Available Positions

Research areas:
Departments:
  • Prof. Ilya Kuprov | link for homepage

    Department of Chemical and Biological Physics
    PhD position

    Explainable Artificial Intelligence in Magnetic Resonance

  • Prof. Ilya Kuprov | link for homepage

    Department of Chemical and Biological Physics
    Postdoc position

    Quantum Theory of Magnetic Processes

  • Prof. Ilya Kuprov | link for homepage

    Department of Chemical and Biological Physics
    PhD position

    Bosonic Degrees of Freedom in Magnetic Resonance

  • Prof. Ilan Lampl | link for homepage

    Department of Brain Sciences
    PhD position

    Looking for highly motivated students for the following research options:

    1. Studying the underlying mechanisms of tactile and auditory perception.
    2. Exploring the excitatory and inhibitory balance of cortical networks.
    3. Linking reduced cell-specific inhibition to abnormal brain activity in chronic stress.
  • Prof. Ilan Lampl | link for homepage

    Department of Brain Sciences
    Postdoc position

    Looking for highly motivated students for the following research options:

    1. Studying the underlying mechanisms of tactile and auditory perception.
    2. Exploring the excitatory and inhibitory balance of cortical networks.
    3. Linking reduced cell-specific inhibition to abnormal brain activity in chronic stress.
  • Prof. Ulf Leonhardt | link for homepage

    Department of Physics of Complex Systems
    PhD position

    Fiber-optical analogue of the event horizon

  • Prof. Ulf Leonhardt | link for homepage

    Department of Physics of Complex Systems
    MSc position

    Quantum limits of time travel

  • Prof. Ulf Leonhardt | link for homepage

    Department of Physics of Complex Systems
    MSc position

    Fiber-optical analogue of the event horizon.

  • Prof. Valery Krizhanovsky | link for homepage

    Department of Molecular Cell Biology
    Postdoc position

    We are looking for highly motivated post-doctoral fellow or research associate to an ERC funded project studying the "Biology of Ageing"

  • Prof. Doron Kushnir | link for homepage

    Department of Particle Physics and Astrophysics
    PhD position

    We live in fortunate times, where there are still many fundamental unsolved problems in astrophysics, while technological progress allows new observations, which may make some of them solvable. Now is the time to attack the most puzzling challenges posed to us by the Universe.

    Join Doron Kushnir's group to study explosions and extreme stars of the Universe. We use theoretical and computational tools to interpret state-of-the-art observations, aiming at resolving fundamental problems in astrophysics. 

  • Prof. Doron Kushnir | link for homepage

    Department of Particle Physics and Astrophysics
    Postdoc position

    We live in fortunate times, where there are still many fundamental unsolved problems in astrophysics, while technological progress allows new observations, which may make some of them solvable. Now is the time to attack the most puzzling challenges posed to us by the Universe.

    Join Doron Kushnir's group to study explosions and extreme stars of the Universe. We use theoretical and computational tools to interpret state-of-the-art observations, aiming at resolving fundamental problems in astrophysics. 

  • Prof. Doron Kushnir | link for homepage

    Department of Particle Physics and Astrophysics
    MSc position

    We live in fortunate times, where there are still many fundamental unsolved problems in astrophysics, while technological progress allows new observations, which may make some of them solvable. Now is the time to attack the most puzzling challenges posed to us by the Universe.

    Join Doron Kushnir's group to study explosions and extreme stars of the Universe. We use theoretical and computational tools to interpret state-of-the-art observations, aiming at resolving fundamental problems in astrophysics. 

     

  • Prof. Alexander Milov | link for homepage

    Department of Particle Physics and Astrophysics
    PhD position

    Data analysis from the ATLAS experiment.

    Heavy Ion Physics is about exploring what the Strong Force Interaction is. Our World is not only confined to two- and three-quark particles. Imagine a system built of as many quarks as you want. Do we know enough to tell how such a system would behave? Would it be a quark-gluon plasma, a hadronic gas, or liquid? Does QCD do a good job predicting its properties, or...

    You can help to find answers to these and many other questions. About one month in a year, the LHC collides ions of heavy elements. Each of these collisions is a mini-universe that sends hundreds of times more particles into ATLAS detector than a proton-proton interaction. You can be a part of a team to dive into this sea of quarks and gluons and find an answer to one of many questions.

    Heavy-ion data from the ATLAS experiment is an excellent opportunity for students seeking an academic carrier to do research and get fantastic visibility in the physics community. But if you want to learn the most sophisticated data analysis, create your own algorithms, and get into the world of finance, data mining or high-tech, it's a place for you too. 

  • Prof. Alexander Milov | link for homepage

    Department of Particle Physics and Astrophysics
    MSc position

    Particle physics data analysis / Particle physics detectors

    A standalone project that will be part of the real work at the lab.

  • Prof. Yosef Yarden | link for homepage

    Department of Immunology and Regenerative Biology
    Postdoc position

    The emergence of resistance to anti-cancer drugs currently limits the application of relatively specific and safe new drugs. We are interested in resolving the underlying mechanisms and, accordingly, offer novel combinations of drugs. Specifically, our team is focusing on an epigenetic process that is driven by drug-induced cancer cell death. This involves features from stem cell biology and the transition from epithelial to mesenchymal phenotypes, and eventually culminates in activation of internal mutators. The process of mutagenesis might involve DNA double strand breaks and formation of extrachromosomal rings of DNA. Along with attempts to block the process, we are generating antibodies that slow down the emergence of resistance to drugs. Lately, we the lab is constructing bispecific antibodies that seem to be highly effective in animal tumor models. Our long term vision predicts that treatment of lung cancer will include several combinations of bispecific antibodies and kinase inhibitors.

  • Prof. Yosef Yarden | link for homepage

    Department of Immunology and Regenerative Biology
    Postdoc position

    We study breast cancer metastasis, especially tumor dormancy. In addition, we investigate the emergence of resistance to kinase inhibitors, primarily in lung cancer. We also try and improve the ability of immune checkpoint blockers to control cancer of the ovaries. In prostate cancer, we study mechanisms that permit resistance to anti-hormone therapies.

  • Prof. Nachum Ulanovsky | link for homepage

    Department of Brain Sciences
    Postdoc position

    Looking for outstanding, highly motivated postdocs who are interested in behavioral neuroscience and systems neuroscience – in particular, interested in studying the brain experimentally in animal models, in order to understand mechanistically the neural basis of behavior and cognition – while employing cutting-edge data analysis methods.

