability of compartmentalized metabolic network models for plants in the near future will greatly advance the integration of localization constraints in metabolic engineering experiments and aid in predicting their outcomes.
-
(2013) Proceedings of the National Academy of Sciences of the United States of America. 110, 13, p. E1232-E1241 Abstract
Metabolite composition offers a powerful tool for understanding gene function and regulatory processes. However, metabolomics studies on multicellular organisms have thus far been performed primarily on whole organisms, organs, or cell lines, losing information about individual cell types within a tissue. With the goal of profiling metabolite content in different cell populations within an organ, we used FACS to dissect GFP-marked cells from Arabidopsis roots for metabolomics analysis. Here, we present the metabolic profiles obtained from five GFP-tagged lines representing core cell types in the root. Fifty metabolites were putatively identified, with the most prominent groups being glucosinolates, phenylpropanoids, and dipeptides, the latter of which is not yet explored in roots. The mRNA expression of enzymes or regulators in the corresponding biosynthetic pathways was compared with the relative metabolite abundance. Positive correlations suggest that the rate-limiting steps in biosynthesis of glucosinolates in the root are oxidative modifications of side chains. The current study presents a work flow for metabolomics analyses of cell-type populations.
-
(2013) Science. 341, 6142, p. 175-179 Abstract
Steroidal glycoalkaloids (SGAs) such as a-solanine found in solanaceous food plants - as, for example, potato - are antinutritional factors for humans. Comparative coexpression analysis between tomato and potato coupled with chemical profiling revealed an array of 10 genes that partake in SGA biosynthesis. We discovered that six of them exist as a cluster on chromosome 7, whereas an additional two are adjacent in a duplicated genomic region on chromosome 12. Following systematic functional analysis, we suggest a revised SGA biosynthetic pathway starting from cholesterol up to the tetrasaccharide moiety linked to the tomato SGA aglycone. Silencing GLYCOALKALOID METABOLISM 4 prevented accumulation of SGAs in potato tubers and tomato fruit. This may provide a means for removal of unsafe, antinutritional substances present in these widely used food crops.
-
(2013) Plant Cell. 25, 1, p. 288-307 Abstract
Riboswitches are natural RNA elements that posttranscriptionally regulate gene expression by binding small molecules and thereby autonomously control intracellular levels of these metabolites. Although riboswitch-based mechanisms have been examined extensively, the integration of their activity with global physiology and metabolism has been largely overlooked. Here, we explored the regulation of thiamin biosynthesis and the consequences of thiamin pyrophosphate riboswitch deficiency on metabolism in Arabidopsis thaliana. Our results show that thiamin biosynthesis is largely regulated by the circadian clock via the activity of the THIAMIN C SYNTHASE (THIC) promoter, while the riboswitch located at the 39 untranslated region of this gene controls overall thiamin biosynthesis. Surprisingly, the results also indicate that the rate of thiamin biosynthesis directs the activity of thiamin-requiring enzymes and consecutively determines the rate of carbohydrate oxidation via the tricarboxylic acid cycle and pentose-phosphate pathway. Our model suggests that in Arabidopsis, the THIC promoter and the thiamin-pyrophosphate riboswitch act simultaneously to tightly regulate thiamin biosynthesis in a circadian manner and consequently sense and control vital points of core cellular metabolism.
2012
-
-
(2012) Journal Of Horticultural Science & Biotechnology. 87, 6, p. 619-625 Abstract
The agronomic and physiological characteristics of fruit were compared between two lines of 'Micro Tom' tomato which differed in their fruit cuticle chemistry. A wild-type (WT) and a mutant line (lecer6) deficient in -ketoacyl-CoenzymeA synthase (LeCER6), an enzyme involved in cuticular wax synthesis, were studied.The lecer6 line showed significantly lower levels of wax aliphatics and higher levels of terpenoids. Lecer6 fruit also had lower levels of cutin monomers than WT fruit. The agronomic characteristics of fruit from the mutant line were generally different from WT fruit. Osmotic values and dry weight percentages (% DW) were higher than in WT fruit. These findings can be explained by the higher water permeance of the lecer6 fruit cuticle, resulting in a higher rate of cuticular transpiration. Fruit from lecer6 plants were not as firm as WT fruit, which may also have resulted from excessive water loss through the cuticle. Higher rates of water loss in lecer6 fruit did not seem to be related to changes in cuticle thickness. The biomechanical properties of the cuticle also differed between the two tomato lines. Transient creep tests of isolated cuticles were used to generate stress-strain curves for the fruit cuticles of each line. At the immature (green) stage of development, cuticles of WT fruit were more elastic than those of lecer6 fruit, as shown by a lower elastic modulus. However, at the mature (red) stage of development,WT fruit cuticles had become more rigid, and no differences were apparent between the two lines. These data show that a single gene mutation for fruit cuticular wax synthesis has a pleiotropic effect on many important agronomic and physiological attributes.
-
(2012) Molecular Ecology. 21, 18, p. 4533-4546 Abstract
The role glucosinolates play in defending plants against phloem feeders such as aphids and whiteflies is currently not clear as these herbivores may avoid bringing glucosinolates from the phloem sap into contact with myrosinase enzymes. Here, we investigated the effects of high levels of aliphatic and indolic glucosinolates on life history traits and detoxification gene expression in two sibling species, B and Q, of the whitefly Bemisia tabaci. High levels of aliphatic glucosinolates decreased the average oviposition rate of both species and reduced the survival and developmental rate of Q nymphs. High levels of indolic glucosinolates decreased the oviposition rate and survival of nymphal stages of the B species and the developmental rate of both species. Molecular analyses revealed two major asymmetries between the B and Q species. First, specific GST genes (BtGST1 and BtGST2) were significantly induced during exposure to indolic glucosinolates only in Q. This may reflect the genes putative involvement in indolic glucosinolates detoxification and explain the species' good performance on plants accumulating indolic glucosinolates. Second, the constitutive expression of eight of the 10 detoxification genes analysed was higher in the Q species than in the B species. Interestingly, four of these genes were induced in B in response to high levels of glucosinolates. It seems, therefore, that the B and Q species differ in their 'optimal defence strategy'. B utilizes inducible defences that are profitable if the probability of experiencing the stress is small and its severity is low, while Q invests significant resources in being always 'ready' for a challenge.
-
(2012) Theoretical And Applied Genetics. 125, 2, p. 343-353 Abstract
Sweet melon cultivars contain a low level of organic acids and, therefore, the quality and flavor of sweet melon fruit is determined almost exclusively by fruit sugar content. However, genetic variability for fruit acid levels in the Cucumis melo species exists and sour fruit accessions are characterized by acidic fruit pH of 6. In this paper, we report results from a mapping population based on recombinant inbred lines (RILs) derived from the cross between the non-sour 'Dulce' variety and the sour PI 414323 accession. Results show that a single major QTL for pH co-localizes with major QTLs for the two predominant organic acids in melon fruit, citric and malic, together with an additional metabolite which we identified as uridine. While the acidic recombinants were characterized by higher citric and malic acid levels, the non-acidic recombinants had a higher uridine content than did the acidic recombinants. Additional minor QTLs for pH, citric acid and malic acid were also identified and for these the increased acidity was unexpectedly contributed by the non-sour parent. To test for co-localization of these QTLs with genes encoding organic acid metabolism and transport, we mapped the genes encoding structural enzymes and proteins involved in organic acid metabolism, transport and vacuolar H+ pumps. None of these genes co-localized with the major pH QTL, indicating that the gene determining melon fruit pH is not one of the candidate genes encoding this primary metabolic pathway. Linked markers were tested in two additional inter-varietal populations and shown to be linked to the pH trait. The presence of the same QTL in such diverse segregating populations suggests that the trait is determined throughout the species by variability in the same gene and is indicative of a major role of the evolution of this gene in determining the important domestication trait of fruit acidity within the species.
-
(2012) Metabolomics. 8, 3, p. 399-409 Abstract
Rye (Secale cereale) is among the richest dietary sources of lignan phytochemicals. Lignans are one of the suggested metabolite groups to contribute to the beneficial health effects of whole grain products evidenced in epidemiological studies. So far, the complete repertoire of lignan derivatives in rye, especially in the bran, has not been fully described. In this study, ten novel oligomeric sesqui- and dilignans were identified in rye bran by the use of high resolution LC-MS analysis (i. e., UPLC-qTOF-MS/MS). Putative identification of lignan components in the bran was performed by combining: (i) detailed inspection of the fragmentation behavior of available standard compounds belonging to different lignan types, (ii) interpretation of MS/MS data obtained from unknown metabolites in the samples. This combined analysis, particularly detailed MS/MS characterization, is most valuable for non-targeted assays in metabolite-rich matrices such as plant extracts, in which the verification of identity with authentic standards for each detected metabolite is normally not possible. Metabolomics analysis will increasingly aid in deciphering the active compounds in dietary products as part of studies aiming at elucidating the link between human health and nutrition.
-
In vitro microbiotic fermentation causes an extensive metabolite turnover of rye bran phytochemicals(2012) PLoS ONE. 7, 6, e39322. Abstract
The human gut hosts a microbial community which actively contributes to the host metabolism and has thus remarkable effect on our health. Intestinal microbiota is known to interact remarkably with the dietary constituents entering the colon, causing major metabolic conversions prior to absorption. To investigate the effect of microbial metabolism on the phytochemical pool of rye bran, we applied an in vitro simulated colonic fermentation where samples were collected with intervals and analyzed by LC-MS based non-targeted metabolite profiling. The analyses revealed extensive metabolic turnover on the phytochemical composition of the bran samples, and showed effects on all the metabolite classes detected. Furthermore, the majority of the metabolites, both the precursors and the conversion products, remained unidentified indicating that there are numerous yet unknown phytochemicals, which can potentially affect on our health. This underlines the importance of comprehensive profiling assays and subsequent detailed molecular investigations in order to clarify the effect of microbiota on phytochemicals present in our everyday diet.
-
-
(2012) Plant Journal. 70, 1, p. 5-17 Abstract
Plant development and survival is centered on complex regulatory networks composed of genes, proteins, hormone pathways, metabolites and signaling pathways. The recent advancements in whole genome biology have furthered our understanding of the interactions between these networks. As a result, numerous cell type-specific transcriptome profiles have been generated that have elucidated complex gene regulatory networks occurring at the cellular level, many of which were masked during whole-organ analysis. Modern technologies have also allowed researchers to generate multiple whole-organ metabolite profiles; however, only a limited number have been generated at the level of individual cells. Recent advancements in the isolation of individual cell populations have made cell type-specific metabolite profiles possible, enabling the enhanced detection and quantification of metabolites that were formerly unavailable when considering the whole organ. The comparison of metabolite and transcriptome profiles from the same cells has been a valuable resource to generate predictions regarding specific metabolite activity and function. In this review, we focus on recent studies that demonstrate the value of cell type-specific transcriptional profiles and their comparison with profiles generated from whole organs. Advancements in the isolation of single-cell populations will be highlighted, and the potential application towards generating detailed metabolic profiles will be discussed.
-
(2012) NEW PHYTOLOGIST. 194, 2, p. 430-439 Abstract
The shikimate pathway of plants mediates the conversion of primary carbon metabolites via chorismate into the three aromatic amino acids and to numerous secondary metabolites derived from them. However, the regulation of the shikimate pathway is still far from being understood. We hypothesized that 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAHPS) is a key enzyme regulating flux through the shikimate pathway. To test this hypothesis, we expressed a mutant bacterial AroG gene encoding a feedback-insensitive DAHPS in transgenic Arabidopsis plants. The plants were subjected to detailed analysis of primary metabolism, using GC-MS, as well as secondary metabolism, using LC-MS. Our results exposed a major effect of bacterial AroG expression on the levels of shikimate intermediate metabolites, phenylalanine, tryptophan and broad classes of secondary metabolite, such as phenylpropanoids, glucosinolates, auxin and other hormone conjugates. We propose that DAHPS is a key regulatory enzyme of the shikimate pathway. Moreover, our results shed light on additional potential metabolic bottlenecks bridging plant primary and secondary metabolism.
-
(2012) Plant Metabolomics. Hardy N. & Hall R.(eds.). p. 129-144 (trueMethods in Molecular Biology). Abstract
Recent advances in the performance of hyphenated technologies based on ultrapressure chromatography and high-sensitivity mass spectrometry have set the stage for a myriad of metabolomics studies in plants and other organisms. In this chapter, we describe the use of a UPLC (Ultraperformance Liquid Chromatography)-qTOF (quadrupole time-of-flight) system for profiling semipolar metabolites in the model fruit plant tomato. An optimized extraction method, instrument parameters and data treatment procedures are provided. The value of UPLC instruments, which use small particle size chromatographic columns, in terms of resolution, separation, and short injection times are presented. When coupled to a TOF mass spectrometer with high resolution and mass accuracy, good dynamic range, and a fast spectral acquisition capacity, this system is most suitable for the extensive profiling of hundreds of plant metabolites.
