-
What Explains Teachers Trust in AI in Education Across Six Countries?
Viberg O., Cukurova M., Feldman-Maggor Y., Alexandron G., Shirai S., Kanemune S., Wasson B., Tømte C., Spikol D., Milrad M., Coelho R. & Kizilcec R. F. (2024), International Journal of Artificial Intelligence in Education
-
Perspectives of Generative AI in Chemistry Education Within the TPACK Framework
Feldman-Maggor Y., Blonder R. & Alexandron G. (2024), Journal of Science Education and Technology
-
The digital fingerprint of learner behavior: Empirical evidence for individuality in learning using deep learning
Salman A. & Alexandron G. (2024), Computers and Education: Artificial Intelligence. 7, 100322
-
Explainable AI for Unsupervised Machine Learning: A Proposed Scheme Applied to a Case Study with Science Teachers
Feldman-Maggor Y., Nazaretsky T. & Alexandron G. (2024), Proceedings of the 16th International Conference on Computer Supported Education, CSEDU 2024. Ortega-Arranz A., McLaren B., Chounta I-A, Jovanovic J., Poquet O. & Viberg O. (eds.). p. 436-444
-
Causal-mechanical explanations in biology: Applying automated assessment for personalized learning in the science classroom
Ariely M., Nazaretsky T. & Alexandron G. (2024), Journal of Research in Science Teaching
-
Recommender systems for teachers: The relation between social ties and the effectiveness of socially-based features
Yacobson E., Toda A. M., Cristea A. I. & Alexandron G. (2024), Computers and Education. 210, 104960
-
Mind the Gap: Confronting the Vast Divide Between CS Teaching and Machine Learning Pedagogy
Perach S. & Alexandron G. (2024), Technology Enhanced Learning for Inclusive and Equitable Quality Education. Pishtari G., Jivet I., Ruipérez Valiente J. A., Rummel N. & Ferreira Mello R. (eds.). p. 344-358
-
Recommending Is Reflecting: A Surprising Benefit of Social Recommender Systems for Teachers
Yacobson E. & Alexandron G. (2024), Technology Enhanced Learning for Inclusive and Equitable Quality Education. Pishtari G., Jivet I., Ruipérez Valiente J. A., Rummel N. & Ferreira Mello R. (eds.). p. 195-200
-
Simulated Learners in Educational Technology: A Systematic Literature Review and a Turing-like Test
Kaser T. & Alexandron G. (2023), International Journal of Artificial Intelligence in Education. 34, 2, p. 545-585
-
An evaluation of assessment stability in a massive open online course using item response theory
Gershon S. K., Anghel E. & Alexandron G. (2023), Education and Information Technologies. 29, 3, p. 2625-2643
-
A General Purpose Anomaly-Based Method for Detecting Cheaters in Online Courses
Alexandron G., Berg A. & Ruiperez-Valiente J. A. (2023), IEEE Transactions on Learning Technologies. 17, p. 1-11
-
Using participatory design to design gamified interventions in educational environments
Toda A., Yacobson E., Alexandron G., Palomino P. T., Souza M., Santos E., Corrêa A., Lisboa R., Cordeiro T. D. & Cristea A. I. (2023), Gamification Design for Educational Contexts. p. 85-96
-
How Do Teachers Search for Learning Resources? A Mixed Method Field Study
Yacobson E. & Alexandron G. (2023), Responsive and Sustainable Educational Futures - 18th European Conference on Technology Enhanced Learning, EC-TEL 2023, Proceedings. Jivet I., Perifanou M., Viberg O., Muñoz-Merino P. J. & Papathoma T. (eds.). p. 489-503
-
Transformer-based Hebrew NLP models for Short Answer Scoring in Biology
Schleifer A. G., Klebanov B. B., Ariely M. & Alexandron G. (2023), BEA 2023 - 18th Workshop on Innovative Use of NLP for Building Educational Applications, Proceedings of the Workshop. Tack A., Horbach A., Kochmar E., Burstein J., Madnani N., Laarmann-Quante R., Zesch T., Yaneva V. & Yuan Z. (eds.). p. 550-555