    We study the following topics:

    1. Neural basis of natural behaviors – in particular: spatial navigation, and social behaviors.

    2. Place cells, grid cells, head-direction cells, and social representations of self and others in animal groups.

    3. We develop tiny wireless electrophysiology devices for conducting neural recordings in freely flying bats, using Tetrodes or Neuropixels probes – recording hundreds of neurons simultaneously in the hippocampal formation, prefrontal cortex, and other brain areas.

    4. We have world-unique experimental setups: 700-meter flight tunnel, 60x35-meter flight maze, 3D flight rooms, Social colony rooms, and we also perform Electrophysiology Outdoors in bats flying on a remote oceanic island.

    To read more about our “Natural Neuroscience” research philosophy, see:

    Lab website:  https://www.weizmann.ac.il/brain-sciences/labs/ulanovsky/  

    Publications:  https://www.weizmann.ac.il/brain-sciences/labs/ulanovsky/publications

     

  • Prof. Nachum Ulanovsky | link for homepage

    Department of Brain Sciences
    PhD position

    Looking for outstanding, highly motivated students who are interested in behavioral neuroscience and systems neuroscience – in particular, interested in studying the brain experimentally in animal models, in order to understand mechanistically the neural basis of behavior and cognition – while employing cutting-edge data analysis methods.

    We study the following topics:

    1. Neural basis of natural behaviors – in particular: spatial navigation, and social behaviors.

    2. Place cells, grid cells, head-direction cells, and social representations of self and others in animal groups.

    3. We develop tiny wireless electrophysiology devices for conducting neural recordings in freely flying bats, using Tetrodes or Neuropixels probes – recording hundreds of neurons simultaneously in the hippocampal formation, prefrontal cortex, and other brain areas.

    4. We have world-unique experimental setups: 700-meter flight tunnel, 60x35-meter flight maze, 3D flight rooms, Social colony rooms, and we also perform Electrophysiology Outdoors in bats flying on a remote oceanic island.

    To read more about our “Natural Neuroscience” research philosophy, see:

    Lab website:  https://www.weizmann.ac.il/brain-sciences/labs/ulanovsky/  

    Publications:  https://www.weizmann.ac.il/brain-sciences/labs/ulanovsky/publication

     

  • Prof. Eli Zeldov | link for homepage

    Department of Condensed Matter Physics
    PhD position

    Scanning probe microscopy of quantum and topological states of matter

  • Prof. Eli Zeldov | link for homepage

    Department of Condensed Matter Physics
    MSc position

    Scanning probe microscopy of quantum and topological states of matter

  • Prof. Eli Zeldov | link for homepage

    Department of Condensed Matter Physics
    Postdoc position

    Scanning probe microscopy of quantum and topological states of matter

  • Prof. Eli Zeldov | link for homepage

    Department of Condensed Matter Physics
    Postdoc position

    Synthesis, fabrication, and study of van der Waals single crystals and heterostructures

  • Prof. Oren Tal | link for homepage

    Department of Chemical and Biological Physics
    PhD position

    Electron-phonon interaction under temperature gradients in atomic-scale junctions

  • Prof. Oren Tal | link for homepage

    Department of Chemical and Biological Physics
    PhD position

    The study of chemical reactions near absolute zero temperature in molecular junctions. 

  • Dr. Noam Tal Hod | link for homepage

    Department of Particle Physics and Astrophysics
    Postdoc position

    All details are here https://inspirehep.net/jobs/2774427

     

  • Prof. Elazar Zelzer | link for homepage

    Department of Molecular Genetics
    MSc rotation
    Available Rotations: 1st,2nd,3rd

    Seeking Students Interested in Musculoskeletal Biology and Proprioception

    Our lab is looking for motivated students interested in exploring the fascinating fields of musculoskeletal development, aging, and regeneration, with a focus on proprioception. If you're passionate about understanding how the body’s skeleton, muscles, and connective tissues develop, adapt, and regenerate over time, we’d love to hear from you. Join us in uncovering new insights into these critical processes!

  • Prof. Elazar Zelzer | link for homepage

    Department of Molecular Genetics
    PhD position

    Seeking Students Interested in Musculoskeletal Biology and Proprioception

    Our lab is looking for motivated students interested in exploring the fascinating fields of musculoskeletal development, aging, and regeneration, with a focus on proprioception. If you're passionate about understanding how the body’s skeleton, muscles, and connective tissues develop, adapt, and regenerate over time, we’d love to hear from you. Join us in uncovering new insights into these critical processes!

  • Prof. Elazar Zelzer | link for homepage

    Department of Molecular Genetics
    Postdoc position

    Seeking Students Interested in Musculoskeletal Biology and Proprioception

    Our lab is looking for motivated students interested in exploring the fascinating fields of musculoskeletal development, aging, and regeneration, with a focus on proprioception. If you're passionate about understanding how the body’s skeleton, muscles, and connective tissues develop, adapt, and regenerate over time, we’d love to hear from you. Join us in uncovering new insights into these critical processes!

  • Prof. Eli Waxman | link for homepage

    Department of Particle Physics and Astrophysics
    MSc position

    Theoretical high energy astrophysics research

  • Prof. Eli Waxman | link for homepage

    Department of Particle Physics and Astrophysics
    PhD position

    Theoretical high energy astrophysics research

  • Dr. Barak Zackay | link for homepage

    Department of Particle Physics and Astrophysics
    MSc position

    Using novel statistical and algorithmic tools to improve observational astrophysics (exoplanets, gravitational waves and pulsar astrophysics)

  • Dr. Barak Zackay | link for homepage

    Department of Particle Physics and Astrophysics
    PhD position

    Using novel statistical and algorithmic tools to improve observational astrophysics (exoplanets, gravitational waves and pulsar astrophysics)

  • Prof. Ilan Koren | link for homepage

    Department of Earth and Planetary Sciences
    Postdoc position

    Looking for Postdocs interested in cloud physics, nonlinear dynamics, self-organizing systems, remote sensing, and radiation transfer.

  • Prof. Ilan Koren | link for homepage

    Department of Earth and Planetary Sciences
    MSc rotation
    Available Rotations: 1st,2nd,3rd

    Looking for rotation students interested in cloud physics, nonlinear dynamics, self-organizing systems, remote sensing, and radiation transfer.

  • Prof. Ilan Koren | link for homepage

    Department of Earth and Planetary Sciences
    MSc position

    Looking for MSc students interested in cloud physics, nonlinear dynamics, self-organizing systems, remote sensing, and radiation transfer.

  • Prof. Ilan Koren | link for homepage

    Department of Earth and Planetary Sciences
    PhD position

    Looking for PhD students interested in cloud physics, nonlinear dynamics, self-organizing systems, remote sensing, and radiation transfer.