-
(2012) Planta. 235, 3, p. 579-588 Abstract
Studies on the genetic control of pigment content in pepper fruit have focused mainly on monogenic mutations leading to changes in fruit color. In addition to the qualitative variation in fruit color, quantitative variation in pigment content and color intensity exists in pepper giving rise to a range of color intensities. However, the genetic basis for this variation is poorly understood, hindering the development of peppers that are rich in these beneficial compounds. In this paper, quantitative variation in pigment content was studied in a cross between a dark-green Capsicum annuum pepper and a light-green C. chinense pepper. Two major pigment content QTLs that control chlorophyll content were identified, pc8. 1 and pc10. 1. The major QTL pc8. 1, also affected carotenoid content in the ripe fruit. However, additional analyses in subsequent generations did not reveal a consistent effect of this QTL on carotenoid content in ripe fruit. Confocal microscopy analyses of green immature fruits of the parents and of near-isogenic lines for pc8. 1 indicated that the QTL exerts its effect via increasing chloroplast compartment size in the dark-green genotypes, predominantly in a fruit-specific manner. Metabolic analyses indicated that in addition to chlorophyll, chloroplast-associated tocopherols and carotenoids are also elevated. Future identification of the genes controlling pigment content QTLs in pepper will provide a better understanding of this important trait and new opportunities for breeding peppers and other Solanaceae species with enhanced nutritional value.
-
(2012) Proceedings of the National Academy of Sciences of the United States of America. 109, 1, p. 339-344 Abstract
Plant metabolic engineering is commonly used in the production of functional foods and quality trait improvement. However, to date, computational model-based approaches have only been scarcely used in this important endeavor, in marked contrast to their prominent success in microbial metabolic engineering. In this study we present a computational pipeline for the reconstruction of fully compartmentalized tissue-specific models of Arabidopsis thaliana on a genome scale. This reconstruction involves automatic extraction of known biochemical reactions in Arabidopsis for both primary and secondary metabolism, automatic gap-filling, and the implementation of methods for determining subcellular localization and tissue assignment of enzymes. The reconstructed tissue models are amenable for constraint-based modeling analysis, and significantly extend upon previous model reconstructions. A set of computational validations (i.e., cross-validation tests, simulations of known metabolic functionalities) and experimental validations (comparison with experimental metabolomics datasets under various compartments and tissues) strongly testify to the predictive ability of the models. The utility of the derived models was demonstrated in the prediction of measured fluxes in metabolically engineered seed strains and the design of genetic manipulations that are expected to increase vitamin E content, a significant nutrient for human health. Overall, the reconstructed tissue models are expected to lay down the foundations for computational-based rational design of plant metabolic engineering. The reconstructed compartmentalized Arabidopsis tissue models are MIRIAM-compliant and are available upon request.
2011
-
(2011) Plant Cell And Environment. 34, 12, p. 2159-2171 Abstract
Jasmonate signalling plays a central role in activating the plethora of responses that are elicited by herbivory. Solanum nigrum plants silenced in the expression of genes involved in jasmonic acid biosynthesis (irlox3), conjugation (irjar4) and perception (ircoi1) were used to study the function of these genes in the field and in the regulation of transcriptional and metabolic responses. In the field, damage from Noctuidea larvae was four- to fivefold higher on irlox3 and ircoi1 than on wild-type (WT) plants, whereas damage to irjar4 plants was similar to WT levels. Damage rates reflected plant survival rates; fewer irlox3 (78%) and ircoi1 (22%) plants survived compared with irjar4 and WT plants of which all plants survived. Gene expression profiling in leaves 3h after simulated herbivory revealed differential regulation of ∼700 genes in irlox3 and ircoi1 plants but of only six genes in irjar4 compared with WT plants. Surprisingly, transcriptional responses were not reflected in metabolomic responses; 48h after simulated herbivory, irjar4 plants showed a 50% overlap in their metabolic profile with ircoi1 plants. Together, these results reveal that SnJAR4 does not play a direct role in herbivore defence, but suggests that SnJAR4 is involved in responses other than those to herbivory. We assessed the role of jasmonyl-isoleucine (JA-Ile) in the non-model Solanum nigrum. Using transgenic plants silenced for genes in JA production (SnLOX3), conjugation of JA to JA-Ile (SnJAR4) and JA perception (SnCOI1), we show that JA-Ile signaling is not responsible for defense against Noctuidea herbivores in a natural environment. Transcriptional profiling shows that only a few genes are regulated by SnJAR4, in contrast to large-scale gene regulation by SnLOX3 and SnCOI1. However, an analysis of the metabolome over time following simulated herbivory, shows that a substantial number of ions are regulated by JA-Ile. Taken together, these results show that in contrast to other plant species, JA-Ile does not play a central role in activating S. nigrum's defenses, indicating that the fine-tuning of the JA-Ile-elicited herbivore response is a plant-specific process.
-
(2011) Plant Cell. 23, 12, p. 4507-4525 Abstract
Steroidal alkaloids (SAs) are triterpene-derived specialized metabolites found in members of the Solanaceae family that provide plants with a chemical barrier against a broad range of pathogens. Their biosynthesis involves the action of glycosyltransferases to form steroidal glycoalkaloids (SGAs). To elucidate the metabolism of SGAs in the Solanaceae family, we examined the tomato (Solanum lycopersicum) GLYCOALKALOID METABOLISM1 (GAME1) gene. Our findings imply that GAME1 is a galactosyltransferase, largely performing glycosylation of the aglycone tomatidine, resulting in SGA production in green tissues. Downregulation of GAME1 resulted in an almost 50% reduction in a-tomatine levels (the major SGA in tomato) and a large increase in its precursors (i.e., tomatidenol and tomatidine). Surprisingly, GAME1-silenced plants displayed growth retardation and severe morphological phenotypes that we suggest occur as a result of altered membrane sterol levels caused by the accumulation of the aglycone tomatidine. Together, these findings highlight the role of GAME1 in the glycosylation of SAs and in reducing the toxicity of SA metabolites to the plant cell.
-
(2011) Plant Cell. 23, 11, p. 3893-3910 Abstract
Tomato (Solanum lycopersicum) is the primary model for the study of fleshy fruits, and research in this species has elucidated many aspects of fruit physiology, development, and metabolism. However, most of these studies have involved homogenization of the fruit pericarp, with its many constituent cell types. Here, we describe the coupling of pyrosequencing technology with laser capture microdissection to characterize the transcriptomes of the five principal tissues of the pericarp from tomato fruits (outer and inner epidermal layers, collenchyma, parenchyma, and vascular tissues) at their maximal growth phase. A total of 20,976 high-quality expressed unigenes were identified, of which more than half were ubiquitous in their expression, while others were cell type specific or showed distinct expression patterns in specific tissues. The data provide new insights into the spatial distribution of many classes of regulatory and structural genes, including those involved in energy metabolism, source-sink relationships, secondary metabolite production, cell wall biology, and cuticle biogenesis. Finally, patterns of similar gene expression between tissues led to the characterization of a cuticle on the inner surface of the pericarp, demonstrating the utility of this approach as a platform for biological discovery.
-
-
(2011) PLoS Genetics. 7, 5, e1001388. Abstract
Floral organs display tremendous variation in their exterior that is essential for organogenesis and the interaction with the environment. This diversity in surface characteristics is largely dependent on the composition and structure of their coating cuticular layer. To date, mechanisms of flower organ initiation and identity have been studied extensively, while little is known regarding the regulation of flower organs surface formation, cuticle composition, and its developmental significance. Using a synthetic microRNA approach to simultaneously silence the three SHINE (SHN) clade members, we revealed that these transcription factors act redundantly to shape the surface and morphology of Arabidopsis flowers. It appears that SHNs regulate floral organs' epidermal cell elongation and decoration with nanoridges, particularly in petals. Reduced activity of SHN transcription factors results in floral organs' fusion and earlier abscission that is accompanied by a decrease in cutin load and modified cell wall properties. SHN transcription factors possess target genes within four cutin- and suberin-associated protein families including, CYP86A cytochrome P450s, fatty acyl-CoA reductases, GSDL-motif lipases, and BODYGUARD1-like proteins. The results suggest that alongside controlling cuticular lipids metabolism, SHNs act to modify the epidermis cell wall through altering pectin metabolism and structural proteins. We also provide evidence that surface formation in petals and other floral organs during their growth and elongation or in abscission and dehiscence through SHNs is partially mediated by gibberellin and the DELLA signaling cascade. This study therefore demonstrates the need for a defined composition and structure of the cuticle and cell wall in order to form the archetypal features of floral organs surfaces and control their cell-to-cell separation processes. Furthermore, it will promote future investigation into the relation between the regulation of organ surface patterning and the broader control of flower development and biological functions.
-
(2011) NEW PHYTOLOGIST. 190, 3, p. 683-696 Abstract
Variations in tissue development and spatial composition have a major impact on the nutritional and organoleptic qualities of ripe fleshy fruit, including melon (Cucumis melo). To gain a deeper insight into the mechanisms involved in these changes, we identified key metabolites for rational food quality design. The metabolome, volatiles and mineral elements were profiled employing an unprecedented range of complementary analytical technologies. Fruits were followed at a number of time points during the final ripening process and tissues were collected across the fruit flesh from rind to seed cavity. Approximately 2000 metabolite signatures and 15 mineral elements were determined in an assessment of temporal and spatial melon fruit development. This study design enabled the identification of: coregulated hubs (including aspartic acid, 2-isopropylmalic acid, β-carotene, phytoene and dihydropseudoionone) in metabolic association networks; global patterns of coordinated compositional changes; and links of primary and secondary metabolism to key mineral and volatile fruit complements. The results reveal the extent of metabolic interactions relevant to ripe fruit quality and thus have enabled the identification of essential candidate metabolites for the high-throughput screening of melon breeding populations for targeted breeding programmes aimed at nutrition and flavour improvement.
-
(2011) Current Opinion in Biotechnology. 22, 2, p. 239-244 Abstract
Plants synthesize a myriad of secondary metabolites (SMs) that are derived from central or primary metabolism. While these so-called natural products have been targets for plant metabolic engineering attempts for many years, the immense value of manipulating the interface between committed steps in secondary metabolism pathways and those in primary metabolism pathways has only recently emerged. In this review we discuss a few of the major issues that should be taken into consideration in attempts to engineer the primary to secondary metabolism interface. The availability of carbon, nitrogen and sulfur resources will have a major impact on the production of specific classes of primary metabolites (PMs) and consequently on the levels and composition of SMs derived from these PMs. Recent studies have shown that transcription factors associated with the synthesis of a given class of SMs coactivate the expression of genes encoding metabolic enzymes associated with primary pathways that supply precursors to these SMs. In addition, metabolic engineering approaches, which alter post-transcriptional feedback and feedforward regulatory mechanisms of the primary-secondary metabolism interface, have been highly fruitful in Taylormade enhancements of the content of specific beneficial SMs. Lastly, the evolution of pathways of secondary metabolism from pathways of primary metabolism highlights the need to consider cases in which common enzymatic reactions and pathways take place between the two. Taken together, the available information indicates a supercoordinated gene expression networks connecting primary and secondary metabolism in plants, which should be taken into consideration in future attempts to metabolically engineer the various classes of plant SMs.
-
(2011) NEW PHYTOLOGIST. 190, 1, p. 113-124 Abstract
Previous studies showed that ABCG11 and ABCG12, two ATP-binding-cassette (ABC) transporters, are required for cuticular lipids extracellular secretion. Here, we characterized ABCG13, a third clade member, to widen our limited knowledge regarding assembly of the plant's cuticle. We isolated an abcg13 knockout mutant and used RNAi and artificial microRNA approaches to study the effect of ABCG13 loss-of-function. These plants were subsequently used to conduct a detailed analysis of cuticular lipids composition and cytological observations. ABCG13 loss-of-function resulted in cuticle-related phenotypes that were restricted to flowers, including inter-organ post-genital fusions. Apart from a significant reduction in flower cutin monomers, the macromorphology and micromorphology of abcg13 petal epidermis was strongly affected. We also found that ABCG13 is highly expressed in flowers, predominantly in petals and carpels. The results suggest that ABCG13 is required for the transport of flower cuticular lipids. This work introduces a new component to the recently emerging genetic network that makes the archetypal exterior of Arabidopsis flowers. While the question regarding the substrate specificity of the ABCG12-clade members remains open, these findings will facilitate future investigations regarding the interaction between the half-size ABCG-type transporters that likely take part in cuticle assembly.