-
The effects of assessment design on academic dishonesty, learner engagement, and certification rates in MOOCs
Alexandron G., Wiltrout M. E., Berg A., Gershon S. K. & Ruiperez-Valiente J. A. (2023), Journal of Computer Assisted Learning. 39, 1, p. 141-153
-
Trustworthy remote assessments: A typology of pedagogical and technological strategies
Hilliger I., RuipérezValiente J. A., Alexandron G. & Gašević D. (2022), Journal of Computer Assisted Learning. 38, 6, p. 1507-1520
-
A Blended-Learning Program for Implementing a Rigorous Machine-Learning Curriculum in High-Schools
Perach S. & Alexandron G. (2022), L@S 2022 - Proceedings of the 9th ACM Conference on Learning @ Scale. p. 267-270
-
Machine Learning and Hebrew NLP for Automated Assessment of Open-Ended Questions in Biology
Ariely M., Nazaretsky T. & Alexandron G. (2022), International Journal of Artificial Intelligence in Education
-
Teachers' trust in AIpowered educational technology and a professional development program to improve it
Nazaretsky T., Ariely M., Cukurova M. & Alexandron G. (2022), British Journal of Educational Technology. 53, 4, p. 914-931
-
An Instrument for Measuring Teachers' Trust in AI-Based Educational Technology
Nazaretsky T., Cukurova M. & Alexandron G. (2022), LAK 2022 -12th International Learning Analytics and Knowledge Conference. p. 56-66
Submitted Version -
Assisting Teachers in Finding Online Learning Resources: The Value of Social Recommendations
Yacobson E., Toda A. M., Cristea A. I. & Alexandron G. (2022), Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners and Doctoral Consortium - 23rd International Conference, AIED 2022, Proceedings. Cristea A. I., Rodrigo M. M., Matsuda N. & Dimitrova V. (eds.). p. 391-395
-
Empowering Teachers with AI: Co-Designing a Learning Analytics Tool for Personalized Instruction in the Science Classroom
Nazaretsky T., Bar C., Walter M. & Alexandron G. (2022), LAK 2022 - Conference Proceedings. p. 1-12
-
Evaluating a learning analytics dashboard to detect dishonest behaviours: A case study in small private online courses with academic recognition
Jaramillo-Morillo D., Ruipérez-Valiente J. A., Burbano Astaiza C. P., Solarte M., Ramirez-Gonzalez G. & Alexandron G. (2022), Journal of Computer Assisted Learning. 38, 6, p. 1574-1588
-
De-identification is insufficient to protect student privacy, orWhat can a field trip reveal?
Yacobson E., Fuhrman O., Hershkowitz S. & Alexandron G. (2021), Journal of Learning Analytics. 8, 2, p. 83-92
-
Encouraging Teacher-Sourcing of Social Recommendations Through Participatory Gamification Design
Yacobson E., Toda A., Cristea A. I. & Alexandron G. (2021), Intelligent Tutoring Systems - 17th International Conference, ITS 2021, Proceedings. Cristea A. I. & Troussas C. (eds.). p. 418-429
-
Defining and measuring completion and assessment biases with respect to English language and development status: not all MOOCs are equal
Gershon S. K., Ruipérez-Valiente J. A. & Alexandron G. (2021), International Journal of Educational Technology in Higher Education. 18, 1, 41
-
Identifying relations between items in an online learning tutor using educational data mining
Nazaretsky T., Hershkovitz S. & Alexandron G. (2020)
-
Teacher-sourcing semantic information in a Physics blended-learning environment
Yacobson E., Bar-Yosef A., Hen E. & Alexandron G. (2020)
-
Assessment that matters: Balancing reliability and learner-centered pedagogy in MOOC assessment
Alexandron G., Wiltrout M. E., Berg A. & Ruipérez-Valiente J. A. (2020)
-
Are MOOC Learning Analytics Results Trustworthy? With Fake Learners, They Might Not Be!