  • Prof. Mike Fainzilber | link for homepage

    Department of Biomolecular Sciences
    PhD position

    Growth control in neurons and other large cells

  • Prof. Mike Fainzilber | link for homepage

    Department of Biomolecular Sciences
    Postdoc position

    Growth control in neurons and other large cells

  • Prof. Mike Fainzilber | link for homepage

    Department of Biomolecular Sciences
    MSc position

    Size sensing and growth control in neurons

  • Prof. Mike Fainzilber | link for homepage

    Department of Biomolecular Sciences
    MSc rotation
    Available Rotations: 1st,2nd,3rd

    Mechanisms of neuronal growth and regeneration

  • Prof. Igor Ulitsky | link for homepage

    Department of Immunology and Regenerative Biology
    Postdoc position

    Experimental and computational approaches for studying the biology of long RNAs.

  • Prof. Sima Lev | link for homepage

    Department of Molecular Cell Biology
    Postdoc position

    Ferroptosis in cancer

  • Prof. Sima Lev | link for homepage

    Department of Molecular Cell Biology
    Postdoc position

    Combination therapies for TNBC

  • Prof. Sima Lev | link for homepage

    Department of Molecular Cell Biology
    MSc rotation
    Available Rotations: 3rd

    Ferroptosis in cancer

  • Prof. Sima Lev | link for homepage

    Department of Molecular Cell Biology
    PhD position

    Ferroptosis in cancer

  • Prof. Sima Lev | link for homepage

    Department of Molecular Cell Biology
    Postdoc position

    Role of small extracellular vesicles (sEVs) in cancer detection and progression

  • Prof. Neta Regev-Rudzki | link for homepage

    Department of Biomolecular Sciences
    MSc rotation
    Available Rotations: 1st,2nd,3rd

    We invite rotation students to join our research on malaria, immunology, host-pathogen interactions and extracellular vesicles.

  • Prof. Neta Regev-Rudzki | link for homepage

    Department of Biomolecular Sciences
    Postdoc position

    OPEN POSTDOC positions

    We are seeking highly motivated, independent, committed and curious researchers to join our team as Post-Doc. The projects center on the cellular biology of the malaria parasite, immune response, parasite-host interaction and the field of cell-cell communication.

  • Prof. Neta Regev-Rudzki | link for homepage

    Department of Biomolecular Sciences
    Postdoc position

    OPEN Post DOC Position - MALARIA LAB

    We are seeking highly motivated, independent, committed and curious researchers to join our team as Post-Doc. The projects center on the cellular biology of the malaria parasite, parasite-host interaction and the field of cell-cell communication.

  • Prof. Neta Regev-Rudzki | link for homepage

    Department of Biomolecular Sciences
    PhD position

    OPEN PhD Position - MALARIA lab.

  • Prof. Neta Regev-Rudzki | link for homepage

    Department of Biomolecular Sciences
    MSc position

    Malaria laboratory. We are seeking for highly motivated, committed and curious students.

  • Prof. Neta Regev-Rudzki | link for homepage

    Department of Biomolecular Sciences
    MSc rotation
    Available Rotations: 1st,2nd,3rd

    OPEN Rotation Positions- MALARIA lab. Join us to study the FASCINATING world of the malaria parasites!

  • Prof. Jacob Sagiv

    Department of Molecular Chemistry and Materials Science Perlman
    Postdoc position

    Development and study of a novel class of unconventional metal-organic single-layer materials invented here, their multiscale (nanometer-to-centimeter) patterning and investigation of their unusual electrical properties, indicative of possible effects of high-temperature superconductivity by the exciton mechanism.  

  • Prof. Orly Reiner | link for homepage

    Department of Molecular Genetics
    PhD position

    Human brain organoids in health and disease.

  • Dr. Shifra Lansky | link for homepage

    Department of Chemical and Structural Biology
    MSc position

    We aim to understand comprehensively the mechanisms by which membrane proteins operate. We believe that “seeing is comprehending”, and therefore, we aim to:

    1. Visualize to atomic resolution the 3D structures of the membrane proteins. 

    2. Video, on a single-molecule level, the motions of these membrane proteins as they function, either alone or through interactions with other proteins. 

    3. Understand how the structures and dynamics of the membrane proteins assist their functional activity.

    We use cutting-edge techniques that allow us to achieve these goals, most particularly, high-speed atomic force microscopy (HS-AFM), cryo-electron microscopy (cryo-EM), and an array of complementary biochemical and biophysical techniques.

    For more details on the specific projects currently available, please contact shifra.lansky@weizmann.ac.il

  • Dr. Shifra Lansky | link for homepage

    Department of Chemical and Structural Biology
    PhD position

    We aim to understand comprehensively the mechanisms by which membrane proteins operate. We believe that “seeing is comprehending”, and therefore, we aim to:

    1. Visualize to atomic resolution the 3D structures of the membrane proteins. 

    2. Video, on a single-molecule level, the motions of these membrane proteins as they function, either alone or through interactions with other proteins. 

    3. Understand how the structures and dynamics of the membrane proteins assist their functional activity.

    We use cutting-edge techniques that allow us to achieve these goals, most particularly, high-speed atomic force microscopy (HS-AFM), cryo-electron microscopy (cryo-EM), and an array of complementary biochemical and biophysical techniques.

    For more details on the specific projects currently available, please contact shifra.lansky@weizmann.ac.il

  • Dr. Shifra Lansky | link for homepage

    Department of Chemical and Structural Biology
    Postdoc position

    We aim to understand comprehensively the mechanisms by which membrane proteins operate. We believe that “seeing is comprehending”, and therefore, we aim to:

    1. Visualize to atomic resolution the 3D structures of the membrane proteins. 

    2. Video, on a single-molecule level, the motions of these membrane proteins as they function, either alone or through interactions with other proteins. 

    3. Understand how the structures and dynamics of the membrane proteins assist their functional activity.

    We use cutting-edge techniques that allow us to achieve these goals, most particularly, high-speed atomic force microscopy (HS-AFM), cryo-electron microscopy (cryo-EM), and an array of complementary biochemical and biophysical techniques.

    For more details on the specific projects currently available, please contact shifra.lansky@weizmann.ac.il

  • Dr. Shifra Lansky | link for homepage

    Department of Chemical and Structural Biology
    MSc rotation
    Available Rotations: 1st,2nd,3rd

    We aim to understand comprehensively the mechanisms by which membrane proteins operate. We believe that “seeing is comprehending”, and therefore, we aim to:

    1. Visualize to atomic resolution the 3D structures of the membrane proteins. 

    2. Video, on a single-molecule level, the motions of these membrane proteins as they function, either alone or through interactions with other proteins. 