-
(2011) Chemistry and Biology. 18, 2, p. 187-197 Abstract
Sortin1 is a chemical genetic-hit molecule that causes specific mislocalization of plant and yeast-soluble and membrane vacuolar markers. To better understand its mode of action, we designed a Sortin1-hypersensitive screen and identified several Sortin1-hypersensitive and flavonoid-defective mutants. Mechanistically, Sortin1 mimics the effect of the glutathione inhibitor buthionine sulfoximine and alters the vacuolar accumulation of flavonoids, likely blocking their transport through vacuole-localized ABC transporters. Structure-activity relationship studies conducted in Arabidopsis revealed the structural requirements for Sortin1 bioactivity and demonstrated that overlapping Sortin1 substructures can be used to discriminate between vacuolar-flavonoid accumulations and vacuolar-biogenesis defects. We conclude that Sortin1 is a valuable probe for dissecting novel links among flavonoid transport, vacuolar integrity, and the trafficking of vacuolar targeted cargoes in Arabidopsis.
-
(2011) Journal of Agricultural and Food Chemistry. 59, 3, p. 921-927 Abstract
Benzoxazinoids are metabolites occurring in a restricted group of plant species including crops such as rye, wheat, and maize. Focus on the analysis of benzoxazinoid metabolites has typically been due to their importance to plant biochemistry and physiology as highly bioactive molecules that plants use as alleochemicals to defend themselves against predators and infections. However, the potential dietary contribution of these compounds has not been addressed. This study conducted a detailed qualitative characterization of benzoxazinoid metabolites present in the whole grain rye and processed fractions of rye bran, and their presence was also detected in whole grain wheat samples. Several novel benzoxazinoid metabolites of the hydroxamic acids (2,4-dihydroxy-1,4- benzoxazin-3-one, DIBOA; 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one, DIMBOA), lactams (2-hydroxy-1,4-benzoxazin-3-one, HBOA), and benzoxazolinones (1,3-benzoxazol-2-one, BOA) were identified, including double-hexose derivatives of DIBOA, DIMBOA, and HBOA. This paper presents an important addition to the information on the phytochemical composition of rye and wheat grains, which deserves attention in the discussion of the potential health-promoting effects of these grains.
-
(2011) Nucleic Acids Research. 39, SUPPL. 1, p. D677-D684 Abstract
Correlations of gene-to-gene co-expression and metabolite-to-metabolite co-accumulation calculated from large amounts of transcriptome and metabolome data are useful for uncovering unknown functions of genes, functional diversities of gene family members and regulatory mechanisms of metabolic pathway flows. Many databases and tools are available to interpret quantitative transcriptome and metabolome data, but there are only limited ones that connect correlation data to biological knowledge and can be utilized to find biological significance of it. We report here a new metabolic pathway database, KaPPA-View4 (http:// kpv.kazusa.or.jp/kpv4/), which is able to overlay gene-to-gene and/or metabolite-to-metabolite relationships as curves on a metabolic pathway map, or on a combination of up to four maps. This representation would help to discover, for example, novel functions of a transcription factor that regulates genes on a metabolic pathway. Pathway maps of the Kyoto Encyclopedia of Genes and Genomes (KEGG) and maps generated from their gene classifications are available at KaPPA-View4 KEGG version (http://kpv.kazusa.or.jp/kpv4-kegg/). At present, gene co-expression data from the databases ATTED-II, COXPRESdb, CoP and MiBASE for human, mouse, rat, Arabidopsis, rice, tomato and other plants are available.
2010
-
(2010) Analytical Chemistry. 82, 22, p. 9177-9187 Abstract
The output of LC-MS metabolomics experiments consists of mass-peak intensities identified through a peak-picking/alignment procedure. Besides imperfections in biological samples and instrumentation, data accuracy is highly dependent on the applied algorithms and their parameters. Consequently, quality control (QC) is essential for further data analysis. Here, we present a QC approach that is based on discrepancies between replicate samples. First, the quantile normalization of per-sample log-signal distributions is applied to each group of biologically homogeneous samples. Next, the overall quality of each replicate group is characterized by the Z-transformed correlation coefficients between samples. This general QC allows a tuning of the procedure's parameters which minimizes the inter-replicate discrepancies in the generated output. Subsequently, an in-depth QC measure detects local neighborhoods on a template of aligned chromatograms that are enriched by divergences between intensity profiles of replicate samples. These neighborhoods are determined through a segmentation algorithm. The retention time (RT)-m/z positions of the neighborhoods with local divergences are indicative of either: incorrect alignment of chromatographic features, technical problems in the chromatograms, or to a true biological discrepancy between replicates for particular metabolites. We expect this method to aid in the accurate analysis of metabolomics data and in the development of new peak-picking/alignment procedures.
-
(2010) Journal of Agricultural and Food Chemistry. 58, 19, p. 10722-10728 Abstract
External color has profound effects on acceptability of agricultural products by consumers. Carotenoids and chlorophylls are known to be the major pigments of melon (Cucumis melo L.) rinds. Flavonoids (especially chalcones and anthocyanins) are also prominent in other fruits but have not been reported to occur in melons fruit. We analyzed the pigments accumulating in rinds of different melon genotypes during fruit development. We found that melon rind color is based on different combinations of chlorophyll, carotenoids, and flavonoids according to the cultivar tested and their ratios changed during fruit maturation. Moreover, in "canary yellow" type melons, naringenin chalcone, a yellow flavonoid pigment previously unknown to occur in melons, has been identified as the major fruit colorant in mature rinds. Naringenin chalcone is also prominent in other melon types, occurring together with carotenoids (mainly β-carotene) and chlorophyll. Both chlorophyll and carotenoid pigments segregate jointly in an F2 population originating from a cross between a yellow canary line and a line with green rind. In contrast, the content of naringenin chalcone segregates as a monogenic trait independently to carotenoids and chlorophyll. Transcription patterns of key structural phenylpropanoid and flavonoid biosynthetic pathway genes were monitored in attempts to explain naringenin chalcone accumulation in melon rinds. The transcript levels of CHI were low in both parental lines, but C4H, C4L, and CHS transcripts were upregulated in "Noy Amid", the parental line that accumulates naringenin chalcone. Our results indicate that naringenin chalcone accumulates independently from carotenoids and chlorophyll pigments in melon rinds and gives an insight into the molecular mechanism for the accumulation of naringenin chalcone in melon rinds.
-
(2010) Physiologia Plantarum. 140, 1, p. 10-20 Abstract
Awns are long, stiff filamentous extensions of glumes in many grasses. In wheat, awns contribute up to 40% of the grain's photosynthetic assimilates, and assist in seed dispersal. Awns accumulate silica in epidermal hairs and papillae, and silica has been positively associated with yield and environmental stress tolerance. Here, the awns of a set of domesticated wheat genotypes and their direct progenitor, Triticum turgidum ssp. dicoccoides were characterized. In addition, the silica concentration in awns was genetically dissected in a tetraploid wheat population of recombinant inbred lines (RILs) derived from a cross between durum wheat (cv. Langdon) and wild emmer (accession G18-16). Scanning electron micrographs revealed a continuous silica layer under the cuticle. Extended silicification was identified in the epidermis cell wall and in sclerenchyma cells near the vascular bundles, but not in the stomata, suggesting that an active process directs the soluble silica away from the water evaporation stream. The number of silicified cells was linearly correlated to silica concentration in dry weight (DW), suggesting cellular control over silicification. Domesticated wheat awns contained up to 19% silica per DW, as compared with 7% in the wild accessions, suggesting selection pressure associated with the domestication process. Six quantitative trait loci (QTLs) for silica were identified in the awns, with a LOD score of 3.7-6.3, three of which overlapped genomic regions that contribute to high grain protein. Localization of silica in the awns and identification of QTLs help illuminate mechanisms associated with silica metabolism in wheat.
-
-
(2010) Molecular Plant. 3, 3, p. 563-575 Abstract
Apart from its significance in the protection against stress conditions, the cuticular cover is essential for proper development of the diverse surface structures formed on aerial plant organs. This layer mainly consists of a cutin matrix, embedded and overlaid with cuticular waxes. Following their biosynthesis in epidermal cells, cutin and waxes were suggested to be exported across the plasma membrane by ABCG-type transporters such as DSO/ABCG11 to the cell wall and further to extracellular matrix. Here, additional aspects of DSO/ABCG11 function were investigated, predominantly in reproductive organs, which were not revealed in the previous reports. This was facilitated by the generation of a transgenic DSO/ABCG11 silenced line (dso-4) that displayed relatively subtle morphological and chemical phenotypes. These included altered petal and silique morphology, fusion of seeds, and changes in levels of cutin monomers in flowers and siliques. The dso-4 phenotypes corresponded to the strong DSO/ABCG11 gene expression in the embryo epidermis as well as in the endosperm tissues of the developing seeds. Moreover, the DSO/ABCG11 protein displayed polar localization in the embryo protoderm. Transcriptome analysis of the dso-4 mutant leaves and stems showed that reduced DSO/ABCG11 activity suppressed the expression of a large number of cuticle-associated genes, implying that export of cuticular lipids from the plasma membrane is a rate-limiting step in cuticle metabolism. Surprisingly, root suberin composition of dso-4 was altered, as well as root expression of two suberin biosynthetic genes. Taken together, this study provides new insights into cutin and suberin metabolism and their role in reproductive organs and roots development.
-
(2010) Journal of Experimental Botany. 61, 5, p. 1393-1403 Abstract
Brunfelsia calycina flowers change colour from purple to white due to anthocyanin degradation, parallel to an increase in fragrance and petal size. Here it was tested whether the production of the fragrant benzenoids is dependent on induction of the shikimate pathway, or if they are formed from the anthocyanin degradation products. An extensive characterization of the events taking place in Brunfelsia flowers is presented. Anthocyanin characterization was performed using ultraperfomance liquid chromatography-quadrupole time of flight-tandem mass specrometry (UPLC-QTOF-MS/MS). Volatiles emitted were identified by headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). Accumulated proteins were identified by 2D gel electrophoresis. Transcription profiles were characterized by cross-species hybridization of Brunfelsia cDNAs to potato cDNA microarrays. Identification of accumulated metabolites was performed by UPLC-QTOF-MS non-targeted metabolite analysis. The results include characterization of the nine main anthocyanins in Brunfelsia flowers. In addition, 146 up-regulated genes, 19 volatiles, seven proteins, and 17 metabolites that increased during anthocyanin degradation were identified. A multilevel analysis suggests induction of the shikimate pathway. This pathway is the most probable source of the phenolic acids, which in turn are precursors of both the benzenoid and lignin production pathways. The knowledge obtained is valuable for future studies on degradation of anthocyanins, formation of volatiles, and the network of secondary metabolism in Brunfelsia and related species.
-
(2010) Plant Cell. 22, 6, p. 1977-1997 Abstract
In higher plants, the plastidial NADH dehydrogenase (Ndh) complex supports nonphotochemical electron fluxes from stromal electron donors to plastoquinones. Ndh functions in chloroplasts are not clearly established; however, its activity was linked to the prevention of the overreduction of stroma, especially under stress conditions. Here, we show by the characterization of OrrDs, a dominant transposon-tagged tomato (Solanum lycopersicum) mutant deficient in the NDH-M subunit, that this complex is also essential for the fruit ripening process. Alteration to the NDH complex in fruit changed the climacteric, ripening-associated metabolites and transcripts as well as fruit shelf life. Metabolic processes in chromoplasts of ripening tomato fruit were affected in OrrDs, as mutant fruit were yellow-orange and accumulated substantially less total carotenoids, mainly β-carotene and lutein. The changes in carotenoids were largely influenced by environmental conditions and accompanied by modifications in levels of other fruit antioxidants, namely, flavonoids and tocopherols. In contrast with the pigmentation phenotype in mature mutant fruit, OrrDs leaves and green fruits did not display a visible phenotype but exhibited reduced Ndh complex quantity and activity. This study therefore paves the way for further studies on the role of electron transport and redox reactions in the regulation of fruit ripening and its associated metabolism
2009
-
(2009) Plant Journal. 60, 6, p. 1081-1095 Abstract
After fertilization, the expanding carpel of fleshy fruit goes through a phase change to ripening. Although the role of ethylene signalling in mediating climacteric ripening has been established, knowledge regarding the regulation of ethylene biosynthesis and its association with fruit developmental programs is still lacking. A functional screen of tomato transcription factors showed that silencing of the TOMATO AGAMOUS-LIKE 1 (TAGL1) MADS box gene results in altered fruit pigmentation. Over-expressing TAGL1 as a chimeric repressor suggested a role in controlling ripening, as transgenic tomato fruit showed reduced carotenoid and ethylene levels, suppressed chlorophyll breakdown, and down-regulation of ripening-associated genes. Moreover, fruits over-expressing TAGL1 accumulated more lycopene, and their sepals were swollen, accumulated high levels of the yellow flavonoid naringenin chalcone and contained lycopene. Transient promoter-binding assays indicated that part of the TAGL1 activity in ripening is executed through direct activation of ACS2, an ethylene biosynthesis gene that has recently been reported to be a target of the RIN MADS box factor. Examination of the TAGL1 transcript and its over-expression in the rin mutant background suggested that RIN does not regulate TAGL1 or vice versa. The results also indicated RIN-dependent and-independent processes that are regulated by TAGL1. We also noted that fruit of TAGL1 loss-of-function lines had a thin pericarp layer, indicating an additional role for TAGL1 in carpel expansion prior to ripening. The results add a new component to the current model of the regulatory network that controls fleshy fruit ripening and its association with the ethylene biosynthesis pathway.