Alexandron G., Yoo L. Y., Ruiperez-Valiente J. A., Lee S. & Pritchard D. E. (2019), International Journal of Artificial Intelligence in Education. 29, 4, p. 484-506
Submitted Version -
Towards a General Purpose Anomaly Detection Method to Identify Cheaters in Massive Open Online Courses
Alexandron G., Ruiperez-Valiente J. A. & Pritchard D. E. (2019)
-
Using Machine Learning to Detect 'Multiple-Account' Cheating and Analyze the Influence of Student and Problem Features
Ruiperez-Valiente J. A., Munoz-Merino P. J., Alexandron G. & Pritchard D. E. (2019), IEEE Transactions on Learning Technologies. 12, 1, p. 112-122
-
Understanding the potential and challenges of Big Data in schools and education
Hershkovitz A. & Alexandron G. (2019), Tendencias Pedagógicas. 35, p. 7-17
-
Evaluating the Effectiveness of Animated Cartoons in an Intelligent Math Tutoring System Using Educational Data Mining
Alexandron G., Keinan G., Levy B. & Hershkovitz S. (2018), Proceedings of EdMedia + Innovate Learning 2018. Fulford C., Weippl E., Sorensen E. K., Sointu E., Marks G., Davidson-Shivers G. V., Knezek G., Viteli J., Braak J. V., Voogt J., Kreijns K., DePryck K., Cantoni L., Castro M., Brown M., Ebner M., Fominykh M., Zawacki-Richter O., Weber P., Christensen R., Hatzipanagos S. & Bastiaens T. (eds.). Amsterdam, Netherlands p. 719-730
-
A New Method for Measuring Similarity Between Educational Items from Response Data
Nazaretsky T., Hershkovitz S. & Alexandron G. (2018)
-
Evaluating the Robustness of Learning Analytics Results Against Fake Learners
Alexandron G., Ruipérez-Valiente J. A., Lee S. & Pritchard D. E. (2018), Lifelong Technology-Enhanced Learning - 13th European Conference on Technology Enhanced Learning, EC-TEL 2018, Proceedings. Drachsler H., Perez-Sanagustin M., Scheffel M., Elferink R. & Pammer-Schindler V. (eds.). p. 74-87
Submitted Version -
Kappa Learning: A New Method for Measuring Similarity Between Educational Items Using Performance Data
Nazaretsky T., Hershkovitz S. & Alexandron G. (2018), arXiv
Submitted Version -
ביג דאטה בחינוך - פוטנציאל ואתגרים
Alexandron G. & Hershkovitz A. (2018), Kriyat Beinayim. 31, p. 8-12
-
Predicting Reading Comprehension in Digital Platforms
Alexandron G., Fuhrman O. & Hershkovitz A. (2018)
-
Privacy and Security in Educational Technology
Alexandron G. (2018)
-
Copying@Scale: Using Harvesting Accounts for Collecting Correct Answers in a MOOC
Alexandron G., Ruipérez-Valiente J. A., Chen Z., Muñoz-Merino P. J. & Pritchard D. E. (2017), Computers & Education. 108, p. 96-114
-
Detecting cheaters in MOOCs using item response theory and learning analytics
Alexandron G., Lee S., Chen Z. & Pritchard D. E. (2016), CEUR Workshop Proceedings. 1618, p. 53-56
Submitted Version -
Using Multiple Accounts for Harvesting Solutions in MOOCs
Ruiperez-Valiente J. A., Alexandron G., Chen Z. & Pritchard D. E. (2016), Proceedings of the Third ACM Conference on Learning @ Scale (L@S 2016). p. 63-70
Submitted Version -
Researching for better instructional methods using AB experiments in MOOCs: results and challenges
Chen Z., Chudzicki C., Palumbo D., Alexandron G., Choi Y. J., Zhou Q. & Pritchard D. E. (2016), Research and Practice in Technology Enhanced Learning. 11, 1, 9
-
Learning Experiments using AB Testing at Scale in a Physics MOOC
Chudzicki C., Chen Z., Choi Y., Zhou Q., Alexandron G. & Pritchard D. E. (2015)
-
Evidence of MOOC Students Using Multiple Accounts to Harvest Correct Answers
Alexandron G., Ruiperez-Valientea J. A. & Pritchard D. E. (2015)
-
Using Prediction Models to Analyze the Effectiveness of the Instructional Resources
Alexandron G., Chen Z., Chudzicki C. & Pritchard D. E. (2015)
-
Discovering the Pedagogical Resources that Assist Students to Answer Questions Correctly A Machine Learning Approach
Alexandron G., Zhou Q. & Pritchard D. E. (2015), Proceedings of the 8th International Conference on Educational Data Mining. p. 520-523
Submitted Version -
Kinetic and dynamic data structures for convex hulls and upper envelopes
Alexandron G., Kaplan H. & Sharir M. (2007), Computational Geometry-Theory And Applications. 36, 2, p. 144-158
-
איך לחתוך את הסנדוויץ' - על גאומטריה חישובית ויישומיה
Alexandron G. (2006), Galileo
-
Kinetic and Dynamic Data Structures for Convex Hulls and Upper Envelopes
Alexandron G., Kaplan H. & Sharir M. (2005), Workshop on Algorithms and Data Structures. p. 269-281