    3. Understand how the structures and dynamics of the membrane proteins assist their functional activity.

    We use cutting-edge techniques that allow us to achieve these goals, most particularly, high-speed atomic force microscopy (HS-AFM), cryo-electron microscopy (cryo-EM), and an array of complementary biochemical and biophysical techniques.

    For more details on the specific projects currently available, please contact shifra.lansky@weizmann.ac.il

  • Dr. Orly Laufman | link for homepage

    Department of Molecular Genetics
    Postdoc position

    The Laufman lab studies the ways human RNA viruses interact with their host cells and transform them into viral manufactories using cutting-edge microscopy, molecular and cell biology, genetic and biochemistry approaches. We tackle questions at the forefront of the exciting field of virology. We are looking for talented and highly motivated postdocs to join our team. If you possess a strong background in molecular biology and the passion to execute a groundbreaking research – your place is with us! We are located in the heart of the vibrant campus of the Weizmann Institute of Science, with state-of-the-art research facilities and a variety of supportive services such as recreation center, infants’ daycare, lawns and sport fields and much more.

  • Dr. Orly Laufman | link for homepage

    Department of Molecular Genetics
    PhD position

    The Laufman lab studies the ways human RNA viruses interact with their host cells and transform them into viral manufactories using state-of-the-art microscopy, molecular and cell biology, genetic and biochemistry approaches. We tackle questions at the forefront of the exciting field of virology. We are looking for talented and highly motivated PhD students to join us. If you possess a strong background in molecular biology and the passion to execute a groundbreaking research - your place is with us! We offer an exceptional scientific environment to develop into a mature top-class researcher. Our team members enjoy a pleasant and supportive research environment at the heart of the vibrant campus of the Weizmann Institute of Science.

  • Dr. Orly Laufman | link for homepage

    Department of Molecular Genetics
    MSc rotation
    Available Rotations: 1st,2nd,3rd

    The Laufman lab studies the ways human RNA viruses interact with their host cells and transform them into viral manufactories using state-of-the-art microscopy, molecular and cell biology, genetic and biochemistry approaches. We tackle questions at the forefront of the exciting field of virology, and offer an exceptional scientific environment to develop your skills and career as a researcher. We are looking for talented and highly motivated rotation students to join our team.    

     

  • Prof. Rivka Dikstein | link for homepage

    Department of Biomolecular Sciences
    PhD position

    Understanding how the transcription and translation processes control the cellular response to extra-cellular stimuli in health and disease

     

  • Prof. Rivka Dikstein | link for homepage

    Department of Biomolecular Sciences
    MSc rotation
    Available Rotations: 1st,2nd,3rd

    Understanding how the transcription and translation processes control the cellular response to extra-cellular stimuli

  • Prof. Rivka Dikstein | link for homepage

    Department of Biomolecular Sciences
    Postdoc position

    Understanding how the transcription and translation processes control the cellular response to extra-cellular stimuli in health and disease

     

  • Prof. Ayelet Erez | link for homepage

    Department of Molecular Cell Biology
    MSc rotation
    Available Rotations: 1st,2nd,3rd

    Identifying metabolic changes during carcinogenesis at the tumor, environment and host levels for imporoving cancer diagnosis and therapy. 

  • Prof. Ayelet Erez | link for homepage

    Department of Molecular Cell Biology
    Postdoc position

    Dissecting metabolic changes that accompany carcinogenesis at the tumor, microenvironment and host levels for improving cancer diagnosis and therapy. 

  • Prof. Yardena Samuels | link for homepage

    Department of Molecular Cell Biology
    PhD position

    Immunotherapy has sparked new hope for oncology in recent years, due to its remarkable ability to induce durable response in patients with metastatic cancer. It is therefore essential to accurately delineate the interactions of cancer cells with the immune system. The project will use multiomic tools including whole exome sequencing , RNAseq, ribosome profiling, proteomic, HLA-peptidomics and systems biology to decipher the genetic, neo-antigenic and immune landscape in melanoma. Followup functional and immunological analysis of  relevant genes and neoantigens will be conducted using novel mouse models

  • Prof. Yardena Samuels | link for homepage

    Department of Molecular Cell Biology
    MSc position

    Immunotherapy has sparked new hope for oncology in recent years, due to its remarkable ability to induce durable response in patients with metastatic cancer. It is therefore essential to accurately delineate the interactions of cancer cells with the immune system. The project will use multiomic tools including whole exome sequencing , RNAseq, ribosome profiling, proteomic, HLA-peptidomics and systems biology to decipher the genetic, neo-antigenic and immune landscape in melanoma. Followup functional and immunological analysis of  relevant genes and neoantigens will be conducted using novel mouse models

  • Prof. Yardena Samuels | link for homepage

    Department of Molecular Cell Biology
    Postdoc position

    Immunotherapy has sparked new hope for oncology in recent years, due to its remarkable ability to induce durable response in patients with metastatic cancer. It is therefore essential to accurately delineate the interactions of cancer cells with the immune system. The project will use multiomic tools including whole exome sequencing , RNAseq, ribosome profiling, proteomic, HLA-peptidomics and systems biology to decipher the genetic, neo-antigenic and immune landscape in melanoma. Followup functional and immunological analysis of  relevant genes and neoantigens will be conducted using novel mouse models

  • Prof. Yardena Samuels | link for homepage

    Department of Molecular Cell Biology
    MSc rotation
    Available Rotations: 1st,2nd,3rd

    Immunotherapy has sparked new hope for oncology in recent years, due to its remarkable ability to induce durable response in patients with metastatic cancer. It is therefore essential to accurately delineate the interactions of cancer cells with the immune system. The project will use multiomic tools including whole exome sequencing , RNAseq, ribosome profiling, proteomic, HLA-peptidomics and systems biology to decipher the genetic, neo-antigenic and immune landscape in melanoma. Followup functional and immunological analysis of  relevant genes and neoantigens will be conducted using novel mouse models

  • Dr. Tanita Wein | link for homepage

    Department of Systems Immunology
    MSc position

    We are looking for motivated and curious students to join us!

    Our lab studies the evolutionary dynamics of immunity across the tree of life. As organisms have diversified over millions of years, so too have their immune systems, adapting to diverse environmental pressures and pathogenic challenges. By exploring the evolutionary trajectories of innate immunity, we aim to gain insights into the universal principles underlying  immune mechanisms and their remarkable diversity across the tree of life.