-
(2009) PLoS Genetics. 5, 12, 1000777. Abstract
The cuticle covering plants' aerial surfaces is a unique structure that plays a key role in organ development and protection against diverse stress conditions. A detailed analysis of the tomato colorless-peel y mutant was carried out in the framework of studying the outer surface of reproductive organs. The y mutant peel lacks the yellow flavonoid pigment naringenin chalcone, which has been suggested to influence the characteristics and function of the cuticular layer. Large-scale metabolic and transcript profiling revealed broad effects on both primary and secondary metabolism, related mostly to the biosynthesis of phenylpropanoids, particularly flavonoids. These were not restricted to the fruit or to a specific stage of its development and indicated that the y mutant phenotype is due to a mutation in a regulatory gene. Indeed, expression analyses specified three R2R3-MYB-type transcription factors that were significantly down-regulated in the y mutant fruit peel. One of these, SlMYB12, was mapped to the genomic region on tomato chromosome 1 previously shown to harbor the y mutation. Identification of an additional mutant allele that co-segregates with the colorless-peel trait, specific downregulation of SlMYB12 and rescue of the y phenotype by overexpression of SlMYB12 on the mutant background, confirmed that a lesion in this regulator underlies the y phenotype. Hence, this work provides novel insight to the study of fleshy fruit cuticular structure and paves the way for the elucidation of the regulatory network that controls flavonoid accumulation in tomato fruit cuticle.
-
(2009) Plant Physiology. 151, 4, p. 1773-1789 Abstract
The cuticle covering every plant aerial organ is largely made of cutin that consists of fatty acids, glycerol, and aromatic monomers. Despite the huge importance of the cuticle to plant development and fitness, our knowledge regarding the assembly of the cutin polymer and its integration in the complete cuticle structure is limited. Cutin composition implies the action of acyltransferase-type enzymes that mediate polymer construction through ester bond formation. Here, we show that a member of the BAHD family of acyltransferases (DEFECTIVE IN CUTICULAR RIDGES [DCR]) is required for incorporation of the most abundant monomer into the polymeric structure of the Arabidopsis (Arabidopsis thaliana) flower cutin. DCR-deficient plants display phenotypes that are typically associated with a defective cuticle, including altered epidermal cell differentiation and postgenital organ fusion. Moreover, levels of the major cutin monomer in flowers, 9(10),16-dihydroxy-hexadecanoic acid, decreased to an almost undetectable amount in the mutants. Interestingly, dcr mutants exhibit changes in the decoration of petal conical cells and mucilage extrusion in the seed coat, both phenotypes formerly not associated with cutin polymer assembly. Excessive root branching displayed by dcr mutants and the DCR expression pattern in roots pointed to the function of DCR belowground, in shaping root architecture by influencing lateral root emergence and growth. In addition, the dcr mutants were more susceptible to salinity, osmotic, and water deprivation stress conditions. Finally, the analysis of DCR protein localization suggested that cutin polymerization, possibly the oligomerization step, is partially carried out in the cytoplasmic space. Therefore, this study extends our knowledge regarding the functionality of the cuticular layer and the formation of its major constituent the polymer cutin.
-
(2009) Analytical Chemistry. 81, 22, p. 9257-9266 Abstract
Advanced metabolomics technologies are anticipated to permit the identification and quantification of metabolites at the whole-metabolome scale. Yet, most of the metabolites either remain unknown or cannot be identified unambiguously. Moreover, the present approaches suffer from inaccuracies in relative quantification because of sample preparation and matrix effects. Here we present Dual Labeling of Metabolites for Metabolome Analysis (DLEMMA) as a valuable tool, which with analogy to DNA array assays enables the identification and relative quantification of differential metabolites in a single sample. DLEMMA was demonstrated as an efficient method for reducing the number of possible chemical structures assigned that exhibit the same elemental composition. Its strength was exemplified by the discovery of 10 novel Tryptophan derivatives. Furthermore, employing DLEMMA by feeding two Phenylalanine-labeled precursors, we could detect differential metabolites between trans-genic and control plants. The accuracy of relative quantification is also enhanced since DLEMMA provides identical matrixes for both samples, thus avoiding the effects of different complex biological matrixes on electrospray ionization. Hence, DLEMMA will complement and contribute to the advancement of metabolomics technologies and boost metabolic pathway discovery in diverse organisms.
-
(2009) Plant Journal. 60, 1, p. 156-167 Abstract
Plants can synthesize the aromatic amino acid Phe via arogenate, but it is still not known whether they also use an alternative route for Phe biosynthesis via phenylpyruvate, like many micro-organisms. To examine this possibility, we expressed a bacterial bi-functional PheA (chorismate mutase/prephenate dehydratase) gene in Arabidopsis thaliana that converts chorismate via prephenate into phenylpyruvate. The PheA-expressing plants showed a large increase in the level of Phe, implying that they can convert phenylpyruvate into Phe. In addition, PheA expression rendered the plants more sensitive than wild-type plants to the Trp biosynthesis inhibitor 5-methyl-Trp, implying that Phe biosynthesis competes with Trp biosynthesis from their common precursor chorismate. Surprisingly, GC-MS, LC-MS and microarray analyses showed that this increase in Phe accumulation only had a very minor effect on the levels of other primary metabolites as well as on the transcriptome profile, implying little regulatory cross-interaction between the aromatic amino acid biosynthesis network and the bulk of the Arabidopsis transcriptome and primary metabolism. However, the levels of a number of secondary metabolites derived from all three aromatic amino acids (Phe, Trp and Tyr) were altered in the PheA plants, implying regulatory cross-interactions between the flux of aromatic amino acid biosynthesis from chorismate and their further metabolism into various secondary metabolites. Taken together, our results provide insights into the regulatory mechanisms of aromatic amino acid biosynthesis and their interaction with central primary metabolism, as well as the regulatory interface between primary and secondary metabolism.
-
(2009) Journal of Experimental Botany. 60, 7, p. 2093-2106 Abstract
The gene encoding stilbene synthase is frequently used to modify plant secondary metabolism with the aim of producing the self-defence phytoalexin resveratrol. In this study, strawberry (Fragaria×ananassa) was transformed with the NS-Vitis3 gene encoding stilbene synthase from frost grape (Vitis riparia) under the control of the cauliflower mosaic virus 35S and the floral filament-specific fil1 promoters. Changes in leaf metabolites were investigated with UPLC-qTOF-MS (ultra performance liquid chromatography-quadrupole time of flight mass spectrometry) profiling, and increased accumulation of cinnamate, coumarate, and ferulate derivatives concomitantly with a decrease in the levels of flavonols was observed, while the anticipated resveratrol or its derivatives were not detected. The changed metabolite profile suggested that chalcone synthase was down-regulated by the genetic modification; this was verified by decreased chalcone synthase transcript levels. Changes in the levels of phenolic compounds led to increased susceptibility of the transgenic strawberry to grey mould fungus.
-
(2009) Xii Eucarpia Symposium On Fruit Breeding And Genetics. 814, p. 465-474 Abstract
The surface of fleshy fruit provides an interface between the plant tissue and its environment, acting as a protective barrier, as well as a medium for the exchange of gases, water and nutrients. Furthermore, the fruit surface influences the outward appearance of the fruit (color, glossiness, texture, and uniformity), resistance against pathogens and drought, efficacy of post harvest treatments, storage, transport, and shelf life. The aim of this work was to gain a novel insight of the formation and function of fleshy fruit surface. Metabolomics and array technologies were employed in order to discover metabolites and transcripts associated with the tomato fruit peel. Fingerprints of genes and metabolites expression showed a clear separation between the profiles of five tested fruit developmental stages, the immature green being the most distinct of tested stages. Metabolomics analyses using LC-MS and GC-MS identified over 70 peel-enriched metabolites. These included both secondary and primary metabolites, most of which belong to the phenylpropanoids, alkaloids, organic acids, and sugars classes. Gene expression analysis revealed a total of 574 transcripts that exhibited two-fold and more increased expression levels in the peel compared to flesh, in at least one of the tested stages. A large number of cuticle related genes such as those involved in the biosynthesis of wax, cutin, and phenylpropanoids were part of this set. In the peel, induced expression of most cuticle-associated genes was detected at early and middle stages of fruit development. Several genes identified in the course of this study are currently subject to detailed characterization in order to shed new light on the biology of fleshy fruit surface.
-
(2009) Molecular Techniques in Crop Improvement. p. 675-693 Abstract
Metabolomics aims at the efficient determination of multiple chemical constituents present in a tissue, a cell layer or ideally a single cell. Metabolomics is currently applied in a large number of life science disciplines. Nuclear Magnetic Resonance (NMR) or Gas- and Liquid-Chromatography coupled to Mass Spectrometry (GC-MS and LC-MS) are the most widespread technologies employed in metabolomics assays. Soft fruit, one of the most metabolite-rich plant organs, was from the first to be subjected to metabolomics investigation. The interest in metabolite profiling of soft fruit could be explained by the large repertoire of metabolites belonging to diverse chemical classes that are formed and catabolized during fruit development, starting from the fertilized ovary up to the ripe, mature fruit. Moreover, fruit constitute an essential part of our diet and the breeding to achieve nutrient-rich varieties entails a comprehensive analysis of their metabolite content. Presently, hundreds of substances, including primary and secondary (or specialized) metabolites have been detected in fruit. Metabolomics has been employed also for following metabolism in transgenic plants, mutants and introgression lines populations. The latter experiments allowed the identification of genomic regions associated with metabolic quality traits. So far, most metabolomics assays in fruit have been focused on two species, namely, tomato and strawberry. It is expected that in the following years the use of metabolomics will be expanded to the investigation of numerous other fruit species.
-
(2009) Bioinformatics. 25, 12, p. i247-i252 Abstract
Motivation: Revealing the subcellular localization of proteins within membrane-bound compartments is of a major importance for inferring protein function. Though current high-throughput localization experiments provide valuable data, they are costly and time-consuming, and due to technical difficulties not readily applicable for many Eukaryotes. Physical characteristics of proteins, such as sequence targeting signals and amino acid composition are commonly used to predict subcellular localizations using computational approaches. Recently it was shown that protein - protein interaction (PPI) networks can be used to significantly improve the prediction accuracy of protein subcellular localization. However, as high-throughput PPI data depend on costly high-throughput experiments and are currently available for only a few organisms, the scope of such methods is yet limited. Results: This study presents a novel constraint-based method for predicting subcellular localization of enzymes based on their embedding metabolic network, relying on a parsimony principle of a minimal number of cross-membrane metabolite transporters. In a cross-validation test of predicting known subcellular localization of yeast enzymes, the method is shown to be markedly robust, providing accurate localization predictions even when only 20% of the known enzyme localizations are given as input. It is shown to outperform pathway enrichment-based methods both in terms of prediction accuracy and in its ability to predict the subcellular localization of entire metabolic pathways when no a-priori pathway-specific localization data is available (and hence enrichment methods are bound to fail). With the number of available metabolic networks already reaching more than 600 and growing fast, the new method may significantly contribute to the identification of enzyme localizations in many different organisms.
-
(2009) Plant Journal. 57, 1, p. 1-13 Abstract
Starches extracted from most plant species are phosphorylated. α-Glucan water dikinase (GWD) is a key enzyme that controls the phosphate content of starch. In the absence of its activity starch degradation is impaired, leading to a starch excess phenotype in Arabidopsis and in potato leaves, and to reduced cold sweetening in potato tubers. Here, we characterized a transposon insertion (legwd::Ds) in the tomato GWD (LeGWD) gene that caused male gametophytic lethality. The mutant pollen had a starch excess phenotype that was associated with a reduction in pollen germination. SEM and TEM analyses indicated mild shrinking of the pollen grains and the accumulation of large starch granules inside the plastids. The level of soluble sugars was reduced by 1.8-fold in mutant pollen grains. Overall, the transmission of the mutant allele was only 0.4% in the male, whereas it was normal in the female. Additional mutant alleles, obtained through transposon excision, showed the same phenotypes as legwd::Ds. Moreover, pollen germination could be restored, and the starch excess phenotype could be abolished in lines expressing the potato GWD homolog (StGWD) under a pollen-specific promoter. In these lines, where fertility was restored, homozygous plants for legwd::Ds were isolated, and showed the starch excess phenotype in the leaves. Overall, our results demonstrate the importance of starch phosphorylation and breakdown for pollen germination, and open up the prospect for analyzing the role of starch metabolism in leaves and fruits.