    Experimental, computational, or mixed projects are available. If you are interested in joining the lab, send an email with your CV and a brief description of your research interests.

  • Dr. Tanita Wein | link for homepage

    Department of Systems Immunology
    PhD position

    We are looking for motivated and curious students to join us!

    Our lab studies the evolutionary dynamics of immunity across the tree of life. As organisms have diversified over millions of years, so too have their immune systems, adapting to diverse environmental pressures and pathogenic challenges. By exploring the evolutionary trajectories of innate immunity, we aim to gain insights into the universal principles underlying  immune mechanisms and their remarkable diversity across the tree of life.

    Experimental, computational, or mixed projects are available. If you are interested in joining the lab, send an email with your CV and a brief description of your research interests.

  • Prof. Yosef Nir | link for homepage

    Department of Particle Physics and Astrophysics
    MSc position

    Phenomenology of particle physics

  • Dr. Ofer Shoshani | link for homepage

    Department of Biomolecular Sciences
    Postdoc position

    We are looking for an enthusiastic postdoc to study how genetic mutations and amplifications cooperate in human cancers to drive therapy resistance.

    The work will involve both computational and experimental biology approaches, including molecular biology, cell and tissue culture, confocal microscopy, and DNA/RNA sequencing. Candidates should have a very strong background in analyzing DNA sequencing data to study mutations and structural variations, including from public databases such as TCGA.

    Contact Ofer for more information: ofer.shoshani@weizmann.ac.il

  • Dr. Yuval Ronen | link for homepage

    Department of Condensed Matter Physics
    Postdoc position

    Our lab investigates quantum phenomena which focus on the interplay between correlations and topology. This intriguing interplay allows to develop unique realizations of non-abelian quasi-particles (qps) which are neither Boson nor Fermion-like. Among the phases which host these qps are the well-known fractional quantum Hall effect, topological superconductivity, and the recently emerging field of moire-superlattcies (twistronics). We are developing experiments in these arrowheads to unravel this intriguing physics. This line of research often utilizes quantum materials whose reduced dimensionality enhances quantum effects. We profit from the use of various van der Waals (vdW) materials (graphene, hBN, TMDs, etc.) as well as high-mobility two-dimensional GaAs electron gas, which are both grown in our department. Fabrication is performed in a state-of-the-art clean room facility, specially designed for vdW materials nanofabrication. These devices will be measured with transport techniques including quantum Hall interferometry, Josephson interferometry, capacitance measurements, thermal transport, and shot noise measurements. These measurements require high magnetic fields and low electron temperatures. Our lab will be equipped with an 8mK wet dilution refrigerator with a 20T magnet, a 7mK dry dilution with a 3D vector magnet, as well as a variable temperature cryostat.

    contact Yuval Ronen for more details

  • Dr. Yuval Ronen | link for homepage

    Department of Condensed Matter Physics
    PhD position

    Our lab investigates quantum phenomena which focus on the interplay between correlations and topology. This intriguing interplay allows to develop unique realizations of non-abelian quasi-particles (qps) which are neither Boson nor Fermion-like. Among the phases which host these qps are the well-known fractional quantum Hall effect, topological superconductivity, and the recently emerging field of moire-superlattcies (twistronics). We are developing experiments in these arrowheads to unravel this intriguing physics. This line of research often utilizes quantum materials whose reduced dimensionality enhances quantum effects. We profit from the use of various van der Waals (vdW) materials (graphene, hBN, TMDs, etc.) as well as high-mobility two-dimensional GaAs electron gas, which are both grown in our department. Fabrication is performed in a state-of-the-art clean room facility, specially designed for vdW materials nanofabrication. These devices will be measured with transport techniques including quantum Hall interferometry, Josephson interferometry, capacitance measurements, thermal transport, and shot noise measurements. These measurements require high magnetic fields and low electron temperatures. Our lab will be equipped with an 8mK wet dilution refrigerator with a 20T magnet, a 7mK dry dilution with a 3D vector magnet, as well as a variable temperature cryostat.

    contact Yuval Ronen for more details

  • Dr. Yuval Ronen | link for homepage

    Department of Condensed Matter Physics
    MSc position

    Our lab investigates quantum phenomena which focus on the interplay between correlations and topology. This intriguing interplay allows to develop unique realizations of non-abelian quasi-particles (qps) which are neither Boson nor Fermion-like. Among the phases which host these qps are the well-known fractional quantum Hall effect, topological superconductivity, and the recently emerging field of moire-superlattcies (twistronics). We are developing experiments in these arrowheads to unravel this intriguing physics. This line of research often utilizes quantum materials whose reduced dimensionality enhances quantum effects. We profit from the use of various van der Waals (vdW) materials (graphene, hBN, TMDs, etc.) as well as high-mobility two-dimensional GaAs electron gas, which are both grown in our department. Fabrication is performed in a state-of-the-art clean room facility, specially designed for vdW materials nanofabrication. These devices will be measured with transport techniques including quantum Hall interferometry, Josephson interferometry, capacitance measurements, thermal transport, and shot noise measurements. These measurements require high magnetic fields and low electron temperatures. Our lab will be equipped with an 8mK wet dilution refrigerator with a 20T magnet, a 7mK dry dilution with a 3D vector magnet, as well as a variable temperature cryostat.

    contact Yuval Ronen for more details

  • Prof. Joel Stavans | link for homepage

    Department of Physics of Complex Systems
    MSc position

    Physics and Biology of natural  microbial communities from an ancient site

  • Prof. Joel Stavans | link for homepage

    Department of Physics of Complex Systems
    Postdoc position

    Physics and Biology of natural  microbial communities from an ancient site

  • Prof. Joel Stavans | link for homepage

    Department of Physics of Complex Systems
    PhD position

    Bacterial spatial ecology of an ancient site and active matter physics

  • Prof. Joel Stavans | link for homepage

    Department of Physics of Complex Systems
    MSc position

    Experimental study of the ecology of bacterial communities from a 700 million year old site

  • Prof. Joel Stavans | link for homepage

    Department of Physics of Complex Systems
    Postdoc position

    Bacterial active matter physics

  • Prof. Eran Oded Ofek | link for homepage

    Department of Particle Physics and Astrophysics
    MSc position

    M.Sc. in obsevational astrophysics, instrumentations, and methods.

  • Prof. Eitan Reuveny | link for homepage

    Department of Biomolecular Sciences
    PhD position

    We have open positions for Ph.D. candidates interested in mechanisms of channel regulation by GPCRs using, but not limited to, computational (molecular dynamics), electrophysiological, molecular and/or optical methodologies.

     

  • Prof. Eitan Reuveny | link for homepage

    Department of Biomolecular Sciences
    Postdoc position

    We have open positions for Ph.D. candidates interested in mechanisms of channel regulation by GPCRs using, but not limited to, computational (molecular dynamics), electrophysiological, molecular and/or optical methodologies.

     

  • Prof. Eitan Reuveny | link for homepage

    Department of Biomolecular Sciences
    MSc position

    We have open positions for Ph.D. candidates interested in mechanisms of channel regulation by GPCRs using, but not limited to, computational (molecular dynamics), electrophysiological, molecular and/or optical methodologies.

  • Prof. Eitan Reuveny | link for homepage

    Department of Biomolecular Sciences
    PhD position

    We have open positions for Ph.D. candidates or Postdoc candidates interested in mechanisms of channels function, GPCRs regulation of Cellular processes emphasizing on ion channel regulation and the interaction between animal toxins and ion channels.

  • Prof. Eitan Reuveny | link for homepage

    Department of Biomolecular Sciences
    Postdoc position

    We have open positions for Ph.D. candidates or Postdoc candidates interested in mechanisms of channels function, GPCRs regulation of Cellular processes emphasizing on ion channel regulation and the interaction between animal toxins and ion channels.

     

     

  • Prof. Yinon Rudich | link for homepage

    Department of Earth and Planetary Sciences
    Postdoc position

    Investigation the biological and toxicological effects of SOA from on-road car emissions funded by the EU

  • Prof. Yinon Rudich | link for homepage

    Department of Earth and Planetary Sciences
    Postdoc position

    Investigating the atmospheric chemistry of organic aerosol aging, physical properties, and potential health effects

  • Prof. Yinon Rudich | link for homepage

    Department of Earth and Planetary Sciences
    PhD position

    Developing AI architectures for extreme weather events forecasting.

    Department of Earth and Planetary Science, Weizmann Institute of Science, Israel

  • Prof. Yinon Rudich | link for homepage

    Department of Earth and Planetary Sciences
    PhD position

    Studying the Microbiome of the atmosphere.

  • Prof. Yinon Rudich | link for homepage

    Department of Earth and Planetary Sciences
    PhD position

    Develop and explore AI architectures for extreme weather events forecasting, driven by remote sensing and in-situ data, to replace theory-driven climate models.

  • Prof. Yinon Rudich | link for homepage

    Department of Earth and Planetary Sciences
    PhD position

    Studying the Microbiome of the atmosphere.

  • Prof. Yinon Rudich | link for homepage

    Department of Earth and Planetary Sciences
    Postdoc position

    Investigate the biological and toxicological effects of SOA from on-road car emissions funded by the EU

  • Prof. Yinon Rudich | link for homepage

    Department of Earth and Planetary Sciences
    Postdoc position

    Develop and explore AI architectures for extreme weather events forecasting, driven by remote sensing and in-situ data, to replace theory-driven climate models.

  • Prof. Yinon Rudich | link for homepage

    Department of Earth and Planetary Sciences
    Postdoc position

    Develop and explore AI and Machine Learning architectures for extreme weather events forecasting, driven by remote sensing and in-situ data, to replace theory-driven climate models.

     

  • Dr. Amit Finkler | link for homepage

    Department of Chemical and Biological Physics
    PhD position

    Quantum sensing using nanodiamonds

  • Dr. Nir Fluman | link for homepage

    Department of Biomolecular Sciences
    Postdoc position

    Membrane protein folding and quality control

  • Dr. Nir Fluman | link for homepage

    Department of Biomolecular Sciences
    MSc position

    Membrane protein folding and quality control

  • Dr. Nir Fluman | link for homepage

    Department of Biomolecular Sciences
    PhD position

    Membrane protein folding and quality control

  • Dr. Nir Fluman | link for homepage

    Department of Biomolecular Sciences
    MSc rotation
    Available Rotations: 3rd

    Membrane protein folding and quality control

  • Prof. Lucio Frydman | link for homepage

    Department of Chemical and Biological Physics
    PhD position

    Students with interest in working with magnetic resonance are sought for the development of new metabolic imaging experiments. The student will work on understanding the physics and performing an array of new MRI experiments on high end scanners, and apply these in the detection of small tumors, and in the evaluation of chemotherapeutic and biological treatments. The student will be advised by physicists, chemists and biologists/clinicians in this project

  • Prof. Lucio Frydman | link for homepage

    Department of Chemical and Biological Physics
    MSc position

    Students with interest in working with magnetic resonance are sought for the development of new metabolic imaging experiments. The student will work on understanding the physics and performing an array of new MRI experiments on high end scanners, and apply these in the detection of small tumors, and in the evaluation of chemotherapeutic and biological treatments. The student will be advised by physicists, chemists and biologists/clinicians in this project

  • Prof. Lucio Frydman | link for homepage

    Department of Chemical and Biological Physics
    PhD position

    Students are being sought for developing new experiments in the area of electron-enhanced nuclear magnetic resonance. This so-called dynamic nuclear polarization (DNP) NMR experiment subjects electrons in the sample to microwave irradiation, and then uses the ensuing nuclear polarization enhancement to open new analytical and metabolic frontiers in NMR. Topics involved in this research will include developing new forms of quantum control between spins to enable a more efficient electron-->nuclear polarization transfer, automation, cryogenics, and the design and construction of radiofrequency and microwave components.  Programming experience also required. Applications of this project to solve both analytical and biophysical problems are also envisioned. 

  • Prof. Lucio Frydman | link for homepage

    Department of Chemical and Biological Physics
    MSc position

    Students are being sought for developing new experiments in the area of electron-enhanced nuclear magnetic resonance. This so-called dynamic nuclear polarization (DNP) NMR experiment subjects electrons in the sample to microwave irradiation, and then uses the ensuing nuclear polarization enhancement to open new analytical and metabolic frontiers in NMR. Topics involved in this research will include developing new forms of quantum control between spins to enable a more efficient electron-->nuclear polarization transfer, automation, cryogenics, and the design and construction of radiofrequency and microwave components.  Programming experience also required. Applications of this project to solve both analytical and biophysical problems are also envisioned. 