-
(2009) Phytochemical Analysis. 20, 5, p. 353-364 Abstract
Introduction - Strawberry (Fragaria x ananassa) is rich in polyphenols, particularly anthocyanins, flavonols, condensed tannins and ellagic tannins. In addition to the fruits, the leaves of strawberry also contain a wide range of phenolic compound classes, but have not been investigated to the same extent as the fruit. Objective - To characterise a metabolite group present in the leaves of strawberry, that was not amenable for identification based on earlier information available in the literature. Methodology - Methanolic extracts of strawberry leaves were analysed by UPLC-qTOF-MS/MS and iterative quantum mechanical NMR spectral analysis. Results - The structures of phenylethanol derivatives of phenylpropanoid glucosides Eutigoside A (F4) and its two isomeric forms 2-(4-hydroxyphenyl)ethyl-[6-O-(Z)-coumaroyl]-β-D-glucopyranoside (F6) and 4-(2-hydroxyethyl)phenyl-[6-O-(E)-coumaroyl]-β-D-glucopyranoside (F1) were resolved by NMR and UPLC-qTOF-MS/MS. In addition, two other derivatives of phenylpropanoid glucosides similar to Eutigoside A but possessing different phenolic acid moieties, namely Grayanoside A (F5) and 2-(4-hydroxyphenyl)ethyl-[6-O-(E)-caffeoyl]-β-D-glucopyranoside (F14), were similarly identified. Also, accurate characteristic coupling constants for the subunits are reported and their usefulness in structural analysis is highlighted. Conclusion - Chemical analysis of the leaves of strawberry (Fragaria x ananassa cv. Jonsok) resulted in the identification of a compound class, phenylethanol derivatives of phenylpropanoid glycosides, not previously found in strawberry.
-
(2009) Plant-Derived Natural Products: Synthesis, Function, And Application. p. 435-473 Abstract
Plants produce a myriad of secondary metabolites (SMs), which constantly contribute to plants' interaction with the surroundings. Since ancient times and up to this day mankind has been using SMs as sources for medicines, spices, fragrances, pesticides, poisons, hallucinogens, stimulants, dyes, perfumery and countless more purposes. The shared value for both humans and plants makes SMs important targets for bioengineering. The formation of certain SM compounds may be restricted to single plant species, specific plant organs, cells or even particular cell compartments. Bioengineering can modulate the levels, time and site of production of natural products in plants. In this chapter we review the state of the art in the bioengineering of natural products at the whole plant level. In the first part of this review, we summarize the current and emerging bioengineering strategies and methods, including the use of the riboswitches, immunomodulation, synthetic microRNAs and Zinc-finger nucleases. The second and major part of this chapter provides examples from different fields of bioengineering in plants including: (a) the production of nutraceuticals, (b) modifying volatiles and pigments (in fruit and flowers), (c) production of medicinal agents and (d) aiding plants in the fight against biotic stresses. The experiments described here were conducted either in target plants, usually crop species, or as a form of a "proof of concept" in model plant species (e.g. Arabidopsis). Future challenges for SM bioengineering include reducing unwanted effects on plant fitness, transfer of knowledge from models to crops, the reduction of genomic position effects and the capacity to predict the outcome of bioengineering. These aspects are also discussed. The large and rapid advances made during the last decade in our understanding of the molecular genetic control of SM production and biological function provide an excellent foundation for successful bioengineering of these small molec
-
(2009) Acta Horticulturae. Vol. 839. p. 673-679 Abstract
Modification of plants by introducing the stilbene synthase (STS) gene has often resulted in novel production of the phytoalexin resveratrol, and provided enhanced resistance against several pathogenic fungi. In the present study, a grapevine STS expressing strawberry (Fragaria × ananassa) was investigated for the effect of the transgene on plant metabolism by techniques including quantitative real-time PCR, UPLC-qTOF-MS profiling and NMR analysis. The introduced STS gene caused down-regulation of the strawberry endogenous chalcone synthase (CHS) gene expression. The perturbation of the gene expression was reflected at the metabolite content, as the CHS enzyme downstream products, mainly flavonols, were found at reduced levels concomitantly with the accumulation of the precursor molecules like phenolic acid derivatives. In addition, several previously unidentified metabolites were accumulating in the leaves of the transgenic strawberry plants. A detailed metabolite analysis was pertinent for the detection of unintended consequences of the gene transfer, and eventually provided deeper insight in the phenolic compound metabolism of strawberry.
2008
-
(2008) Plant Physiology. 148, 4, p. 2021-2049 Abstract
In this study, transcriptomics and metabolomics data were integrated in order to examine the regulation of glucosinolate (GS) biosynthesis in Arabidopsis (Arabidopsis thaliana) and its interface with pathways of primary metabolism. Our genetic material for analyses were transgenic plants overexpressing members of two clades of genes (ALTERED TRYPTOPHAN REGULATION1 [ATR1]-like and MYB28-like) that regulate the aliphatic and indole GS biosynthetic pathways (AGs and IGs, respectively). We show that activity of these regulators is not restricted to the metabolic space surrounding GS biosynthesis but is tightly linked to more distal metabolic networks of primary metabolism. This suggests that with similarity to the regulators we have investigated here, other factors controlling pathways of secondary metabolism might also control core pathways of central metabolism. The relatively broad view of transcripts and metabolites altered in transgenic plants overexpressing the different factors underlined novel links of GS metabolism to additional metabolic pathways, including those of jasmonic acid, folate, benzoic acid, and various phenylpropanoids. It also revealed transcriptional and metabolic hubs in the "distal" network of metabolic pathways supplying precursors to GS biosynthesis and that overexpression of the ATR1-like clade genes has a muchbroader effect on the metabolism of indolic compounds than described previously. While the reciprocal, negative cross talk between the methionine and tryptophan pathways that generate GSs in Arabidopsis has been suggested previously, we now show that it is not restricted to AGs and IGs but includes additional metabolites, such as the phytoalexin camalexin. Combining the profiling data of transgenic lines with gene expression correlation analysis allowed us to propose a model ofhowthe balance in the metabolic network is maintained by theGS biosynthesis regulators. It appears that ATR1/MYB34 is an important mediator between the gene activities of the two clades. While it is very similar to the ATR1-like clade members in terms of downstream gene targets, its expression is highly correlated with that of the MYB28-like clade members. Finally, we used the unique transgenic plants obtained here to show that AGs are likely more potent deterrents of the whitefly Bemisia tabaci compared with IGs. The influence on insect behavior raises an important question for future investigation of the functional aspect of our initial finding, which pointed to enriched expression of the MYB28-like clade genes in the abaxial domain of the Arabidopsis leaf.
-
(2008) Trends in Plant Science. 13, 10, p. 526-533 Abstract
Riboswitches are natural RNA sensors that affect post-transcriptional processes via their capacity to bind small molecules. To date, these mRNA structures have been shown to regulate the biosynthesis of essential metabolites, including vitamins and amino acids. Although bacterial riboswitches are widespread and characterized, only a single eukaryotic, thiamin-pyrophosphate-binding riboswitch has recently been discovered to direct gene expression by regulating mRNA splicing in fungi, green algae and land plants. It is unclear how widespread riboswitches are and what additional roles they have in eukaryotes. When engineered in plants, riboswitches can function autonomously to modulate gene expression. These discoveries not only trigger novel findings regarding RNA switches in plants, but also spur the exploitation of riboswitches for monitoring metabolite concentrations in planta.
-
-
(2008) Phytochemistry. 69, 13, p. 2463-2481 Abstract
Formation of flower organs and the subsequent pollination process require a coordinated spatial and temporal regulation of particular metabolic pathways. In this study a comparison has been made between the metabolite composition of individual flower organs of strawberry (Fragaria × ananassa) including the petal, sepal, stamen, pistil and the receptacle that gives rise to the strawberry fruit. Non-targeted metabolomics analysis of the semi-polar secondary metabolites by the use of UPLC-qTOF-MS was utilized in order to localize metabolites belonging to various chemical classes (e.g. ellagitannins, proanthocyanidins, flavonols, terpenoids, and spermidine derivatives) to the different flower organs. The vast majority of the tentatively identified metabolites were ellagitannins that accumulated in all five parts of the flower. Several metabolite classes were detected predominantly in certain flower organs, as for example spermidine derivatives were present uniquely in the stamen and pistil, and the proanthocyanidins were almost exclusively detected in the receptacle and sepals. The latter organ was also rich in terpenoids (i.e. triterpenoid and sesquiterpenoid derivatives) whereas phenolic acids and flavonols were the predominant classes of compounds detected in the petals. Furthermore, we observed extensive variation in the accumulation of metabolites from the same class in a single organ, particularly in the case of ellagitannins, and the flavonols quercetin, kaempferol and isorhamnetin. These results allude to spatially-restricted production of secondary metabolite classes and specialized derivatives in flowers that take part in implementing the unique program of individual organs in the floral life cycle.
-
(2008) Plant Physiology. 148, 2, p. 730-750 Abstract
The anatomy of strawberry (Fragaria x ananassa) fruit, in which the achene is found on the outer part of the fruit, makes it an excellent species for studying the regulation of fruit development. It can provide a model for the cross talk between primary and secondary metabolism, whose role is of pivotal importance in the process. By combining gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry with the aim of addressing the metabolic regulation underlying fruit seed development, we simultaneously analyzed the composition of primary and secondary metabolites, separately, in achene and receptacle during fruit ripening of strawberry cultivar Herut. The results from these analyses suggest that changes in primary and secondary metabolism reflect organ and developmental specificities. For instance, the receptacle was characterized by increases in sugars and their direct derivatives, while the achene was characterized by a major decrease in the levels of carbon- and nitrogen-rich compounds, with the exception of storage-related metabolites (e.g. raffinose). Furthermore, the receptacle, and to a lesser extent the achene, exhibited dynamic fluctuations in the levels and nature of secondary metabolites across the ripening process. In the receptacle, proanthocyanidins and flavonol derivatives characterized mainly early developmental stages, while anthocyanins were abundant in the mature red stage; in the achene, ellagitannin and flavonoids were abundant during early and late development, respectively. Correlation-based network analysis suggested that metabolism is substantially coordinated during early development in either organ. Nonetheless, a higher degree of connectivity within and between metabolic pathways was measured in the achenes. The data are discussed within the context of current models both of the interaction of primary and secondary metabolism and of the metabolic interaction between the different plant organs.
-
Computational identification of three-way junctions in folded RNAs: A case study in arabidopsis(2008) In Silico Biology. 8, 2, p. 105-120 Abstract
Three-way junctions in folded RNAs have been investigated both experimentally and computationally. The interest in their analysis stems from the fact that they have significantly been found to possess a functional role. In recent work, three-way junctions have been categorized into families depending on the relative lengths of the segments linking the three helices. Here, based on ideas originating from computational geometry, an algorithm is proposed for detecting three-way junctions in data sets of genes that are related to a metabolic pathway of interest. In its current implementation, the algorithm relies on a moving window that performs energy minimization folding predictions, and is demonstrated on a set of genes that are involved in purine metabolism in plants. The pattern matching algorithm can be extended to other organisms and other metabolic cycles of interest in which three-way junctions have been or will be discovered to play an important role. In the test case presented here with, the computational prediction of a three-way junction in Arabidopsis that was speculated to have an interesting functional role is verified experimentally.
-
(2008) Plant Physiology. 147, 2, p. 823-851 Abstract
The cuticle, covering the surface of all primary plant organs, plays important roles in plant development and protection against the biotic and abiotic environment. In contrast to vegetative organs, very little molecular information has been obtained regarding the surfaces of reproductive organs such as fleshy fruit. To broaden our knowledge related to fruit surface, comparative transcriptome and metabolome analyses were carried out on peel and flesh tissues during tomato (Solanum lycopersicum) fruit development. Out of 574 peel-associated transcripts, 17% were classified as putatively belonging to metabolic pathways generating cuticular components, such as wax, cutin, and phenylpropanoids. Orthologs of the Arabidopsis (Arabidopsis thaliana) SHINE2 and MIXTA-LIKE regulatory factors, activating cutin and wax biosynthesis and fruit epidermal cell differentiation, respectively, were also predominantly expressed in the peel. Ultra-performance liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer and gas chromatography-mass spectrometry using a flame ionization detector identified 100 metabolites that are enriched in the peel tissue during development. These included flavonoids, glycoalkaloids, and amyrin-type pentacyclic triterpenoids as well as polar metabolites associated with cuticle and cell wall metabolism and protection against photooxidative stress. Combined results at both transcript and metabolite levels revealed that the formation of cuticular lipids precedes phenylpropanoid and flavonoid biosynthesis. Expression patterns of reporter genes driven by the upstream region of the wax-associated SlCER6 gene indicated progressive activity of this wax biosynthetic gene in both fruit exocarp and endocarp. Peel-associated genes identified in our study, together with comparative analysis of genes enriched in surface tissues of various other plant species, establish a springboard for future investigations of plant surface biology.
-
(2008) Plant Physiology. 146, 4, p. 1528-1539 Abstract
Strawberry (Fragaria x ananassa) fruit contains several anthocyanins that give the ripe fruits their attractive red color. The enzyme that catalyzes the formation of the first stable intermediate in the anthocyanin pathway is anthocyanidin-3-O-glucosyltransferase. A putative glycosyltransferase sequence (FaGT1) was cloned from a strawberry fruit cDNA library and the recombinant FaGT1 transferred UDP-glucose to anthocyanidins and, to a lesser extent, flavonols, generating the respective 3-O-glucosides. Quantitative polymerase chain reaction revealed that transcripts of FaGT1 were almost undetectable in green fruits, but gene expression increased dramatically in both turning and ripe red fruit, corresponding closely to the accumulation of anthocyanins during fruit ripening. The expression of FaGT1 is fruit associated and negatively regulated by auxin. To elucidate the in planta function of FaGT1, Agrobacterium tumefaciens cells harboring an intron-hairpin construct of a partial FaGT1 sequence were injected into midsized ripening fruits. In about one-third of the injected fruits, this led to significant down-regulation of FaGT1 transcript levels that corresponded to reduced concentrations of anthocyanin pigments in ripe strawberry fruits. In contrast, significant levels of epiafzelechin-formed by anthocyanidin reductase (ANR) from pelargonidin-were identified in FaGT1-silenced fruits, indicating competition of FaGT1 and FaANR for the common anthocyanidin substrate. Thus, FaGT1 represents an important branching-point enzyme because it is channeling the flavonoid pathway to anthocyanins. These results demonstrate a method to redirect the anthocyanin biosynthesis into flavan-3-ol production to increase the levels of bioactive natural products or modify pigments in plant tissues.
2007
-
(2007) Plant Physiology. 145, 4, p. 1241-1250 Abstract
Floral fragrance is responsible for attracting pollinators as well as repelling pathogens and pests. As such, it is of immense biological importance. Molecular dissection of the mechanisms underlying scent production would benefit from the use of model plant systems with big floral organs that generate an array of volatiles and that are amenable to methods of forward and reverse genetics. One candidate is petunia (Petunia hybrida), which has emerged as a convenient model system, and both RNAi and overexpression approaches using transgenes have been harnessed for the study of floral volatiles. Virus-induced gene silencing (VIGS) is characterized by a simple inoculation procedure and rapid results relative to transgenesis. Here, we demonstrate the applicability of the tobacco rattle virus-based VIGS system to studies of floral scent. Suppression of the anthocyanin pathway via chalcone synthase silencing was used as a reporter, allowing easy visual identification of anthocyaninless silenced flowers/tissues with no effect on the level of volatile emissions. Use of tobacco rattle virus constructs containing target genes involved in phenylpropanoid volatile production, fused to the chalcone synthase reporter, allowed simple identification of flowers with suppressed activity of the target genes. The applicability of VIGS was exemplified with genes encoding S-adenosyl-L-methionine:benzoic acid/salicylic acid carboxyl methyltransferase, phenylacetaldehyde synthase, and the myb transcription factor ODORANT1. Because this high-throughput reverse-genetics approach was applicable to both structural and regulatory genes responsible for volatile production, it is expected to be highly instrumental for larges-cale scanning and functional characterization of novel scent genes.
-
(2007) Plant Physiology. 145, 4, p. 1345-1360 Abstract
The cuticle fulfills multiple roles in the plant life cycle, including protection from environmental stresses and the regulation of organ fusion. It is largely composed of cutin, which consists of C16-18 fatty acids. While cutin composition and biosynthesis have been studied, the export of cutin monomers out of the epidermis has remained elusive. Here, we show that DESPERADO (AtWBC11) (abbreviated DSO), encoding a plasma membrane-localized ATP-binding cassette transporter, is required for cutin transport to the extracellular matrix. The dso mutant exhibits an array of surface defects suggesting an abnormally functioning cuticle. This was accompanied by dramatic alterations in the levels of cutin monomers. Moreover, electron microscopy revealed unusual lipidic cytoplasmatic inclusions in epidermal cells, disappearance of the cuticle in postgenital fusion areas, and altered morphology of trichomes and pavement cells. We also found that DSO is induced by salt, abscisic acid, and wounding stresses and its loss of function results in plants that are highly susceptible to salt and display reduced root branching. Thus, DSO is not only essential for developmental plasticity but also plays a vital role in stress responses.
-
(2007) GENES & DEVELOPMENT. 21, 22, p. 2874-2879 Abstract
Riboswitches are natural RNA sensors that affect gene control via their capacity to bind small molecules. Their prevalence in higher eukaryotes is unclear. We discovered a post-transcriptional mechanism in plants that uses a riboswitch to control a metabolic feedback loop through differential processing of the precursor RNA 3 terminus. When cellular thiamin pyrophosphate (TPP) levels rise, metabolite sensing by the riboswitch located in TPP biosynthesis genes directs formation of an unstable splicing product, and consequently TPP levels drop. When transformed in plants, engineered TPP riboswitches can act autonomously to modulate gene expression. In an evolutionary perspective, a TPP riboswitch is also present in ancient plant taxa, suggesting that this mechanism is active since vascular plants emerged 400 million years ago.
-
(2007) Proceedings of the National Academy of Sciences of the United States of America. 104, 39, p. 15270-15275 Abstract
Freshwater is a limited and dwindling global resource; therefore, efficient water use is required for food crops that have high water demands, such as rice, or for the production of sustainable energy biomass. We show here that expression of the Arabidopsis HARDY (HRD) gene in rice improves water use efficiency, the ratio of biomass produced to the water used, by enhancing photosynthetic assimilation and reducing transpiration. These drought-tolerant, low-water-consuming rice plants exhibit increased shoot biomass under well irrigated conditions and an adaptive increase in root biomass under drought stress. The HRD gene, an AP2/ERF-like transcription factor, identified by a gain-of-function Arabidopsis mutant hrd-D having roots with enhanced strength, branching, and cortical cells, exhibits drought resistance and salt tolerance, accompanied by an enhancement in the expression of abiotic stress associated genes. HRD overexpression in Arabidopsis produces thicker leaves with more chloroplast-bearing mesophyll cells, and in rice, there is an increase in leaf biomass and bundle sheath cells that probably contributes to the enhanced photosynthesis assimilation and efficiency. The results exemplify application of a gene identified from the model plant Arabidopsis for the improvement of water use efficiency coincident with drought resistance in the crop plant rice.
-
(2007) Applications of Plant Metabolic Engineering. p. 219-236 Abstract
Metabolic engineering of terpenoids in plants is a fascinating research topic from two main perspectives. On the one hand, the various biological activities of these compounds make their engineering a new tool for improving a considerable number of traits in crops. These include for example enhanced disease resistance, weed control by producing allelopathic compounds, better pest management, production of medicinal compounds, increased value of ornamentals and fruit and improved pollination. On the other hand, the same plants altered in the profile of terpenoids and their precursor pools make a most important contribution to fundamental studies on terpenoid biosynthesis and its regulation. In this review we describe the recent results with terpenoid engineering, showing that engineering of these compounds and their derivatives in plant cells is feasible, although with some requirements and limitations. For example, in terpenoid engineering experiments crucial factors are the subcellular localization of both the precursor pool and the introduced enzymes, the activity of endogenous plant enzymes which modify the introduced terpenoid skeleton, the costs of engineering in terms of effects on other pathways sharing the same precursor pool and the phytotoxicity of the introduced terpenoids. Finally, we will show that transgenic plants altered in their terpenoid profile exert novel biological activities on their environment, for example influencing insect behavior
2006
-
(2006) Plant Physiology. 140, 3, p. 1047-1058 Abstract
Strawberry (Fragaria × ananassa) fruit accumulate (hydroxy)cinnamoyl glucose (Glc) esters, which may serve as the biogenetic precursors of diverse secondary metabolites, such as the flavor constituents methyl cinnamate and ethyl cinnamate. Here, we report on the isolation of a cDNA encoding a UDP-Glc:cinnamate glucosyltransferase (Fragaria × ananassa glucosyltransferase 2 [FaGT2]) from ripe strawberry cv Elsanta that catalyzes the formation of 1-O-acyl-Glc esters of cinnamic acid, benzoic acid, and their derivatives in vitro. Quantitative real-time PCR analysis indicated that FaGT2 transcripts accumulate to high levels during strawberry fruit ripening and to lower levels in flowers. The levels in fruits positively correlated with the in planta concentration of cinnamoyl, p-coumaroyl, and caffeoyl Glc. In the leaf, high amounts of Glc esters were detected, but FaGT2 mRNA was not observed. The expression of FaGT2 is negatively regulated by auxin, induced by oxidative stress, and by hydroxycinnamic acids. Although FaGT2 glucosylates a number of aromatic acids in vitro, quantitative analysis in transgenic lines containing an antisense construct of FaGT2 under the control of the constitutive 35S cauliflower mosaic virus promoter demonstrated that the enzyme is only involved in the formation of cinnamoyl Glc and p-coumaroyl Glc during ripening.
-
(2006) Phytochemistry Reviews. 5, 1, p. 49-58 Abstract
Metabolic engineering of terpenoids in plants is a fascinating research topic from two main perspectives. On the one hand, the various biological activities of these compounds make their engineering a new tool for improving a considerable number of traits in crops. These include for example enhanced disease resistance, weed control by producing allelopathic compounds, better pest management, production of medicinal compounds, increased value of ornamentals and fruit and improved pollination. On the other hand, the same plants altered in the profile of terpenoids and their precursor pools make a most important contribution to fundamental studies on terpenoid biosynthesis and its regulation. In this review we describe our recent results with terpenoid engineering, focusing on two terpenoid classes the monoterpenoids and sesquiterpenoids. The emerging picture is that engineering of these compounds and their derivatives in plant cells is feasible, although with some requirements and limitations. For example, in terpenoid engineering experiments crucial factors are the subcellular localisation of both the precursor pool and the introduced enzymes, the activity of endogenous plant enzymes which modify the introduced terpenoid skeleton, the costs of engineering in terms of effects on other pathways sharing the same precursor pool and the phytotoxicity of the introduced terpenoids. Finally, we will show that transgenic plants altered in their terpenoid profile exert novel biological activities on their environment, for example influencing insect behaviour.
-
(2006) Developments in Food Science. 43, C, p. 39-44 Abstract
Like in other fruit, a complex mixture of hundreds of compounds determine strawberry aroma. Among them 4-hydroxy-2,5-dimethyl-3(2H)-furanone (Furaneol®), HDMF) and its methyl ether 2,5-dimethyl-4-methoxy-3(2H)-furanone (DMMF) belong to the fifteen most important strawberry flavour compounds. Recently, the gene FaOMT (Fragaria x ananassa O-methyltransferase) was isolated and sequenced coding for an O-methyltransferase forming DMMF from HDMF. Heterologous expression of FaOMT and characterisation of the corresponding protein demonstrated its ability to methylate a range of substrates. In order to clarify the in vivo function of FaOMT we generated transgenic strawberry plants carrying a FaOMT sense or antisense construct under the control of the constitutively expressed CaMV 35S promoter. Transcript levels in transgenic and control fruit were quantified by Quantitative Real Time-PCR (QRT-PCR) and metabolite levels were determined by GC-MS and LC-ESI/MSn. The data showed that FaOMT mRNA levels and concentration of DMMF were strongly down-regulated in antisense as well as some sense fruit. Fruit of several transgenic lines were devoid of DMMF. Sensory analyses of the transgenic fruit clarified the contribution of DMMF to the overall strawberry flavour. As a side effect of the reduced levels of FaOMT transcripts we observed the reduction of feruloyl β-D-glucose confirming the dual function of FaOMT in strawberry fruit.
2005
-
(2005) Trends in Plant Science. 10, 12, p. 594-602 Abstract
Terpenoids are important for plant survival and also possess biological properties that are beneficial to humans. Here, we describe the state of the art in terpenoid metabolic engineering, showing that significant progress has been made over the past few years. Subcellular targeting of enzymes has demonstrated that terpenoid precursors in subcellular compartments are not as strictly separated as previously thought and that multistep pathway engineering is feasible, even across cell compartments. These engineered plants show that insect behavior is influenced by terpenoids. In the future, we expect rapid progress in the engineering of terpenoid production in plants. In addition to commercial applications, such transgenic plants should increase our understanding of the biological relevance of these volatile secondary metabolites.
-
(2005) Science. 309, 5743, p. 2070-2072 Abstract
Herbivore-damaged plants release complex mixtures of volatiles that attract natural enemies of the herbivore. To study the relevance of individual components of these mixtures for predator attraction, we manipulated herbivory-induced volatiles through genetic engineering. Metabolic engineering of terpenoids, which dominate the composition of many induced plant volatile bouquets, holds particular promise. By switching the subcellular localization of the introduced sesquiterpene synthase to the mitochondria, we obtained transgenic Arabidopsis thaliana plants emitting two new isoprenoids. These altered plants attracted carnivorous predatory mites (Phytoseiulus persimilis) that aid the plants' defense mechanisms.