  • Prof. Lucio Frydman | link for homepage

    Department of Chemical and Biological Physics
    MSc rotation
    Available Rotations: 3rd

    Students are being sought for developing new experiments in the area of electron-enhanced nuclear magnetic resonance. This so-called dynamic nuclear polarization (DNP) NMR experiment subjects electrons in the sample to microwave irradiation, and then uses the ensuing nuclear polarization enhancement to open new analytical and metabolic frontiers in NMR. Students are being sought that will participate in these experiments, and assist in programming the spin physics involved in them

  • Prof. Lucio Frydman | link for homepage

    Department of Chemical and Biological Physics
    Postdoc position

    Scientists with interest in working with magnetic resonance are sought for the development of new metabolic imaging experiments. The student will work on understanding the physics and performing an array of new MRI experiments on high end scanners, and apply these in the detection of small tumors, and in the evaluation of chemotherapeutic and biological treatments. The student will be advised by physicists, chemists and biologists/clinicians in this project

  • Prof. Lucio Frydman | link for homepage

    Department of Chemical and Biological Physics
    Postdoc position

    Scientists are being sought for developing new experiments in the area of electron-enhanced nuclear magnetic resonance. This so-called dynamic nuclear polarization (DNP) NMR experiment subjects electrons in the sample to microwave irradiation, and then uses the ensuing nuclear polarization enhancement to open new analytical and metabolic frontiers in NMR. Topics involved in this research will include developing new forms of quantum control between spins to enable a more efficient electron-->nuclear polarization transfer, automation, cryogenics, and the design and construction of radiofrequency and microwave components.  Programming experience also required. Applications of this project to solve both analytical and biophysical problems are also envisioned. 

  • Prof. Amnon Horovitz | link for homepage

    Department of Chemical and Structural Biology
    Postdoc position

    Talented and motivated individual who wishes to study the mechanism of GroEL-assisted folding using molecular biology and biophysical approaches

  • Prof. Amnon Horovitz | link for homepage

    Department of Chemical and Structural Biology
    Postdoc position

    Talented and motivated student who wishes to study allostery and function in eukaryotic chaperonins and their connection to various diseases

  • Prof. Amnon Horovitz | link for homepage

    Department of Chemical and Structural Biology
    PhD position

    Talented and motivated individual who wishes to study the mechanism of GroEL-assisted folding using molecular biology and biophysical approaches

  • Prof. Assaf Gal | link for homepage

    Department of Plant and Environmental Sciences
    Postdoc position

    We are looking for extremely talented candidates to use and develop state-of-the-art cryo electron microscopy techniques for the study of cellular mineralization and\or biomimetic systems.

  • Prof. Assaf Gal | link for homepage

    Department of Plant and Environmental Sciences
    PhD position

    We are looking for extremely talented candidates to study the roles of dense mineral phases in the formation of biomaterials.

  • Prof. Avishay Gal-Yam | link for homepage

    Department of Particle Physics and Astrophysics
    PhD position

    Ph.D thesis work in observational astrophysics with a focus on early observations and in particular spectroscopy of exploding stars 

  • Prof. Avishay Gal-Yam | link for homepage

    Department of Particle Physics and Astrophysics
    Postdoc position

    Postdoctoral work on data from SoXS, a new spectrograph with novel capabilities

  • Prof. Avishay Gal-Yam | link for homepage

    Department of Particle Physics and Astrophysics
    MSc position

    M.Sc position in observational astrophysics: observing stars as they explode 

  • Prof. Avishay Gal-Yam | link for homepage

    Department of Particle Physics and Astrophysics
    MSc position

    M.Sc student working on analysis of large astrophysical data sets including development of new analysis methods

  • Prof. Jeffrey Gerst | link for homepage

    Department of Molecular Genetics
    Postdoc position

    mRNA operons in eukaryotic cells and their role in controlling cell physiology and growth.

  • Prof. Jeffrey Gerst | link for homepage

    Department of Molecular Genetics
    Postdoc position

    Wanted: Talented post-doctoral applicants to study intercellular mRNA trafficking in vitro and in vivo and its use in RNA therapeutics

  • Prof. Jeffrey Gerst | link for homepage

    Department of Molecular Genetics
    MSc rotation
    Available Rotations: 2nd,3rd

    Study of intercellular mRNA transfer and its ability to complement genetic alterations in mammalian cells

  • Prof. Gilad Haran | link for homepage

    Department of Chemical and Biological Physics
    MSc rotation
    Available Rotations: 2nd,3rd

    Single-molecule fluorescence experiments to study protein folding and dynamics.

  • Prof. Gilad Haran | link for homepage

    Department of Chemical and Biological Physics
    MSc rotation
    Available Rotations: 2nd,3rd

    Nanoplasmonics- interaction of light with small metallic particles and molecules

  • Prof. Gilad Haran | link for homepage

    Department of Chemical and Biological Physics
    PhD position

    Study protein dynamics using advanced single-molecule fluorescence methods.

  • Prof. Gilad Haran | link for homepage

    Department of Chemical and Biological Physics
    MSc position

    Study protein dynamics using advanced single-molecule fluorescence methods.

  • Prof. Gilad Haran | link for homepage

    Department of Chemical and Biological Physics
    Postdoc position

    Study protein dynamics using advanced single-molecule fluorescence methods.

  • Prof. Brian Berkowitz | link for homepage

    Department of Earth and Planetary Sciences
    MSc rotation
    Available Rotations: 1st,2nd,3rd

    Theoretical/numerical modelling, and laboratory experiments, to investigate a wide range of physical and biogeochemical transport processes in geological materials and other porous materials.

  • Prof. Brian Berkowitz | link for homepage

    Department of Earth and Planetary Sciences
    MSc position

    Theoretical/numerical modelling, and laboratory experiments, to investigate a wide range of physical and biogeochemical transport processes in geological materials and other porous materials.

  • Dr. Moshe Biton | link for homepage

    Department of Immunology and Regenerative Biology
    Postdoc position

    The Biton lab at the Weizmann Institute of Science is seeking a highly
    motivated Post-doc fellow to join our laboratory investigating
    epithelial-immune interactions in the gut. The successful candidate will
    contribute to our understanding of how the intestinal epithelium and
    immune system communicate to maintain homeostasis and respond to
    environmental challenges.

  • Prof. Ariel Amir | link for homepage

    Department of Physics of Complex Systems
    MSc position

    Our research centers on the theory of complex systems and biophysics, applied to a broad spectrum of problems, mainly in the context of the physics of living systems. Our research is often done in collaboration with experimental groups. Key themes of our lab include mathematical modeling of cell growth and mechanics, both at the single-cell level and the population level, stochastic processes, disordered systems, and coarse-grained modeling of complex processes. 