2004
-
(2004) Plant Cell. 16, 11, p. 3110-3131 Abstract
The blends of flavor compounds produced by fruits serve as biological perfumes used to attract living creatures, including humans. They include hundreds of metabolites and vary in their characteristic fruit flavor composition. The molecular mechanisms by which fruit flavor and aroma compounds are gained and lost during evolution and domestication are largely unknown. Here, we report on processes that may have been responsible for the evolution of diversity in strawberry (Fragaria spp) fruit flavor components. Whereas the terpenoid profile of cultivated strawberry species is dominated by the monoterpene linalool and the sesquiterpene nerolidol, fruit of wild strawberry species emit mainly olefinic monoterpenes and myrtenyl acetate, which are not found in the cultivated species. We used cDNA microarray analysis to identify the F. ananassa Nerolidol Synthase1 (FaNES1) gene in cultivated strawberry and showed that the recombinant FaNES1 enzyme produced in Escherichia coli cells is capable of generating both linalool and nerolidol when supplied with geranyl diphosphate (GPP) or farnesyl diphosphate (FPP), respectively. Characterization of additional genes that are very similar to FaNES1 from both the wild and cultivated strawberry species (FaNES2 and F. vesca NES1) showed that only FaNES1 is exclusively present and highly expressed in the fruit of cultivated (octaploid) varieties. It encodes a protein truncated at its N terminus. Green fluorescent protein localization experiments suggest that a change in subcellular localization led to the FaNES1 enzyme encountering both GPP and FPP, allowing it to produce linalool and nerolidol. Conversely, an insertional mutation affected the expression of a terpene synthase gene that differs from that in the cultivated species (termed F. ananassa Pinene Synthase). It encodes an enzyme capable of catalyzing the biosynthesis of the typical wild species monoterpenes, such as alpha-pinene and beta-myrcene, and caused the loss of these
-
(2004) Plant Cell. 16, 9, p. 2463-2480 Abstract
The interface between plants and the environment plays a dual role as a protective barrier as well as a medium for the exchange of gases, water, and nutrients. The primary aerial plant surfaces are covered by a cuticle, acting as the essential permeability barrier toward the atmosphere. It is a heterogeneous layer composed mainly of lipids, namely cutin and intracuticular wax with epicuticular waxes deposited on the surface. We identified an Arabidopsis thaliana activation tag gain-of-function mutant shine (shn) that displayed a brilliant, shiny green leaf surface with increased cuticular wax compared with the leaves of wild-type plants. The gene responsible for the phenotype encodes one member of a clade of three proteins of undisclosed function, belonging to the plant-specific family of AP2/EREBP transcription factors. Overexpression of all three SHN clade genes conferred a phenotype similar to that of the original shn mutant. Biochemically, such plants were altered in wax composition (very long fatty acid derivatives). Total cuticular wax levels were increased sixfold in shn compared with the wild type, mainly because of a ninefold increase in alkanes that comprised approximately half of the total waxes in the mutant. Chlorophyll leaching assays and fresh weight loss experiments indicated that overexpression of the SHN genes increased cuticle permeability, probably because of changes in its ultrastructure. Likewise, SHN gene overexpression altered leaf and petal epidermal cell structure, trichome number, and branching as well as the stomatal index. Interestingly, SHN overexpressors displayed significant drought tolerance and recovery, probably related to the reduced stomatal density. Expression analysis using promoter-β-glucuronidase fusions of the SHN genes provides evidence for the role of the SHN clade in plant protective layers, such as those formed during abscission, dehiscence, wounding, tissue strengthening, and the cuticle. We propose that these diverse functions are mediated by regulating metabolism of lipid and/or cell wall components.
-
(2004) Plant Physiology. 135, 4, p. 1865-1878 Abstract
Volatile esters are flavor components of the majority of fruits. The last step in their biosynthesis is catalyzed by alcohol acyltransferases (AATs), which link alcohols to acyl moieties. Full-length cDNAs putatively encoding AATs were isolated from fruit of wild strawberry (Fragaria vesca) and banana (Musa sapientum) and compared to the previously isolated SAAT gene from the cultivated strawberry (Fragaria X ananassa). The potential role of these enzymes in fruit flavor formation was assessed. To this end, recombinant enzymes were produced in Escherichia coli, and their activities were analyzed for a variety of alcohol and acyl-CoA substrates. When the results of these activity assays were compared to a phylogenetic analysis of the various members of the acyltransferase family, it was clear that substrate preference could not be predicted on the basis of sequence similarity. In addition, the substrate preference of recombinant enzymes was not necessarily reflected in the representation of esters in the corresponding fruit volatile profiles. This suggests that the specific profile of a given fruit species is to a significant extent determined by the supply of precursors. To study the in planta activity of an alcohol acyltransferase and to assess the potential for metabolic engineering of ester production, we generated transgenic petunia (Petunia hybrida) plants overexpressing the SAAT gene. While the expression of SAAT and the activity of the corresponding enzyme were readily detected in transgenic plants, the volatile profile was found to be unaltered. Feeding of isoamyl alcohol to explants of transgenic lines resulted in the emission of the corresponding acetyl ester. This confirmed that the availability of alcohol substrates is an important parameter to consider when engineering volatile ester formation in plants.
2003
-
(2003) Plant Cell. 15, 12, p. 2866-2884 Abstract
Volatile components, such as terpenoids, are emitted from aerial parts of plants and play a major role in the interaction between plants and their environment. Analysis of the composition and emission pattern of volatiles in the model plant Arabidopsis showed that a range of volatile components are released, primarily from flowers. Most of the volatiles detected were monoterpenes and sesquiterpenes, which in contrast to other volatiles showed a diurnal emission pattern. The active terpenoid metabolism in wild-type Arabidopsis provoked us to conduct an additional set of experiments in which transgenic Arabidopsis overexpressing two different terpene synthases were generated. Leaves of transgenic plants constitutively expressing a dual linalool/nerolidol synthase in the plastids (FaNES1) produced linalool and its glycosylated and hydroxylated derivatives. The sum of glycosylated components was in some of the transgenic lines up to 40- to 60-fold higher than the sum of the corresponding free alcohols. Surprisingly, we also detected the production and emission of nerolidol, albeit at a low level, suggesting that a small pool of its precursor farnesyl diphosphate is present in the plastids. Transgenic lines with strong transgene expression showed growth retardation, possibly as a result of the depletion of isoprenoid precursors in the plastids. In dual-choice assays with Myzus persicae, the FaNES1-expressing lines significantly repelled the aphids. Overexpression of a typical cytosolic sesquiterpene synthase resulted in the production of only trace amounts of the expected sesquiterpene, suggesting tight control of the cytosolic pool of farnesyl diphosphate, the precursor for sesquiterpenoid biosynthesis. This study further demonstrates the value of Arabidopsis for studies of the biosynthesis and ecological role of terpenoids and provides new insights into their metabolism in wild-type and transgenic plants.
-
(2003) Plant Science. 165, 5, p. 959-968 Abstract
MADS box genes function to regulate vegetative, floral, and fruit development in plants. Here we characterize the expression pattern of a MADS box gene from strawberry (Fragaria x ananassa), designated STAG1. Sequence analysis revealed that STAG1 shared 68-91% amino acid sequence identity to AGAMOUS homologs from a variety of plant species. STAG1 transcripts were detected in stamens, carpels, and developing fruit. In situ hybridization revealed that STAG1 mRNA expression was restricted to the endothelium and the vascular bundles connecting the achenes to the inner part of the receptacle and was not evident in the receptacle of the fruit. Analysis of the expression of a GUS marker gene driven by the STAG1 promoter showed that during floral development, STAG1 was active in stamens, the base of the receptacle and the petals, and in the central pith and vascular tissue. During the ripening stage of fruit development, STAG1 activity was detected in achenes, pith cells, and cortical cells. Sequence analysis and expression patterns indicate that STAG1 is an AGAMOUS homolog of strawberry.
-
(2003) Physiologia Plantarum. 118, 4, p. 571-578 Abstract
Firmness is an important selection criterium in the breeding of fruit, including strawberry (Fragaria x ananassa Duch.). Clear differences in fruit-firmness are observed between cultivars. In order to identify candidate genes which might be associated with such textural differences, gene expression levels were compared for a soft and a firm cultivar (cv. Gorella and cv. Holiday, respectively). DNA-microarrays representing 1701 strawberry cDNAs were used for simultaneous hybridization of two RNA populations derived from red ripe fruit of both cultivars. In total 61 clones (3.6% of the total cDNAs on the arrays) displayed differential expression, including 10 clones (8 different ones) which showed homology to cell wall related genes in the public databases. The results from the microarray experiments were further confirmed by RNA gel blots, which were also used to examine gene expression in a third cultivar, Elsanta, showing an intermediate texture phenotype (offspring of a cross between Gorella and Holiday). Interestingly, two genes encoding proteins catalysing successive reactions in lignin metabolism (cinnamoyl CoA reductase and cinnamyl alcohol dehydrogenase) showed the highest difference in expression level.
2002
-
(2002) Journal of Experimental Botany. 53, 377, p. 2073-2087 Abstract
Large-scale, single pass sequencing and parallel gene expression analysis using DNA microarrays were employed for the comprehensive investigation of ripening in strawberry fruit. A total of 1701 cDNA clones (comprising 1100 strawberry ESTs and 601 unsequenced cDNAs) obtained from a strawberry (Fragariaxananassa) ripe fruit cDNA library were displayed on microarrays, and used for monitoring concurrent gene expression in receptacle and achene tissues. Analysis of expression ratios identified 66 out of the 259 (25%) achene-related clones and 80 out of 182 (44%) receptacle-related clones with more than a 4-fold difference in expression between the two tissue types. Half of the achene-associated genes putatively encode proteins with unknown function, and a large number of the remainder were proteins predicted to form part of the signal and regulation cascades related to achene maturation and acquisition of stress and desiccation tolerance. These included phosphatases, protein kinases, 14-3-3 proteins, transcription factors, and others. In the receptacle, key processes and novel genes that could be associated with ripening were identified. Genes putatively encoding proteins related to stress, the cell wall, DNA/RNA/protein, and primary metabolism were highly represented. Apart from providing a global observation on gene expression programmes and metabolic pathways in the developing strawberry, this study has made available a large database and unique information for gene discovery, promoter selection and markers for molecular breeding approaches.
-
(2002) Plant Molecular Biology. 48, 1-2, p. 99-118 Abstract
DNA microarray technology is a key element in today's functional genomics toolbox. The power of the method lies in miniaturization, automation and parallelism permitting large-scale and genome-wide acquisition of quantitative biological information from multiple samples. DNA microarrays are currently fabricated and assayed by two main approaches involving either in situ synthesis of oligonucleotides ('oligonucleotide microarrays') or deposition of pre-synthesized DNA fragments ('cDNA microarrays') on solid surfaces. To date, the main applications of microarrays are in comprehensive, simultaneous gene expression monitoring and in DNA variation analyses for the identification and genotyping of mutations and polymorphisms. Already at a relatively early stage of its application in plant science, microarrays are being utilized to examine a range of biological issues including the circadian clock, plant defence, environmental stress responses, fruit ripening, phytochrome A signalling, seed development and nitrate assimilation. Novel insights are obtained into the molecular mechanisms co-ordinating metabolic pathways, regulatory and signalling networks. Exciting new information will be gained in the years to come not only from genome-wide expression analyses on a few model plant species, but also from extensive studies of less thoroughly studied species on a more limited scale. The value of microarray technology to our understanding of living processes will depend both on the amount of data to be generated and on its clever exploration and integration with other biological knowledge arising from complementary functional genomics tools for 'profiling' the genome, proteome, metabolome and phenome.
-
(2002) Plant Physiology. 129, 3, p. 1019-1031 Abstract
Using cDNA microarrays, a comprehensive investigation of gene expression was carried out in strawberry (Fragaria x ananassa) fruit to understand the flow of events associated with its maturation and non-climacteric ripening. We detected key processes and novel genes not previously associated with fruit development and ripening, related to vascular development, oxidative stress, and auxin response. Microarray analysis during fruit development and in receptacle and seed (achene) tissues established an interesting parallelism in gene expression between the transdifferentiation of tracheary elements in Zinnia elegans and strawberry. One of the genes, CAD, common to both systems and encoding the lignin-related protein cinnamyl alcohol dehydrogenase, was immunolocalized to immature xylem cells of the vascular bundles in the strawberry receptacle. To examine the importance of oxidative stress in ripening, gene expression was compared between fruit treated on-vine with a free radical generator and non-treated fruit. Of 46 genes induced, 20 were also ripening regulated. This might suggest that active gene expression is induced to cope with oxidative stress conditions during ripening or that the strawberry ripening transcriptional program is an oxidative stress-induced process. To gain insight into the hormonal control of non-climacteric fruit ripening, an additional microarray experiment was conducted comparing gene expression in fruit treated exogenously with auxin and control fruit. Novel auxin-dependent genes and processes were identified in addition to transcriptional programs acting independent of auxin mainly related to cell wall metabolism and stress response.
-
(2002) OMICS A Journal of Integrative Biology. 6, 3, p. 217-234 Abstract
Advanced functional genomic tools now allow the parallel and high-throughput analyses of gene and protein expression. Although this information is crucial to our understanding of gene function, it offers insufficient insight into phenotypic changes associated with metabolism. Here we introduce a high-capacity Fourier Transform Ion Cyclotron Mass Spectrometry (FTMS)-based method, capable of nontargeted metabolic analysis and suitable for rapid screening of similarities and dissimilarities in large collections of biological samples (e.g., plant mutant populations). Separation of the metabolites was achieved solely by ultra-high mass resolution; Identification of the putative metabolite or class of metabolites to which it belongs was achieved by determining the elemental composition of the metabolite based upon the accurate mass determination; and relative quantitation was achieved by comparing the absolute intensities of each mass using internal calibration. Crude plant extracts were introduced via direct (continuous flow) injection and ionized by either electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) in both positive or negative ionization modes. We first analyzed four consecutive stages of strawberry fruit development and identified changes in the levels of a large range of masses corresponding to known fruit metabolites. The data also revealed novel information on the metabolic transition from immature to ripe fruit. In another set of experiments, the method was used to track changes in metabolic profiles of tobacco flowers overexpressing a strawberry MYB transcription factor and altered in petal color. Only nine masses appeared different between transgenic and control plants, among which was the mass corresponding to cyanidin-3-rhamnoglucoside, the main flower pigment. The results demonstrate the feasibility and utility of the FTMS approach for a nontargeted and rapid metabolic "fingerprinting," which will greatly speed up current efforts to study the metabolome and derive gene function in any biological system.
2001
-
(2001) Plant Journal. 28, 3, p. 319-332 Abstract
Fruit ripening is characterized by dramatic changes in gene expression, enzymatic activities and metabolism. Although the process of ripening has been studied extensively, we still lack valuable information on how the numerous metabolic pathways are regulated and co-ordinated. In this paper we describe the characterization of FaMYB1, a ripening regulated strawberry gene member of the MYB family of transcription factors. Flowers of transgenic tobacco lines overexpressing FaMYB1 showed a severe reduction in pigmentation. A reduction in the level of cyanidin 3-rutinoside (an anthocyanin) and of quercetin-glycosides (flavonols) was observed. Expression of late flavonoid biosynthesis genes and their enzyme activities were aversely affected by FaMYB1 overexpression. Two-hybrid assays in yeast showed that FaMYB1 could interact with other known anthocyanin regulators, but it does not act as a transcriptional activator. Interestingly, the C-terminus of FaMYB1 contains the motif pdLNLD/ELxiG/s. This motif is contained in a region recently proposed to be involved in the repression of transcription by AtMYB4, an Arabidopsis MYB protein. Our results suggest that FaMYB1 may play a key role in regulating the biosynthesis of anthocyanins and flavonols in strawberry. It may act to repress transcription in order to balance the levels of anthocyanin pigments produced at the latter stages of strawberry fruit maturation, and/or to regulate metabolite levels in various branches of the flavonoid biosynthetic pathway.
-
(2001) Phytochemistry. 56, 5, p. 407-415 Abstract
Two aldolase isoenzymes have been isolated from ripe strawberry fruits (Fragaria x ananassa cv. Camarosa and Elsanta) and partially purified by DEAE anion exchange and Sephacryl size exclusion chromatography. The isoenzymes were identified as class I cytosol and plastid aldolase on the basis of their chromatographic behavior on DEAE - cellulose columns, native molecular weight. pH optimum pattern. Km value for D-fructose-1,6-bisphosphate, tendency to be inactivated by lower pH values and SDS-PAGE subunit determination of 40 and 38 kDa, respectively. Total aldolase activity and distribution of both aldolase isoenzymes was also investigated at different stages of strawberry fruit ripening. Strawberries in the green and white ripening stage showed the same ratio of the two isoenzymes as green leaves with 15 and 8% cytosol aldolase activity, respectively. During strawberry fruit development the overall total aldolase activity decreased until the pink ripening stage and then increased due to a rise of cytosol aldolase yielding up to 75% in red strawberries. A cDNA putatively encoding the cytosolic form of aldolase in strawberry was cloned during the course of this study. Both microarray and RNA gel blot analyses showed that the cytosolic aldolase gene expression is induced during ripening as detected for the cytosolic aldolase enzyme. We suggest that induction of the cytosolic aldolase both at the levels of transcription and translation might be part of a ripening related stress response in the receptacle tissue.
2000
-
(2000) Plant Cell. 12, 5, p. 647-661 Abstract
Fruit flavor is a result of a complex mixture of numerous compounds. The formation of these compounds is closely correlated with the metabolic changes occurring during fruit maturation. Here, we describe the use of DNA microarrays and appropriate statistical analyses to dissect a complex developmental process. In doing so, we have identified a novel strawberry alcohol acyltransferase (SAAT) gene that plays a crucial role in flavor biogenesis in ripening fruit. Volatile esters are quantitatively and qualitatively the most important compounds providing fruity odors. Biochemical evidence for involvement of the SAAT gene in formation of fruity esters is provided by characterizing the recombinant protein expressed in Escherichia coli. The SAAT enzyme showed maximum activity with aliphatic medium-chain alcohols, whose corresponding esters are major components of strawberry volatiles. The enzyme was capable of utilizing short- and medium-chain, branched, and aromatic acyl-CoA molecules as cosubstrates. The results suggest that the formation of volatile esters in fruit is subject to the availability of acyl-CoA molecules and alcohol substrates and is dictated by the temporal expression pattern of the SAAT gene(s) and substrate specificity of the SAAT enzyme(s).
-
(2000) Journal of Biotechnology. 78, 3, p. 271-280 Abstract
DNA microarray technology is a new and powerful technology that will substantially increase the speed of molecular biological research. This paper gives a survey of DNA microarray technology and its use in gene expression studies. The technical aspects and their potential improvements are discussed. These comprise array manufacturing and design, array hybridisation, scanning, and data handling. Furthermore, it is discussed how DNA microarrays can be applied in the working fields of: safety, functionality and health of food and gene discovery and pathway engineering in plants. (C) 2000 Elsevier Science B.V.
1999
-
(1999) Molecular Breeding. 5, 4, p. 367-375 Abstract
Highly efficient Agrobacterium-mediated transformation of carnation (Dianthus caryophyllus L.) was obtained by first wounding stem explants via microprojectile bombardment. When this was followed by cocultivation with disarmed Agrobacterium in the dark, the transformation frequency-based on transient GUS expression-increased to over 10-fold that of explants wounded by other means and cocultivated under constant light. Two cycles of regeneration/selection on kanamycin were employed to generate stably transformed carnation plants and eliminate chimeras: first, plantlets were regenerated from inoculated stem explants and then leaves from these plantlets were used to generate transgenes in a second selection cycle of adventitious shoot regeneration. Agrobacterium strain AGLO, carrying the binary vector pCGN7001 containing uidA and nptII genes, was used in the stable transformation experiments. The combination of wounding via bombardment, cocultivation in the dark and two cycles of kanamycin selection yielded an overall transformation efficiency of 1-2 transgenes per 10 stem explants for the three carnation varieties analyzed. Histochemical and molecular analyses of marker genes in T0 and T1 generations confirmed the transgenic nature of the selected plants.
1998
-
(1998) Molecular Breeding. 4, 4, p. 277-289 Abstract
DNA chip technology utilizes microscopic arrays (microarrays) of molecules immobilized on solid surfaces for biochemical analysis. Microarrays can be used for expression analysis, polymorphism detection, DNA resequencing, and genotyping on a genomic scale. Advanced arraying technologies such as photolithograpy, micro-spotting and ink jetting, coupled with sophisticated fluorescence detection systems and bioinformatics, permit molecular data gathering at an unprecedented rate. Microarray-based characterization of plant genomes has the potential to revolutionize plant breeding and agricultural biotechnology. This review provides an overview of DNA chip technology, focusing on manufacturing approaches and biological applications.
1997
-
(1997) III International Symposium on In Vitro Culture and Horticultural Breeding. p. 373-375 (trueActa Horticulturae). Abstract
Transgenic carnation plants were produced using highly regenerative stem segments. The highest efficiency of adventitious shoot regeneration was obtained with segments originating from the stem's top internode. Transformation of cv. White Sim was performed with Agrobacterium tumefaciens carrying the binary vector pCGN7001 containing uidA and nptll genes encoding β-glucuronidase and neomycin- phosphotransferase, respectively. Prior to inoculation, explants were wounded by microprojectile bombardment. Following selection in the presence of kanamycin, about 63 green shoots per 100 stem segments were recovered. Upon analysis, about 30% of these recovered shoots exhibited strong stable uidA expression throughout the plant. Thus the overall transformation efficiency was ca. 20%. The presence of the uidA and nptll genes in plants stable expressing uidA was confirmed by PCR and Southern blot analyses.
-
(1997) Plant Cell, Tissue and Organ Culture. 49, 2, p. 101-106 Abstract
An efficient adventitious shoot regeneration procedure was developed for Gypsophila paniculata L. Using cultivar Arbel, shoot regeneration from the three upper internodes of the stem was monitored on MS media supplemented with different cytokinins (thidiazuron, benzyladenine, kinetin or zeatin) and an auxin (naphthaleneacetic acid). Thidiazuron was found to be the most efficient cytokinin, with up to 100% of the explants forming shoots, at an average of up to 19 shoots per explant being regenerated. The highest percentage of shoot formation was observed in the stem explants originating from the first internode, with all cytokinins tested. The adventitious origin of shoots regenerated from stem explants was confirmed by scanning electron microscopy. The regeneration procedure was found to be applicable to five other gypsophila cultivars (Perfecta, Golan, Gilboa, Flamingo and Tavor). Regenerating plants were successfully transferred to soil, and did not differ in flower color, size or shape from standard vegetatively propagated plants derived from cuttings.
-
(1997) Plant Cell Reports. 16, 11, p. 775-778 Abstract
Adventitious shoots were successfully regenerated from leaf explants of Gypsophila paniculata L. The efficiency of shoot regeneration for cv. Arbel was tested on 18 media based on Murashige and Skoog basal medium containing different concentrations of thidiazuron or 6-benzylaminopurine in combination with naphthaleneacetic acid. Both explant age and that of the cuttings used as leaf donors affected the regeneration efficiency. The highest efficiency of adventitious shoot regeneration was obtained with the oldest leaves originating from the youngest cutting analyzed; on thidiazuron-containing medium, shoots regenerated on average from 67% of the leaves, with an average of seven shoots per explant. This regeneration procedure was suitable for all six commercial cultivars studied. Regenerated shoots elongated, rooted and successfully acclimatized to the greenhouse where they were grown to flowering.
1996
-
(1996) Scientia Horticulturae. 65, 4, p. 313-320 Abstract
Adventitious shoot regeneration from stem explants of carnation (Dianthus caryophyllus L., cultivar 'White Sim') was studied using three different culture procedures: agar-gelled medium, liquid shaken medium, and an interfacial membrane raft floating on liquid medium, In all culture procedures, explants derived from the first upper internode exhibited higher adventitious shoot formation than those from the second internode. On agar-gelled medium, the number of regenerated shoots per explant from the first internode increased with increasing thidiazuron (TDZ) concentration (up to 4 mg l(-1)) in the presence of 1 mg l(-1) naphthaleneacetic acid. In the liquid shaken culture, the number of regenerated shoots peaked at 1 mg TDZ l(-1). Maximum shoot regeneration on an interfacial membrane raft was obtained in the presence of 0.25 mg TDZ l(-1). A comparison of the overall efficiencies of shoot regeneration for each culture procedure showed that maximum shoot regeneration on the raft was twice and three times that obtained with agar-gelled and liquid shaken media, respectively.
-
Transformation of carnation using the biolistic method(1996) Plant Tissue Culture and Biotechnology. 2, p. 105-108 Abstract
1995
-
(1995) Scientia Horticulturae. 64, 3, p. 177-185 Abstract
Transgenic carnation (Dianthus caryophyllus L.) plants were produced by microprojectile bombardment of highly regenerative stem segments. A two-step regeneration procedure based on the use of two different cytokinins-6-benzylaminopurine and thidiazuron-was employed for the production of adventitious shoots from stem segments. The size of the original stem was found to affect the regeneration efficiency of stem segments: the highest efficiency of adventitious shoot regeneration was obtained with segments originating from stems with two mature leaves, as compared to those with four, six or eight mature leaves. The tissue culture procedure was shown to be suitable for a number of standard and spray cultivars. Bombardment of cultivar ''White Sim'' stem segments was performed with a plasmid containing uidA and bar genes encoding beta-glucuronidase and phosphinothricin-acetyltransferase, respectively. Transformation frequency was determined, based on the transient expression of uidA in stem segments. Following selection in the presence of the herbicide bialaphos, about 70 plantlets per 100 stem segments were recovered. Upon analysis, about 3% of these recovered plantlets exhibited strong stable uidA expression throughout the plant. Presence of the bar gene in plants stably expressing uidA was confirmed by Southern blot analysis.