    For more information and recent publications see: https://amir.seas.harvard.edu/

  • Prof. Ariel Amir | link for homepage

    Department of Physics of Complex Systems
    PhD position

    Our research centers on the theory of complex systems and biophysics, applied to a broad spectrum of problems, mainly in the context of the physics of living systems. Our research is often done in collaboration with experimental groups. Key themes of our lab include mathematical modeling of cell growth and mechanics, both at the single-cell level and the population level, stochastic processes, disordered systems, and coarse-grained modeling of complex processes. 

    For more information and recent publications see: https://amir.seas.harvard.edu/

  • Prof. Ariel Amir | link for homepage

    Department of Physics of Complex Systems
    Postdoc position

    Our research centers on the theory of complex systems and biophysics, applied to a broad spectrum of problems, mainly in the context of the physics of living systems. Our research is often done in collaboration with experimental groups. Key themes of our lab include mathematical modeling of cell growth and mechanics, both at the single-cell level and the population level, stochastic processes, disordered systems, and coarse-grained modeling of complex processes. 

    For more information and recent publications see: https://amir.seas.harvard.edu/

  • Dr. Hillel Aharoni | link for homepage

    Department of Physics of Complex Systems
    MSc position

    Geometry, topology and order in soft materials

  • Dr. Hillel Aharoni | link for homepage

    Department of Physics of Complex Systems
    MSc position

    Geometry, topology and order in soft materials

  • Prof. Uri Alon | link for homepage

    Department of Molecular Cell Biology
    PhD position

    E. coli as a model for aging

  • Prof. Uri Alon | link for homepage

    Department of Molecular Cell Biology
    Postdoc position

    E. coli as a model for aging

  • Prof. Gad Asher | link for homepage

    Department of Biomolecular Sciences
    PhD position

    Interactions between circadian clocks and exercise physiology

    We employ various clock mutant mouse models with different light regimens to characterize the interaction between clocks and exercise. Further, we have designed and built fully automated time-controlled Running Wheels that can be programmed in advance to be in locked or unlocked positions for designated times to enable scheduled training of animals without manual interventions.

  • Prof. Gad Asher | link for homepage

    Department of Biomolecular Sciences
    MSc rotation
    Available Rotations: 1st,2nd,3rd

    The interplay between circadian clocks and exercise performance

  • Prof. Gad Asher | link for homepage

    Department of Biomolecular Sciences
    MSc rotation
    Available Rotations: 1st,2nd,3rd

    The relationship between hypoxia and the core circadian clock

  • Prof. Gad Asher | link for homepage

    Department of Biomolecular Sciences
    MSc rotation
    Available Rotations: 1st,2nd,3rd

    Computational analyses of rhythmic outputs (e.g. metabolites, gases)

  • Prof. Gad Asher | link for homepage

    Department of Biomolecular Sciences
    MSc rotation
    Available Rotations: 1st,2nd,3rd

    Biochemical identification of metabolic sensors

  • Prof. Gad Asher | link for homepage

    Department of Biomolecular Sciences
    PhD position

    Clocks resetting

    How the clock integrates different resetting cues? Are there differences in resetting capacity between different cell types? How different pharmaceutics influence the clock? Can it be harnessed to improve therapy?

  • Prof. Gad Asher | link for homepage

    Department of Biomolecular Sciences
    Postdoc position
    • Circadian clock resetting and Chrono-medicine

    • How the clock integrates different resetting cues? Are there differences in resetting capacity between different cell types? How different pharmaceutics influence the clock? Can it be harnessed to improve therapy?

  • Prof. Gad Asher | link for homepage

    Department of Biomolecular Sciences
    Postdoc position
    • Circadian exercise 
    • In the past 7 years, we studied the cross-talk between metabolism and circadian rhythms, leading us to venture into other fields, like exercise biology. Some exciting questions, both related to physiology and molecular mechanism, that stem from our recent publications (Adamovich et al., Proc. Natl. Acad. Sci. USA, 2021; Ezagouri et al., Cell Metabolism, 2019) are now under investigation.

  • Prof. Gad Asher | link for homepage

    Department of Biomolecular Sciences
    PhD position

    Oxygen and Circadian Clocks

    How does chronic exposure to hypoxia, as occurs with people living at high altitude, affects the human clock? How oxygen is connected to exercise performance and is there a time preference for high altitude training? (Tripartite model for performance: Clocks, oxygen, and exercise) How does HIF-1a endogenously integrate with circadian clock complexes during the circadian cycle? How do HIF-1a and BMAL1 regulate rhythmic transcriptome?

  • Prof. Nir Davidson | link for homepage

    Department of Physics of Complex Systems
    Postdoc position

    Experimental and theoretical studies of neutral atom quantum simulators

  • Prof. Nir Davidson | link for homepage

    Department of Physics of Complex Systems
    MSc position

    Experimental and theoretical studies of laser spin simulators and solvers

  • Prof. Nir Davidson | link for homepage

    Department of Physics of Complex Systems
    MSc position

    Experimental and theoretical studies of ultra-cold quantum degenerate Bose and Fermi gas

  • Prof. Nir Davidson | link for homepage

    Department of Physics of Complex Systems
    MSc position

    Experimental and theoretical studies of neutral atom quantum simulators

  • Prof. Nir Davidson | link for homepage

    Department of Physics of Complex Systems
    PhD position

    Experimental and theoretical studies of laser spin simulators and solvers

  • Prof. Nir Davidson | link for homepage

    Department of Physics of Complex Systems
    Postdoc position

    Experimental and theoretical studies of laser spin simulators and solvers

  • Prof. Nir Davidson | link for homepage

    Department of Physics of Complex Systems
    PhD position

    Experimental and theoretical studies of ultra-cold quantum degenerate Bose and Fermi gas

  • Prof. Nir Davidson | link for homepage

    Department of Physics of Complex Systems
    Postdoc position

    Experimental and theoretical studies of ultra-cold quantum degenerate Bose and Fermi gas

  • Prof. Nir Davidson | link for homepage

    Department of Physics of Complex Systems
    PhD position

    Experimental and theoretical studies of neutral atom quantum simulators

  • Prof. Micha Berkooz | link for homepage

    Department of Particle Physics and Astrophysics
    MSc position

    Theoretical high energy physics: string theory, field theory, gravity, black holes, relations to stat. mech., condensed matter physics and quantum chaos.  

  • Prof. Micha Berkooz | link for homepage

    Department of Particle Physics and Astrophysics
    PhD position

    Theoretical high energy physics: string theory, field theory, gravity, black holes, relations to stat. mech., condensed matter physics and quantum chaos.  

  • Prof. Gideon Schreiber | link for homepage

    Department of Biomolecular Sciences
    MSc rotation
    Available Rotations: 1st,2nd,3rd

    Investigating protein-protein interactions and interferon actions